L ecture 4

- Quantum mechanics
In more than one-dimension



Background

@ Previously, we have addressed quantum mechanics of 1d systems
and explored bound and unbound (scattering) states.

@ Although general concepts carry over to higher dimension, without
symmetry, states of the Schrodinger operator are often inaccessible.

@ In such situations, we must exploit approximation methods to
address properties of the states = perturbation theory.

@ However, when degree of symmetry is high, the quantum mechanics
can often be reduced to a tractable “low-dimensional” theory.

Here we address three-dimensional problems involving a central
potential (e.g. an atom) where the system has full rotational symmetry.



© Rigid diatomic molecule
@ Angular momentum: operators, eigenvalues, and eigenstates
© Quantum mechanics of systems with a centrally symmetric potential

Q Atomic hydrogen



Rigid diatomic molecule

Consider quantum mechanics of a rigid diatomic molecule with nuclear
masses m; and my, and fixed bond length, r.

@ Since molecule is rigid, coordinates specified 3
by centre of mass

miry + mok -
mq -+ mo l

R =

and orientation, r = r, — ry (with |r| = r).

@ With total mass M = my; + my, and moment of inertia, | = pur?,
mimo,

where 1 = Is reduced mass,
mi + mo
P2 |2
H=—+—
2M i 21
with P = —iAVg and L = r x p is internal angular momentum.



Rigid diatomic molecule

@ Since internal and centre of mass degrees of freedom separate,
wavefunction can be factorized as v(r, R) = e’ RY/(r).

@ Internal component of wavefunction, Y(r), describes quantum
“particle moving on a sphere” with r = |r| constant — a rigid rotor,

@ Eigenstates of rotor are states of angular momentum operator, L2.

@ Indeed, in any quantum mechanical system involving a radial
potential, angular momentum is conserved, i.e. [H,L] =0 and
angular component of wavefunction indexed by states of LZ.



Angular momentum: commutation relations

To explore quantum rotor model, I:Imt, we must therefore address
properties of the angular momentum operator.

@ Following the usual quantization procedure, the angular momentum
operator defined by L = r x p where [p;, rj] = —ihdj;.

@ Using this relation, one may show that components of angular
momentum operators obey commutation relations,

[Z,‘, ZJ] — ihe,'jkzk

eg. [Li,L,] = inL,

€ijk 15 antisymmetric tensor (Levi-Civita symbol) €103 = 1 = —e213
(together with all permutations) while other components are zero.



Angular momentum: eigenvalues

@ Since angular momentum, L is a vector quantity, it may be defined
by magnitude, L2, and direction.

@ As components of L are mutually non-commuting, a common set of
eigenstates for any two can not be constructed.

@ They do, however, commute with L2 (exercise) — therefore, we will
seek eigenbasis of L2 and one direction, say L,

L2|a, b) = ala, b),  L,|a, b) = b|a, b)

@ To find states |a, b), we could turn to coordinate basis and express
L2 and L, as differential operators — however, before doing so, we
can learn much using operator formalism (cf. harmonic oscillator).



Angular momentum: raising and lowering operators

L2|a, b) = ala, b),  L,|a, b) = b|a, b)

@ Let us then define operators [ =1,+ izy

o Since [L2,1;] =0, L?(Ly|a, b)) = L4L?|a, b) = a(Ly|a, b)),
i.e. Lil|a, b) is also eigenstate of L? with eigenvalue a.

@ From commutation relations, [L;, L] = ik €ji Lk, we have

(L, L] =[L,, L +il,] =in(L, Fil,)=+h(L,£il,)=+hly+

@ Therefore, while L conserve eigenvalue a, they do effect projection,
[,Li|a,b)=1i1,]a,b)+[L,,[i]|a,b) = (b+h)Li|a,b)

- if L,|a, b) = b|a, b), L |a, b) is either zero, or an eigenstate of L,
with eigenvalue b+ A, i.e. | Li|a, b) = Ci(a, b)|a, b+ h)




Angular momentum: raising and lowering operators

[1|a, b) = Ci(a,b)|a, b+ h)

@ To fix normalization, (a, bla, b) = 1, noting that ﬁi — qu,

~ 2 P ~A A
||Li|a, b>|| = (a,b|11. 11 |a, b) = (a, b|L=14]a, b)

N\ N\ N\ N\ N\

+illy,L,] =02 - 125 nl,,

z

@ Then, since quzi = Zi + 1
~ 2 ~ ~ ~
HLi\a,b>H — (a,b|(L2—12Fhl,)ab)=a—B2Fhib>0

@ Since a > 0 and b is real, must have b, < b < bax,

(3, bax| L1 11 |8, brax) = a — b2, — hbmax = 0

<37 bmin’ZT_ Z—‘aa bmin> = d — b2 + hbmin =0

min

i.e. 3 = bpmax(bmax + 7) and buin = —bmax.



Angular momentum: raising and lowering operators

d — bmax(bmax + h) and bmin — _bmax

@ For given a, byax and by, determined uniquely — cannot be two
states with the same a but different b annihilated by L, .

@ If we keep operating on |a, byin) with Z+, we generate a sequence
of states with L, eigenvalues byin + A, bmin + 2R, bmin + 30, - -.

@ Only way for series to terminate is for byax = bmin + Nh with n
integer, i.e. bmax IS either integer or half odd integer xAh.



Angular momentum: eigenvalues

@ Eigenvalues of L, form ladder, with eigenvalue
b= mh and Mmy.x = € = —Mpyin. 2

. .4 = =
m known as magnetic quantum number. C-. =2 4

| -
my=dl e g .
1 LS

@ Eigenvalues of L2 are a = £(¢ + 1)K2.

L2|¢, m) = £(¢ 4 1)12|¢, m)

L,|¢, m) = mh|¢, m)

@ Both / and m are integer or half odd integers,
but spacing of ladder of m always unity.



Angular momentum: raising and lowering operators

L2|¢, m) = (0 + 1)R2|6, m), L, |6, m) = mh|e, m)

[=2
@ Finally, making use of identity, f ILI=#2(2+1) #

[
-

I
My=d e .
1 LS

~ 2 ~ ~ ~
||Li|€, m>H — (0, m| (L2 124 hLZ) 0, m)

we find that

Lo |6, m) = /€l +1) — m(m+ 1)A|l,m+ 1)

L_|t,m) = \/0(¢+1)— m(m—1)k|l,m—1)




Representation of the angular momentum states

Although we can use an operator-based formalism to construct

eigenvalues of L2 and L, it is sometimes useful to have coordinate
representation of states, Y;,(6,¢) = (6, ¢|¢, m).

@ Using the expression for the gradient operator
in spherical polars,

" .1 . 1
V—er(‘}’r+e9;8@+e¢rsin98¢ 4 Z’
) o /TN
with L = —/hAr X V, a little algebra shows, |0
4 |
A . . | .
L, =—ihdy, Li = het? (£0g + i cot 60,) ¢ L 7y
X _ _\“_lx'
o o[ 1 ,
L° = —h Sln9(99(sm 60y) + = 96¢




Representation of the angular momentum states

[, — —ih0g, Zi — het'? (£0g + i cot 00, )

@ Beginning with L, = —ih0y,

— ih(‘?¢ ng(e, ¢) = thgm(e, ¢)

since equation is separable, we have the solution

Yom(6, 0) = F(0)e™?

with —¢ < m < /.

@ N.B. if £ (and therefore m) integer, continuity of wavefunction,
Yem(0, 0 +27) = Yem(6, @), is assured.

[Not so if £ is half-integer.]



Representation of the angular momentum states

Yim(0,0) = F(6)e™, [ = he®'® (£ + i cot Ady)

@ (Drawing analogy with procedure to find HO states) to find F(6),
consider state of maximal m, |¢,¢), for which L, |¢,¢) = 0.

@ Making use of coordinate representation of raising operator
0= (8, p|Ly |0, 0) = he'® (D + i cot80,) Yee(8, ¢)e™*® F(8)
= he't"t1? (9, — L cot ) F()
i.e. DgF(0) = ¢ cotOF(6) with the solution F(6) = Csin‘#.

@ The 2( states with values of m lower than £ generated by repeated
application of L_ on |{, ¢).

Yim(0,9) = C(—0g + i cot004) ™™ [sing 9eie¢]

~"

[




Representation of the angular momentum states

@ Eigenfunctions of L? are known as spherical harmonics,

20+ 1(¢—|m|)1Y?
4 (L + |m]|)!

Yem(0,6) = (=1)™*1™ Pl (cos 0)e™

. _ ¢2ym/2 m
where the functions P;"(§) = u 2%2! jgmiee

associated Legendre polynomials.

(€2 — 1)* are known as

There's no reason why you should ever memorize these functions!

As an example of the first few (unnormalized) spherical harmonics:

Yoo =1
Yio = cosf, Yi1 = e'®sind
Yoo =3cos20 —1, Yo, = e®sinfcos, Yo = e??sin’6

States with £ = 0,1, 2,3,... are known as s, p,d, f,...-orbitals.
Note symmetries: Yy _n = (=1)"Y}. and PYy, = (=1)' Yim.



Representation of the angular momentum states

radial coordinate fixed by |Re Yy,,(0, ¢)| and colours indicate relative sign of real part.



Rigid rotor model

@ After this lengthy digression, we return to problem of quantum
mechanical rotor Hamiltonian and the rigid diatomic molecule.

@ Eigenstates of the Hamiltonian,

given by (R, r) = e'*RY, (0, ) with eigenvalues

K2 R
00+ 1
ow Tty

Ek.e =

where, for each set of quantum numbers (K, /), there is a
20 + 1-fold degeneracy.

@ With this background, we now turn to general problem of 3d system
with centrally symmetric potential, V/(r) (e.g. atomic hydrogen).



The central potential

@ When central force field is entirely radial, the Hamiltonian for the
relative coordinate is given by

2

>

N\

H =

+ V/(r)

N

m

@ Using the identity,
L = (r x B)? = ripjribj — rijribi = r’p° — (r- ) + ih(r - p)
o e SR T
with r-p = —ihr -V = —ihr0,, find p* = — — — [(r@ )* + ro,]
r
@ Noting that (rd,)? + r0, = r’0? + 2r0,, we obtain the Schrodinger
equation,

om 2mr?

[ a (3+20,) + v+ L ]wszw(r)




The central potential

2 2 |’:2
[h (83 4 —&) + + V(r)

ih(r) = Ex(r)

2mr?

@ From separability, 1(r) = R(r)Ye.m(0, ¢), where

[ h? (02 + 8) 2Z2r2€(€+ 1) + V(r)] R(r) = ER(r)

om

@ Finally, setting R(r) = u(r)/r, obtain “one-dimensional” equation

h2r2€(e +1)+ V(r)

[_ h2l?7r + Veﬁ‘(r)] u(r) = Eu(r), Veg(r)= >

with boundary condition u(0) = 0, and normalization,

[ = [ edrRoR = [ drlut)? =1

@ So, for bound state, lim, . |u(r)| < =73~ with € > 0.



The central potential: bound states

[_ hQir N Veﬁ(r)] u(r) = Eu(r),  Ver(r) = 5 — {0+ 1) + V(r)

@ Since u(0) = 0, we may “map” Hamiltonian from half-line to full
with the condition that we admit only antisymmetric wavefunctions.

@ Existence of bound states can then be related back to the
one-dimensional case:

Previously, we have seen that a (symmetric) attractive potential
always leads to a bound state in one-dimension. However, odd
parity states become bound only at a critical strength of interaction.

So, for a general attractive potential V/(r), the existence of a bound
state is not guaranteed even for £ = 0.



Atomic hydrogen

|

hz,ir 4 \/eﬂ:(r)] u(r) = u(r), Ve (r) = o 00+ 1)+ V(r)

@ The hydrogen atom consists of an electron bound to a proton by

the Coulomb potential,

e’ 1

47T€0 r

V(r) =

and, strictly speaking, m denotes the reduced mass (generalization
to nuclear charge Ze follows straightforwardly).

Since we are interested in finding bound states of proton-electron
system, we are looking for solutions with E < O.

Here we sketch the methodology in outline — for details, refer back
to IB.



Atomic hydrogen

h282
o

2

+ veﬁ(r)] u(r) = Eu(r),  Veg(r) = ——£(¢ +1) + V(r)

2mr?

@ To simplify equation, set p = kr, where hk = v/ —2mE

D2u(p) = (1 _ 2w e 1)> ulp), 2w = .

p p°

@ At large separations, d2u(p) ~ u(p) and u(p) ~ e *.
@ Near origin, dominant term for small p is centrifugal component,

_Ae+1)
02

u(p)

for which u(p) ~ p**1



Atomic hydrogen

@ Finally, defining u(p) = e=?p*Ttw(p), equation for w(p) reveals

2 . . .
that v = 4260 sg Must take integer values, n — principal quantum

number, i.e.

e \° m 1 1
E,=— =}
(471'60) 2h? n? 2

@ Therefore, p = k,r, where k, =/ —2mE, = 4260 %% = Oi with

4eq h?
0= 2L —0529x10m
e m

the atomic Bohr radius.

@ Formally, the set of functions w,(p) = L2F! (2p) are known as
associated Laguerre polynomials L%(z).



Atomic hydrogen

@ Translating back from p to r,

Rne(r) = Ne—4r/nao (n—ao

Zr

V4
) B s(2zr/nao

For principal quantum number n, and

{=n—-1 Ryp_1 pn—1 g=Zr/nao
7\ 2
Rig = 2 —) e~ 41/
d0
3/2
Ro1 = : (Z) (ﬁ) e
2v/6 \ a0 a0
1 [ Z\*? 12r\ 75,
R20 = — | — l——— e 0
\/§ do 2 do

o
]

0.2

Probability density = r2|Rq(r)|2

i Ground state
n=1
=0
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Atomic hydrogen

@ But why the high degeneracy? Since [H,L] = 0, we expect that
states of given £ have a 2¢ + 1-fold degeneracy.

@ Instead, we find that each principal quantum number n has an
n’>-fold degeneracy, i.e. for given n, all allowed /-states degenerate.

@ As a rule, degeneracies are never accidental but always reflect
some symmetry — which we must have missed(!)

@ In fact, one may show that the (Runge-Lenz) vector operator

e2r

R —

|3><IA_—IA_><|3)—

=
2m Aeg r

is also conserved by the Hamiltonian dynamics, [H, R] = 0.

@ From this operator, we can identify generators for the complete
degenerate subspace (cf. L) — a piece of mathematical physics
(happily) beyond the scope of these lectures.



@ For problems involving a central potential,

H = + V(r)

A2
L
2m
Hamiltonian is invariant under spatial rotations, U = e~ #%-L.

@ This invariance implies that the states separate into degenerate
multiplets |¢, m) with fixed by angular momentum /.

L2|¢, m) = ¢(L+ 1)R2|e, m),  L,|¢, m) = mh|¢, m)

@ The 2/ 4 1 states within each multiplet are generated by the action
of the angular momentum raising and lowering operators,

Li|l,m) =+/€(£+1)— m(m=£1)A|l,m+1)




@ In the case of atomic hydrogen,

D 2
p=P __°
2m  Amegr

an additional symmetry leads to degeneracy of states of given
principal quantum number, n,

e\’ m 1 1 1
E,=— —— =——Ry=— x13.6eV
(47‘(’60) 2h? n? 2 T " y

@ The extent of the wavefunction is characterized by the Bohr radius,

Areq B2
TR 9529 x 107 9m
e2 m

dg —




Last 4 lectures

o

(2

Foundations of quantum physics:

Historical background; wave mechanics to Schrodinger equation.

Quantum mechanics in one dimension:

Unbound particles: potential step, barriers and tunneling; bound
states: rectangular well, d-function well; Kronig-Penney model.

Operator methods:

Uncertainty principle; time evolution operator; Ehrenfest's theorem;
symmetries in quantum mechanics; Heisenberg representation;
quantum harmonic oscillator; coherent states.

Quantum mechanics in more than one dimension:

Rigid rotor; angular momentum; raising and lowering operators;
representations; central potential; atomic hydrogen.



Next 5 lectures

© Charged particle in an electromagnetic field:

Classical and quantum mechanics of particle in a field; normal
Zeeman effect; gauge invariance and the Aharonov-Bohm effect;
Landau levels.

Q Spin:
Stern-Gerlach experiment; spinors, spin operators and Pauli

matrices; spin precession in a magnetic field; parametric resonance;
addition of angular momenta.

@ Time-independent perturbation theory:

Perturbation series; first and second order expansion; degenerate
perturbation theory; Stark effect; nearly free electron model.

© Variational and WKB method:

Variational method: ground state energy and eigenfunctions;
application to helium; Semiclassics and the WKB method.



