Lecture 5: continued

- But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion?

> e.g. electrons in a metal.

$$
\hat{H}=\frac{1}{2 m}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}, t))^{2}+q \varphi(\mathbf{x}, t), \quad q=-e
$$

In this case, classical orbits can be macroscopic in extent, and there is no reason to neglect the diamagnetic contribution.

Free electrons in a magnetic field: Landau levels

- But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion?
e.g. electrons in a metal.

$$
\hat{H}=\frac{1}{2 m}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}, t))^{2}+q \varphi(\mathbf{x}, t), \quad q=-e
$$

- In this case, classical orbits can be macroscopic in extent, and there is no reason to neglect the diamagnetic contribution.
- But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion?

> e.g. electrons in a metal.

$$
\hat{H}=\frac{1}{2 m}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}, t))^{2}+q \varphi(\mathbf{x}, t), \quad q=-e
$$

- In this case, classical orbits can be macroscopic in extent, and there is no reason to neglect the diamagnetic contribution.
- Here it is convenient (but not essential - see PS1) to adopt Landau gauge, $\mathbf{A}(\mathbf{x})=(-B y, 0,0), \mathbf{B}=\nabla \times \mathbf{A}=B \hat{\mathbf{e}}_{z}$, where

$$
\hat{H}=\frac{1}{2 m}\left[\left(\hat{p}_{x}-e B y\right)^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right]
$$

Free electrons in a magnetic field: Landau levels

$$
\hat{H} \psi(\mathbf{x})=\frac{1}{2 m}\left[\left(\hat{p}_{x}-e B y\right)^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right] \psi(\mathbf{x})=E \psi(\mathbf{x})
$$

- Since $\left[\hat{H}, \hat{p}_{x}\right]=\left[\hat{H}, \hat{p}_{z}\right]=0$, both p_{x} and p_{z} conserved, i.e. $\psi(\mathbf{x})=e^{i\left(p_{x} x+p_{z} z\right) / \hbar} \chi(y)$ with

$$
\left[\frac{\hat{p}_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}\right] \chi(y)=\left(E-\frac{p_{z}^{2}}{2 m}\right) \chi(y)
$$

where $y_{0}=\frac{p_{x}}{e B}$ and $\omega=\frac{e B}{m}$ is classical cyclotron frequency
p_{x} defines centre of harmonic oscillator in y with frequency ω,

Free electrons in a magnetic field: Landau levels

$$
\hat{H} \psi(\mathbf{x})=\frac{1}{2 m}\left[\left(\hat{p}_{x}-e B y\right)^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right] \psi(\mathbf{x})=E \psi(\mathbf{x})
$$

- Since $\left[\hat{H}, \hat{p}_{x}\right]=\left[\hat{H}, \hat{p}_{z}\right]=0$, both p_{x} and p_{z} conserved, i.e. $\psi(\mathbf{x})=e^{i\left(p_{x} x+p_{z} z\right) / \hbar} \chi(y)$ with

$$
\left[\frac{{\hat{p_{y}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}\right] \chi(y)=\left(E-\frac{p_{z}^{2}}{2 m}\right) \chi(y)
$$

where $y_{0}=\frac{p_{x}}{e B}$ and $\omega=\frac{e B}{m}$ is classical cyclotron frequency

- p_{x} defines centre of harmonic oscillator in y with frequency ω, i.e.

$$
E_{n, p_{z}}=(n+1 / 2) \hbar \omega+\frac{p_{z}^{2}}{2 m}
$$

- The quantum numbers, n, index infinite set of Landau levels.

Free electrons in a magnetic field: Landau levels

$$
E_{n, p_{z}}=(n+1 / 2) \hbar \omega+\frac{p_{z}^{2}}{2 m}
$$

- Taking $p_{z}=0$ (for simplicity), for lowest Landau level, $n=0$, $E_{0}=\frac{\hbar \omega}{2}$; what is level degeneracy?
- Consider periodic rectangular geometry of area $A=L_{x} \times L_{y}$. Centre of oscillator wavefunction, $y_{0}=\frac{p_{x}}{e B}$, lies in $\left[0, L_{y}\right]$.
set by evenly-spaced discrete values separated by Δy_{0}

Free electrons in a magnetic field: Landau levels

$$
E_{n, p_{z}}=(n+1 / 2) \hbar \omega+\frac{p_{z}^{2}}{2 m}
$$

- Taking $p_{z}=0$ (for simplicity), for lowest Landau level, $n=0$, $E_{0}=\frac{\hbar \omega}{2}$; what is level degeneracy?
- Consider periodic rectangular geometry of area $A=L_{x} \times L_{y}$. Centre of oscillator wavefunction, $y_{0}=\frac{p_{x}}{e B}$, lies in $\left[0, L_{y}\right]$.
- With periodic boundary conditions $e^{i p_{x} L_{x} / \hbar}=1, p_{x}=2 \pi n \frac{\hbar}{L_{x}}$, i.e. y_{0} set by evenly-spaced discrete values separated by $\Delta y_{0}=\frac{\Delta p_{x}}{e B}=\frac{h}{e B L_{x}}$.

Free electrons in a magnetic field: Landau levels

$$
E_{n, p_{z}}=(n+1 / 2) \hbar \omega+\frac{p_{z}^{2}}{2 m}
$$

- Taking $p_{z}=0$ (for simplicity), for lowest Landau level, $n=0$, $E_{0}=\frac{\hbar \omega}{2}$; what is level degeneracy?
- Consider periodic rectangular geometry of area $A=L_{x} \times L_{y}$. Centre of oscillator wavefunction, $y_{0}=\frac{p_{x}}{e B}$, lies in $\left[0, L_{y}\right]$.
- With periodic boundary conditions $e^{i p_{x} L_{x} / \hbar}=1, p_{x}=2 \pi n \frac{\hbar}{L_{x}}$, i.e. y_{0} set by evenly-spaced discrete values separated by $\Delta y_{0}=\frac{\Delta p_{x}}{e B}=\frac{h}{e B L_{x}}$.
- \therefore degeneracy of lowest Landau level $N=\frac{L_{y}}{\left|\Delta y_{0}\right|}=\frac{L_{y}}{h / e B L_{x}}=\frac{B A}{\Phi_{0}}$, where $\Phi_{0}=\frac{e}{h}$ denotes "flux quantum", $\left(\frac{N}{B A} \simeq 10^{14} \mathrm{~m}^{-2} \mathrm{~T}^{-1}\right)$.

Quantum Hall effect

The existence of Landau levels leads to the remarkable phenomenon of the Quantum Hall Effect, discovered in 1980 by von Kiltzing, Dorda and Pepper (formerly of the Cavendish).

- Classically, in a crossed electric $\mathbf{E}=\mathcal{E} \hat{\mathbf{e}}_{y}$ and magnetic field $\mathbf{B}=B \hat{\mathbf{e}}_{z}$, electron drifts in direction $\hat{\mathbf{e}}_{x}$ with speed $v=\mathcal{E} / B$.

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- With current density $j_{x}=-n e v$, Hall resistivity,

$$
\rho_{x y}=-\frac{E_{y}}{j_{x}}=\frac{\mathcal{E}}{n e v}=\frac{B}{e n}
$$

where n is charge density.

Quantum Hall effect

The existence of Landau levels leads to the remarkable phenomenon of the Quantum Hall Effect, discovered in 1980 by von Kiltzing, Dorda and Pepper (formerly of the Cavendish).

- Classically, in a crossed electric $\mathbf{E}=\mathcal{E} \hat{\mathbf{e}}_{y}$ and magnetic field $\mathbf{B}=B \hat{\mathbf{e}}_{z}$, electron drifts in direction $\hat{\mathbf{e}}_{x}$ with speed $v=\mathcal{E} / B$.

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- With current density $j_{x}=-n e v$, Hall resistivity,

$$
\rho_{x y}=-\frac{E_{y}}{j_{x}}=\frac{\mathcal{E}}{n e v}=\frac{B}{e n}
$$

where n is charge density.

Experiment: linear increase in $\rho_{x y}$ with B punctuated by plateaus at which $\rho_{x x}=0$ - dissipationless flow!

Quantum Hall Effect

- Origin of phenomenon lies in Landau level quantization: For a state of the lowest Landau level,

$$
\psi_{p_{x}}(y)=\frac{e^{i p_{x} x / \hbar}}{\sqrt{L_{x}}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar}\left(y-y_{0}\right)^{2}}
$$

current $j_{x}=\frac{1}{2 m}\left(\psi^{*}\left(\hat{p}_{x}+e A_{x}\right) \psi+\psi\left(\left(\hat{p}_{x}+e A_{x}\right) \psi\right)^{*}\right)$, i.e.

$$
\begin{aligned}
j_{x}(y)= & \frac{1}{2 m}\left(\psi_{p_{x}}^{*}\left(\hat{p}_{x}-e B y\right) \psi+\psi_{p_{x}}\left(\left(\hat{p}_{x}-e B y\right) \psi^{*}\right)\right) \\
& =\sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{L_{x}} \underbrace{\frac{p_{x}-e B y}{m}}_{\frac{e B}{m}\left(y_{0}-y\right)} e^{-\frac{m \omega}{\hbar}\left(y-y_{0}\right)^{2}}
\end{aligned}
$$

is non-vanishing. (Note that current operator also gauge invarant.)

Quantum Hall Effect

- Origin of phenomenon lies in Landau level quantization: For a state of the lowest Landau level,

$$
\psi_{p_{x}}(y)=\frac{e^{i p_{x} x / \hbar}}{\sqrt{L_{x}}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar}\left(y-y_{0}\right)^{2}}
$$

current $j_{x}=\frac{1}{2 m}\left(\psi^{*}\left(\hat{p}_{x}+e A_{x}\right) \psi+\psi\left(\left(\hat{p}_{x}+e A_{x}\right) \psi\right)^{*}\right)$, i.e.

$$
\begin{aligned}
j_{x}(y)= & \frac{1}{2 m}\left(\psi_{p_{x}}^{*}\left(\hat{p}_{x}-e B y\right) \psi+\psi_{p_{x}}\left(\left(\hat{p}_{x}-e B y\right) \psi^{*}\right)\right) \\
& =\sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{L_{x}} \underbrace{\frac{p_{x}-e B y}{m}}_{\frac{e B}{m}\left(y_{0}-y\right)} e^{-\frac{m \omega}{\hbar}\left(y-y_{0}\right)^{2}}
\end{aligned}
$$

is non-vanishing. (Note that current operator also gauge invarant.)

- However, if we compute total current along x by integrating along y, sum vanishes, $I_{x}=\int_{0}^{L_{y}} d y j_{x}(y)=0$.

Quantum Hall Effect

- If electric field now imposed along $y,-e \varphi(y)=-e \mathcal{E} y$, symmetry is broken; but wavefunction still harmonic oscillator-like,

$$
\left[\frac{{\hat{p_{y}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}-e \mathcal{E} y\right] \chi(y)=E \chi(y)
$$

but now centered around $y_{0}=\frac{p_{x}}{e B}+\frac{m \mathcal{E}}{e B^{2}}$.

- Integrating, we now obtain a non-vanishing current flow

Quantum Hall Effect

- If electric field now imposed along $y,-e \varphi(y)=-e \mathcal{E} y$, symmetry is broken; but wavefunction still harmonic oscillator-like,

$$
\left[\frac{{\hat{p_{y}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}-e \mathcal{E} y\right] \chi(y)=E \chi(y)
$$

but now centered around $y_{0}=\frac{p_{\times}}{e B}+\frac{m \mathcal{E}}{e B^{2}}$.

- However, the current is still given by

$$
j_{x}(y)=\sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{L_{x}} \frac{p_{x}-e B y}{m} e^{-\frac{m \omega}{\hbar}\left(y-y_{0}\right)^{2}}
$$

[^0]
Quantum Hall Effect

- If electric field now imposed along y, $-e \varphi(y)=-e \mathcal{E} y$, symmetry is broken; but wavefunction still harmonic oscillator-like,

$$
\left[\frac{{\hat{p_{y}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}-e \mathcal{E} y\right] \chi(y)=E \chi(y)
$$

but now centered around $y_{0}=\frac{p_{x}}{e B}+\frac{m \mathcal{E}}{e B^{2}}$.

- However, the current is still given by

$$
j_{x}(y)=\sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{L_{x}} \frac{e B}{m}\left(y_{0}-y-\frac{m \mathcal{E}}{e B^{2}}\right) e^{-\frac{m \omega}{\hbar}\left(y-y_{0}\right)^{2}}
$$

- Integrating, we now obtain a non-vanishing current flow

$$
I_{x}=\int_{0}^{L_{y}} d y j_{x}(y)=-\frac{e \mathcal{E}}{B L_{x}}
$$

Quantum Hall Effect

$$
I_{x}=\int_{0}^{L_{y}} d y j_{x}(y)=-\frac{e \mathcal{E}}{B L_{x}}
$$

- To obtain total current flow from all electrons, we must multiply I_{x} by the total number of occupied states.
- If Fermi energy lies between two Landau levels with n occupied,

$$
I_{\text {tot }}=n N \times I_{x}=-n \frac{e B}{h} L_{x} L_{y} \times \frac{e \mathcal{E}}{B L_{x}}=-n \frac{e^{2}}{h} \mathcal{E} L_{y}
$$

Quantum Hall Effect

$$
I_{x}=\int_{0}^{L_{y}} d y j_{x}(y)=-\frac{e \mathcal{E}}{B L_{x}}
$$

- To obtain total current flow from all electrons, we must multiply I_{x} by the total number of occupied states.
- If Fermi energy lies between two Landau levels with n occupied,

$$
I_{\mathrm{tot}}=n N \times I_{x}=-n \frac{e B}{h} L_{x} L_{y} \times \frac{e \mathcal{E}}{B L_{x}}=-n \frac{e^{2}}{h} \mathcal{E} L_{y}
$$

- With $V=-\mathcal{E} L_{y}$, voltage drop across y, Hall conductance (equal to conductivity in two-dimensions),

$$
\sigma_{\mathrm{xy}}=-\frac{I_{\mathrm{tot}}}{V}=n \frac{e^{2}}{h}
$$

- Since no current flow in direction of applied field, longitudinal conductivity $\sigma_{y y}$ vanishes.

Quantum Hall Effect

- Since there is no potential drop in the direction of current flow, the longitudinal resistivity $\rho_{x x}$ also vanishes, while

$$
\rho_{y x}=\frac{1}{n} \frac{h}{e^{2}}
$$

- Experimental measurements of these values provides the best determination of fundamental ratio e^{2} / h, better than 1 part in 10^{8}.

Lecture 6

Quantum mechanical spin

Background

- Until now, we have focused on quantum mechanics of particles which are "featureless" - carrying no internal degrees of freedom.
- A relativistic formulation of quantum mechanics (due to Dirac and covered later in course) reveals that quantum particles can exhibit an intrinsic angular momentum component known as spin.
- However, the discovery of quantum mechanical spin predates its theoretical understanding, and appeared as a result of an ingeneous experiment due to Stern and Gerlach.

Spin: outline

(1) Stern-Gerlach and the discovery of spin
(2) Spinors, spin operators, and Pauli matrices
(3) Spin precession in a magnetic field
(4) Paramagnetic resonance and NMR

Background: expectations pre-Stern-Gerlach

- Previously, we have seen that an electron bound to a proton carries an orbital magnetic moment,

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}} \equiv-\mu_{\mathrm{B}} \hat{\mathbf{L}} / \hbar, \quad H_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

For the azimuthal component of the wavefunction, $e^{i m \phi}$, to remain single-valued, we further require that the angular momentum takes only integer values (recall that

When a beam of atoms are passed through an inhomogeneous (but aligned) magnetic field, where they experience a force,

Background: expectations pre-Stern-Gerlach

- Previously, we have seen that an electron bound to a proton carries an orbital magnetic moment,

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}} \equiv-\mu_{\mathrm{B}} \hat{\mathbf{L}} / \hbar, \quad H_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

- For the azimuthal component of the wavefunction, $e^{i m \phi}$, to remain single-valued, we further require that the angular momentum ℓ takes only integer values (recall that $-\ell \leq m \leq \ell$).

When a beam of atoms are passed through an inhomogeneous (but aligned) magnetic field, where they experience a force,

Background: expectations pre-Stern-Gerlach

- Previously, we have seen that an electron bound to a proton carries an orbital magnetic moment,

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}} \equiv-\mu_{\mathrm{B}} \hat{\mathbf{L}} / \hbar, \quad H_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

- For the azimuthal component of the wavefunction, $e^{i m \phi}$, to remain single-valued, we further require that the angular momentum ℓ takes only integer values (recall that $-\ell \leq m \leq \ell$).
- When a beam of atoms are passed through an inhomogeneous (but aligned) magnetic field, where they experience a force,

$$
\mathbf{F}=\nabla(\boldsymbol{\mu} \cdot \mathbf{B}) \simeq \mu_{z}\left(\partial_{z} B_{z}\right) \hat{\mathbf{e}}_{z}
$$

we expect a splitting into an odd integer $(2 \ell+1)$ number of beams.

Stern-Gerlach experiment

- In experiment, a beam of silver atoms were passed through inhomogeneous magnetic field and collected on photographic plate.
- Since silver involves spherically symmetric charge distribution plus one $5 s$ electron, total angular momentum of ground state has $L=0$.
- If outer electron in $5 p$ state, $L=1$ and the beam should split in 3 .

Stern-Gerlach experiment

- However, experiment showed a bifurcation of beam!

Gerlach's postcard, dated 8th February 1922, to Niels Bohr

- Since orbital angular momentum can take only integer values, this observation suggests electron possesses an additional intrinsic " $\ell=1 / 2$ " component known as spin.

Quantum mechanical spin

- Later, it was understood that elementary quantum particles can be divided into two classes, fermions and bosons.
- Fermions (e.g. electron, proton, neutron) possess half-integer spin.
- Bosons (e.g. mesons, photon) possess integral spin (including zero).

Spinors

- Space of angular momentum states for spin $s=1 / 2$ is two-dimensional:

$$
\left|s=1 / 2, m_{s}=1 / 2\right\rangle=|\uparrow\rangle, \quad|1 / 2,-1 / 2\rangle=|\downarrow\rangle
$$

- General spinor state of spin can be written as linear combination,

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle=\binom{\alpha}{\beta}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Operators acting on spinors are 2×2 matrices. From definition of spinor, z-component of spin represented as,

Spinors

- Space of angular momentum states for $\operatorname{spin} s=1 / 2$ is two-dimensional:

$$
\left|s=1 / 2, m_{s}=1 / 2\right\rangle=|\uparrow\rangle, \quad|1 / 2,-1 / 2\rangle=|\downarrow\rangle
$$

- General spinor state of spin can be written as linear combination,

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle=\binom{\alpha}{\beta}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Operators acting on spinors are 2×2 matrices. From definition of spinor, z-component of spin represented as,

$$
S_{z}=\frac{1}{2} \hbar \sigma_{z}, \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

i.e. S_{z} has eigenvalues $\pm \hbar / 2$ corresponding to $\binom{1}{0}$ and $\binom{0}{1}$.

Spin operators and Pauli matrices

- From general formulae for raising/lowering operators,

$$
\begin{aligned}
& \hat{\jmath}_{+}|j, m\rangle=\sqrt{j(j+1)-m(m+1)} \hbar|j, m+1\rangle \\
& \hat{\jmath}_{-}|j, m\rangle=\sqrt{j(j+1)-m(m-1)} \hbar|j, m-1\rangle
\end{aligned}
$$

with $S_{ \pm}=S_{x} \pm i S_{y}$ and $s=1 / 2$, we have

$$
S_{+}|1 / 2,-1 / 2\rangle=\hbar|1 / 2,1 / 2\rangle, \quad S_{-}|1 / 2,1 / 2\rangle=\hbar|1 / 2,-1 / 2\rangle
$$

Spin operators and Pauli matrices

- From general formulae for raising/lowering operators,

$$
\begin{aligned}
& \hat{\jmath}_{+}|j, m\rangle=\sqrt{j(j+1)-m(m+1)} \hbar|j, m+1\rangle \\
& \hat{\jmath}_{-}|j, m\rangle=\sqrt{j(j+1)-m(m-1)} \hbar|j, m-1\rangle
\end{aligned}
$$

with $S_{ \pm}=S_{x} \pm i S_{y}$ and $s=1 / 2$, we have

$$
S_{+}|1 / 2,-1 / 2\rangle=\hbar|1 / 2,1 / 2\rangle, \quad S_{-}|1 / 2,1 / 2\rangle=\hbar|1 / 2,-1 / 2\rangle
$$

- i.e., in matrix form,

$$
S_{x}+i S_{y}=S_{+}=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad S_{x}-i S_{y}=S_{-}=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Spin operators and Pauli matrices

- From general formulae for raising/lowering operators,

$$
\begin{aligned}
& \hat{\jmath}_{+}|j, m\rangle=\sqrt{j(j+1)-m(m+1)} \hbar|j, m+1\rangle \\
& \hat{\jmath}_{-}|j, m\rangle=\sqrt{j(j+1)-m(m-1)} \hbar|j, m-1\rangle
\end{aligned}
$$

with $S_{ \pm}=S_{x} \pm i S_{y}$ and $s=1 / 2$, we have

$$
S_{+}|1 / 2,-1 / 2\rangle=\hbar|1 / 2,1 / 2\rangle, \quad S_{-}|1 / 2,1 / 2\rangle=\hbar|1 / 2,-1 / 2\rangle
$$

- i.e., in matrix form,

$$
S_{x}+i S_{y}=S_{+}=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad S_{x}-i S_{y}=S_{-}=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

- Leads to Pauli matrix representation for spin $1 / 2, \mathbf{S}=\frac{1}{2} \hbar \boldsymbol{\sigma}$

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Pauli spin matrices are Hermitian, traceless, and obey defining relations (cf. general angular momentum operators):

$$
\sigma_{i}^{2}=\mathbb{I}, \quad\left[\sigma_{i}, \sigma_{j}\right]=2 \epsilon_{i j k} \sigma_{k}
$$

- Total spin

$$
\mathbf{S}^{2}=\frac{1}{4} \hbar^{2} \boldsymbol{\sigma}^{2}=\frac{1}{4} \hbar^{2} \sum_{i} \sigma_{i}^{2}=\frac{3}{4} \hbar^{2} \mathbb{I}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \mathbb{I}
$$

i.e. $s(s+1) \hbar^{2}$, as expected for spin $s=1 / 2$.

Spatial degrees of freedom and spin

- Spin represents additional internal degree of freedom, independent of spatial degrees of freedom, i.e. $[\hat{\mathbf{S}}, \mathbf{x}]=[\hat{\mathbf{S}}, \hat{\mathbf{p}}]=[\hat{\mathbf{S}}, \hat{\mathbf{L}}]=0$.
- Total state is constructed from direct product,

$$
|\psi\rangle=\int d^{3} x\left(\psi_{+}(\mathbf{x})|\mathbf{x}\rangle \otimes|\uparrow\rangle+\psi_{-}(\mathbf{x})|\mathbf{x}\rangle \otimes|\downarrow\rangle\right) \equiv\binom{\left|\psi_{+}\right\rangle}{\left|\psi_{-}\right\rangle}
$$

Spatial degrees of freedom and spin

- Spin represents additional internal degree of freedom, independent of spatial degrees of freedom, i.e. $[\hat{\mathbf{S}}, \mathbf{x}]=[\hat{\mathbf{S}}, \hat{\mathbf{p}}]=[\hat{\mathbf{S}}, \hat{\mathbf{L}}]=0$.
- Total state is constructed from direct product,

$$
|\psi\rangle=\int d^{3} x\left(\psi_{+}(\mathbf{x})|\mathbf{x}\rangle \otimes|\uparrow\rangle+\psi_{-}(\mathbf{x})|\mathbf{x}\rangle \otimes|\downarrow\rangle\right) \equiv\binom{\left|\psi_{+}\right\rangle}{\left|\psi_{-}\right\rangle}
$$

- In a weak magnetic field, the electron Hamiltonian can then be written as

$$
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(r)+\mu_{\mathrm{B}}(\hat{\mathbf{L}} / \hbar+\boldsymbol{\sigma}) \cdot \mathbf{B}
$$

Relating spinor to spin direction

For a general state $\alpha|\uparrow\rangle+\beta|\downarrow\rangle$, how do α, β relate to orientation of spin?

- Let us assume that spin is pointing along the unit vector $\hat{\mathbf{n}}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, i.e. in direction (θ, φ).
- Spin must be eigenstate of $\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}$ with eigenvalue unity, i.e.

$$
\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{\beta}
$$

- With normalization,

Relating spinor to spin direction

For a general state $\alpha|\uparrow\rangle+\beta|\downarrow\rangle$, how do α, β relate to orientation of spin?

- Let us assume that spin is pointing along the unit vector $\hat{\mathbf{n}}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, i.e. in direction (θ, φ).
- Spin must be eigenstate of $\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}$ with eigenvalue unity, i.e.

$$
\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{\beta}
$$

- With normalization, $|\alpha|^{2}+|\beta|^{2}=1$, (up to arbitrary phase),

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}
$$

Spin symmetry

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{\varphi \varphi / 2} \sin (\theta / 2)}
$$

- Note that under 2π rotation,

$$
\binom{\alpha}{\beta} \mapsto-\binom{\alpha}{\beta}
$$

- In order to make a transformation that returns spin to starting point, necessary to make two complete revolutions, (cf. spin 1 which requires 2π and spin 2 which requires only $\pi!$).

(Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular momentum \mathbf{L} and magnetic moment $\boldsymbol{\mu}=\gamma \mathbf{L}$ with γ gyromagnetic ratio.

Angular momentum vector L precesses about magnetic field direction with angular velocity $\omega_{0}=-\gamma \mathbf{B}$ (independent of angle) We will now show that precisely the same result appears in the study of the quantum mechanics of an electron spin in a magnetic field.

(Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular momentum \mathbf{L} and magnetic moment $\boldsymbol{\mu}=\gamma \mathbf{L}$ with γ gyromagnetic ratio.

- A magnetic field \mathbf{B} will then impose a torque

$$
\mathbf{T}=\boldsymbol{\mu} \times \mathbf{B}=\gamma \mathbf{L} \times \mathbf{B}=\partial_{t} \mathbf{L}
$$

- With $\mathbf{B}=B \hat{\mathbf{e}}_{z}$, and $L_{+}=L_{x}+i L_{y}, \partial_{t} L_{+}=-i \gamma B L_{+}$, with the solution $L_{+}=L_{+}^{0} e^{-i \gamma B t}$ while $\partial_{t} L_{z}=0$.

Angular momentum vector L precesses about magnetic field direction with angular velocity $\omega_{0}=-\gamma \mathbf{B}$ (independent of ankle) We will now show that precisely the same result appears in the study of the quantum mechanics of an electron spin in a magnetic field

(Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular momentum \mathbf{L} and magnetic moment $\boldsymbol{\mu}=\gamma \mathbf{L}$ with γ gyromagnetic ratio.

- A magnetic field \mathbf{B} will then impose a torque

$$
\mathbf{T}=\boldsymbol{\mu} \times \mathbf{B}=\gamma \mathbf{L} \times \mathbf{B}=\partial_{t} \mathbf{L}
$$

- With $\mathbf{B}=B \hat{\mathbf{e}}_{z}$, and $L_{+}=L_{x}+i L_{y}, \partial_{t} L_{+}=-i \gamma B L_{+}$, with the solution $L_{+}=L_{+}^{0} e^{-i \gamma B t}$ while $\partial_{t} L_{z}=0$.
- Angular momentum vector \mathbf{L} precesses about magnetic field direction with angular velocity $\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}$ (independent of angle).
- We will now show that precisely the same result appears in the study of the quantum mechanics of an electron spin in a magnetic field.

(Quantum) spin precession in a magnetic field

- Last lecture, we saw that the electron had a magnetic moment, $\boldsymbol{\mu}_{\text {orbit }}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}}$, due to orbital degrees of freedom.
- The intrinsic electron spin imparts an additional contribution, $\boldsymbol{\mu}_{\text {spin }}=\gamma \hat{\mathbf{S}}$, where the gyromagnetic ratio,

$$
\gamma=-g \frac{e}{2 m_{e}}
$$

and g (known as the Landé g-factor) is very close to 2 .

- These components combine to give the total magnetic moment,

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}}(\hat{\mathbf{L}}+g \hat{\mathbf{S}})
$$

- In a magnetic field, the interaction of the dipole moment is given by

$$
\hat{H}_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

(Quantum) spin precession in a magnetic field

- Focusing on the spin contribution alone,

$$
\hat{H}_{\text {int }}=-\gamma \hat{\mathbf{s}} \cdot \mathbf{B}=-\frac{\gamma}{2} \hbar \boldsymbol{\sigma} \cdot \mathbf{B}
$$

- The spin dynamics can then be inferred from the time-evolution operator, $|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle$, where

$$
\hat{U}(t)=e^{-i \hat{H}_{\mathrm{int}} t / \hbar}=\exp \left[\frac{i}{2} \gamma \boldsymbol{\sigma} \cdot \mathbf{B} t\right]
$$

However, we have seen that the operator $\hat{U}(\theta)=e$
generates spatial rotations by an angle θ about $\hat{\mathbf{e}}_{n}$. In the same way, $\hat{U}(t)$ effects a spin rotation by angle $-\gamma B t$ about the direction of \mathbf{B} !

(Quantum) spin precession in a magnetic field

- Focusing on the spin contribution alone,

$$
\hat{H}_{\text {int }}=-\gamma \hat{\mathbf{s}} \cdot \mathbf{B}=-\frac{\gamma}{2} \hbar \boldsymbol{\sigma} \cdot \mathbf{B}
$$

- The spin dynamics can then be inferred from the time-evolution operator, $|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle$, where

$$
\hat{U}(t)=e^{-i \hat{H}_{\mathrm{int}} t / \hbar}=\exp \left[\frac{i}{2} \gamma \boldsymbol{\sigma} \cdot \mathbf{B} t\right]
$$

- However, we have seen that the operator $\hat{U}(\theta)=\exp \left[-\frac{i}{\hbar} \theta \hat{\mathbf{e}}_{n} \cdot \hat{\mathbf{L}}\right]$ generates spatial rotations by angle θ about $\hat{\mathbf{e}}_{n}$.
- In the same way, $\hat{U}(t)$ effects a spin rotation by an angle $-\gamma B t$ about the direction of \mathbf{B} !

(Quantum) spin precession in a magnetic field

$$
\hat{U}(t)=e^{-i \hat{H}_{\mathrm{int}} t / \hbar}=\exp \left[\frac{i}{2} \gamma \boldsymbol{\sigma} \cdot \mathbf{B} t\right]
$$

- Therefore, for initial spin configuration,

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}
$$

- With $\mathbf{B}=B \hat{\mathbf{e}}_{z}, \hat{U}(t)=\exp \left[\frac{i}{2} \gamma B t \sigma_{z}\right],|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle$,

$$
\binom{\alpha(t)}{\beta(t)}=\left(\begin{array}{cc}
e^{-\frac{i}{2} \omega_{0} t} & 0 \\
0 & e^{\frac{i}{2} \omega_{0} t}
\end{array}\right)\binom{\alpha}{\beta}=\binom{e^{-\frac{i}{2}\left(\varphi+\omega_{0} t\right)} \cos (\theta / 2)}{e^{\frac{i}{2}\left(\varphi+\omega_{0} t\right)} \sin (\theta / 2)}
$$

- i.e. spin precesses with angular frequency $\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}=-g \omega_{c} \hat{\mathbf{e}}_{z}$, where $\omega_{c}=\frac{e B}{2 m_{e}}$ is cyclotron frequency, $\left(\frac{\omega_{c}}{B} \simeq 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}\right)$.

Paramagnetic resonance

- This result shows that spin precession frequency is independent of spin orientation.
- Consider a frame of reference which is itself rotating with angular velocity $\boldsymbol{\omega}$ about $\hat{\mathbf{e}}_{z}$.

- If we impose a magnetic field $\mathbf{B}_{0}=B_{0} \hat{\mathbf{e}}_{z}$, in the rotating frame, the observed precession frequency is $\boldsymbol{\omega}_{r}=-\gamma\left(\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma\right)$, i.e. an effective field $\mathbf{B}_{r}=\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma$ acts in rotating frame.
If frame rotates exactly at precession frequency, $\omega=\omega_{0}=-\gamma B_{0}$ spins pointing in any direction will remain at rest in that frame. Sunnose we now add a small additional component of the magnetic field which is rotating with angular frequency ω in the xy plane

Paramagnetic resonance

- This result shows that spin precession frequency is independent of spin orientation.
- Consider a frame of reference which is itself rotating with angular velocity $\boldsymbol{\omega}$ about $\hat{\mathbf{e}}_{z}$.

- If we impose a magnetic field $\mathbf{B}_{0}=B_{0} \hat{\mathbf{e}}_{z}$, in the rotating frame, the observed precession frequency is $\boldsymbol{\omega}_{r}=-\gamma\left(\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma\right)$, i.e. an effective field $\mathbf{B}_{r}=\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma$ acts in rotating frame.
- If frame rotates exactly at precession frequency, $\boldsymbol{\omega}=\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}_{0}$, spins pointing in any direction will remain at rest in that frame.

Paramagnetic resonance

- This result shows that spin precession frequency is independent of spin orientation.
- Consider a frame of reference which is itself rotating with angular velocity $\boldsymbol{\omega}$ about $\hat{\mathbf{e}}_{z}$.

- If we impose a magnetic field $\mathbf{B}_{0}=B_{0} \hat{\mathbf{e}}_{z}$, in the rotating frame, the observed precession frequency is $\boldsymbol{\omega}_{r}=-\gamma\left(\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma\right)$, i.e. an effective field $\mathbf{B}_{r}=\mathbf{B}_{0}+\boldsymbol{\omega} / \gamma$ acts in rotating frame.
- If frame rotates exactly at precession frequency, $\boldsymbol{\omega}=\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}_{0}$, spins pointing in any direction will remain at rest in that frame.
- Suppose we now add a small additional component of the magnetic field which is rotating with angular frequency $\boldsymbol{\omega}$ in the xy plane,

$$
\mathbf{B}=B_{0} \hat{\mathbf{e}}_{z}+B_{1}\left(\hat{\mathbf{e}}_{x} \cos (\omega t)-\hat{\mathbf{e}}_{y} \sin (\omega t)\right)
$$

Paramagnetic resonance

$$
\mathbf{B}=B_{0} \hat{\mathbf{e}}_{z}+B_{1}\left(\hat{\mathbf{e}}_{x} \cos (\omega t)-\hat{\mathbf{e}}_{y} \sin (\omega t)\right)
$$

- Effective magnetic field in a frame rotating with same frequency ω as the small added field is $\mathbf{B}_{r}=\left(B_{0}+\omega / \gamma\right) \hat{\mathbf{e}}_{z}+B_{1} \hat{\mathbf{e}}_{x}$

If we tune ω so that it exactly matches the precession frequency in the original magnetic field, $\boldsymbol{\omega}=\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}_{0}$, in the rotating frame the magnetic moment will only see the small field in the x-direction

Spin will therefore precess about x-direction at slow angular frequency $\gamma B_{1}-$ matching of small field rotation frequency with large field spin precession frequency is

Paramagnetic resonance

$$
\mathbf{B}=B_{0} \hat{\mathbf{e}}_{z}+B_{1}\left(\hat{\mathbf{e}}_{x} \cos (\omega t)-\hat{\mathbf{e}}_{y} \sin (\omega t)\right)
$$

- Effective magnetic field in a frame rotating with same frequency ω as the small added field is $\mathbf{B}_{r}=\left(B_{0}+\omega / \gamma\right) \hat{\mathbf{e}}_{z}+B_{1} \hat{\mathbf{e}}_{x}$
- If we tune ω so that it exactly matches the precession frequency in the original magnetic field, $\boldsymbol{\omega}=\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}_{0}$, in the rotating frame, the magnetic moment will only see the small field in the x-direction.

Spin will therefore precess about x-direction at slow angular frequency γB_{1} - matching of small field rotation frequency with large field spin precession frequency is

Paramagnetic resonance

$$
\mathbf{B}=B_{0} \hat{\mathbf{e}}_{z}+B_{1}\left(\hat{\mathbf{e}}_{x} \cos (\omega t)-\hat{\mathbf{e}}_{y} \sin (\omega t)\right)
$$

- Effective magnetic field in a frame rotating with same frequency ω as the small added field is $\mathbf{B}_{r}=\left(B_{0}+\omega / \gamma\right) \hat{\mathbf{e}}_{z}+B_{1} \hat{\mathbf{e}}_{x}$
- If we tune ω so that it exactly matches the precession frequency in the original magnetic field, $\boldsymbol{\omega}=\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}_{0}$, in the rotating frame, the magnetic moment will only see the small field in the x-direction.
- Spin will therefore precess about x-direction at slow angular frequency γB_{1} - matching of small field rotation frequency with large field spin precession frequency is "resonance".

Nuclear magnetic resonance

- The general principles exemplified by paramagnetic resonance underpin methodology of Nuclear magnetic resonance (NMR).
- NMR principally used to determine structure of molecules in chemistry and biology, and for studying condensed matter in solid or liquid state.
- Method relies on nuclear magnetic moment of atomic nucleus,

$$
\boldsymbol{\mu}=\gamma \hat{\mathbf{S}}
$$

e.g. for proton $\gamma=g_{P} \frac{e}{2 m_{p}}$ where $g_{p}=5.59$.

Nuclear magnetic resonance

- In uniform field, \mathbf{B}_{0}, nuclear spins occupy equilibrium thermal distibution with

$$
\frac{P_{\uparrow}}{P_{\downarrow}}=\exp \left[\frac{\hbar \omega_{0}}{k_{\mathrm{B}} T}\right], \quad \omega_{0}=\gamma B_{0}
$$

i.e. (typically small) population imbalance.

Application of additional oscillating resonant in-plane magnetic field $\mathbf{B}_{1}(t)$ for a time, t, such that

Nuclear magnetic resonance

- In uniform field, \mathbf{B}_{0}, nuclear spins occupy equilibrium thermal distibution with

$$
\frac{P_{\uparrow}}{P_{\downarrow}}=\exp \left[\frac{\hbar \omega_{0}}{k_{\mathrm{B}} T}\right], \quad \omega_{0}=\gamma B_{0}
$$

i.e. (typically small) population imbalance.

- Application of additional oscillating resonant in-plane magnetic field $\mathbf{B}_{1}(t)$ for a time, t, such that

$$
\omega_{1} t=\frac{\pi}{2}, \quad \omega_{1}=\gamma B_{1}
$$

(" $\pi / 2$ pulse") orients majority spin in $x y$-plane where it precesses at resonant frequency allowing a coil to detect a.c. signal from induced e.m.f.

- Return to equilibrium set by transverse relaxation time, T_{2}.

Nuclear magnetic resonance

- Resonance frequency depends on nucleus (through γ) and is slightly modified by environment \rightsquigarrow splitting.

Nuclear magnetic resonance

- Resonance frequency depends on nucleus (through γ) and is slightly modified by environment \rightsquigarrow splitting.

- In magnetic resonance imaging (MRI), focus is on proton in water and fats. By using non-uniform field, \mathbf{B}_{0}, resonance frequency can be made position dependent - allows spatial structures to be recovered.

Summary: quantum mechanical spin

- In addition to orbital angular momentum, $\hat{\mathbf{L}}$, quantum particles possess an intrinsic angular momentum known as spin, $\hat{\mathbf{S}}$.
- For fermions, spin is half-integer while, for bosons, it is integer.
- Wavefunction of electron expressed as a two-component spinor,

$$
|\psi\rangle=\int d^{3} x\left(\psi_{+}(\mathbf{x})|\mathbf{x}\rangle \otimes|\uparrow\rangle+\psi_{-}(\mathbf{x})|\mathbf{x}\rangle \otimes|\downarrow\rangle\right) \equiv\binom{\left|\psi_{+}\right\rangle}{\left|\psi_{-}\right\rangle}
$$

- In a weak magnetic field,

$$
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(r)+\mu_{\mathrm{B}}\left(\hat{\mathbf{L}} / \hbar+\frac{g}{2} \boldsymbol{\sigma}\right) \cdot \mathbf{B}
$$

- Spin precession in a uniform field provides basis of paramagnetic resonance and NMR.

[^0]: - Integrating, we now obtain a non-vanishing current flow

