| ecture 4

~ Quantum mechanics
In more than one-dimension



Background

@ Previously, we have addressed quantum mechanics of 1d systems
and explored bound and unbound (scattering) states.

@ Although general concepts carry over to higher dimension, without
symmetry, states of the Schrodinger operator are often inaccessible.

@ In such situations, we must exploit approximation methods to
address properties of the states = perturbation theory.

@ However, when degree of symmetry is high, the quantum mechanics
can often be reduced to a tractable “low-dimensional” theory.
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@ Previously, we have addressed quantum mechanics of 1d systems
and explored bound and unbound (scattering) states.

@ Although general concepts carry over to higher dimension, without
symmetry, states of the Schrodinger operator are often inaccessible.

@ In such situations, we must exploit approximation methods to
address properties of the states = perturbation theory.

@ However, when degree of symmetry is high, the quantum mechanics
can often be reduced to a tractable “low-dimensional” theory.

Here we address three-dimensional problems involving a central
potential (e.g. an atom) where the system has full rotational symmetry.



Rigid diatomic molecule

Consider quantum mechanics of a rigid diatomic molecule with nuclear
masses m; and my, and fixed bond length, r.

@ Since molecule is rigid, coordinates specified 3
by centre of mass

mir; + mors 7
m1 + mo /

R =

and orientation, r = r, —ry (with |r| = r).

@ With total mass M = my + my, and moment of inertia, | = pur?,
mimo,

where 1 = Is reduced mass,
mi + mo
P2 2
H=—+ —
2M T 21
with P = —iAVg and L = r x p is internal angular momentum.



Rigid diatomic molecule

@ Since internal and centre of mass degrees of freedom separate,
wavefunction can be factorized as 1(r,R) = e’ RY(r).

@ Internal component of wavefunction, Y(r), describes quantum
“particle moving on a sphere” with r = |r| constant — a rigid rotor,

@ Eigenstates of rotor are states of angular momentum operator, L2.

@ Indeed, in any quantum mechanical system involving a radial
potential, angular momentum is conserved, i.e. [H,L] =0 and
angular component of wavefunction indexed by states of L2.



Angular momentum: commutation relations

To explore quantum rotor model, I:Imt, we must therefore address
properties of the angular momentum operator.

@ Following the usual quantization procedure, the angular momentum
operator defined by L = r x p where [p;, rj] = —ihdj;.

@ Using this relation, one may show that components of angular
momentum operators obey commutation relations,

[Z,’, ZJ] = ihe,-jkzk

eg. [Ly,L,]=ihL,

€iik 15 antisymmetric tensor (Levi-Civita symbol) €103 = 1 = —e213
(together with all permutations) while other components are zero.



Angular momentum: eigenvalues

@ Since angular momentum, L is a vector quantity, it may be defined
by magnitude, L2, and direction.

@ As components of L are mutually non-commuting, a common set of
eigenstates for any two can not be constructed.

@ They do, however, commute with L2 (exercise) — therefore, we will
seek eigenbasis of L2 and one direction, say L,

L2|a, b) = ala, b),  L,|a, b) = b|a, b)

@ To find states |a, b), we could turn to coordinate basis and express
L2 and L, as differential operators — however, before doing so, we
can learn much using operator formalism (cf. harmonic oscillator).



Angular momentum: raising and lowering operators

L2|a, b) = ala,b),  L,|a, b) = bla, b)

@ Let us then define operators Zi =L, + iL,

@ Since [L2,[;] =0, L2(Li|a b)) = LyL?|a, b) = a(Li|a b)),
i.e. Li|a, b) is also eigenstate of L2 with eigenvalue a.
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Angular momentum: raising and lowering operators

L2|a, b) = ala,b),  L,|a, b) = bla, b)

@ Let us then define operators Zi =L, + iL,

@ Since [L2,[;] =0, L2(Li|a b)) = LyL?|a, b) = a(Li|a b)),
i.e. Li|a, b) is also eigenstate of L2 with eigenvalue a.

@ From commutation relations, [L,-, Lj] = /he,-jkLk, we have

(L., L] = £ Rl

@ Therefore, while [ conserve eigenvalue a, they do effect projection,
[,Li|a, by =Lyil|a,b)+[L;, Li]a, b) = (b+ R)Li|a,b)

- if L,|a, b) = b|a, b), L1 |a, b) is either zero, or an eigenstate of L,

with eigenvalue b+ h, i.e. | Li|a, b) = Cyi(a, b)|a, b+ h)




Angular momentum: raising and lowering operators

[+|a, by = Ci(a, b)|a, b+ h)

@ To fix normalization, (a, b|a, b) = 1, noting that L} = [,
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A 2 AL A PN
HLi|a, b>|| = (a,b|11. 11 |a, b) = (a, b|L=+14a, b)
@ Then, since Z:in = Z)% + Zf, + i[ZX, Zy] = L2 - Zﬁ T hl,,

~ 2 ~ ~ ~
||Li\a, b>H — (a,b|(L2 — 125 Kl,)|a,b) =a— P2 F hb>0



Angular momentum: raising and lowering operators

[+|a, by = Ci(a, b)|a, b+ h)

@ To fix normalization, (a, b|a, b) = 1, noting that L} = [,
Hzip, b>||2 = (a,b|LL L |a, b) = (a, b|l+L.|a, b)
® Then, since [ =12+ Zf, +i[l.,L,] = L% - 12 Fhl,,
||Zi\a, b>H2 — (a,b|(L2 — 125 Kl,)|a,b) =a— P2 F hb>0

@ Since a > 0 and b is real, must have by, < b < byax,

a, bax|LE Lo ]2, byax) = @ — b2 — hibpax = 0
+L+

(3, bmin|LT L_|a, bmin) = @ — b2 + Fibmin = 0

min

l.e. @ = bmax(bmax + 7) and bpin = —bmax.



Angular momentum: raising and lowering operators

d = bmax(bmax + h) and bmin — _bmax

@ For given a, byax and by, determined uniquely — cannot be two
states with the same a but different b annihilated by L.

@ If we keep operating on |a, byiy) with Z+, we generate a sequence
of states with L, eigenvalues byin + A, bmin + 2R, bmin + 30, - - -.

@ Only way for series to terminate is for byax = bmin + nh with n
integer, i.e. bmax is either integer or half odd integer xAh.



Angular momentum: eigenvalues

@ Eigenvalues of L, form ladder, with eigenvalue
. ‘I.Z —_ 1
m known as magnetic quantum number. el AT

1
my=2%1--------% .

@ Eigenvalues of L2 are a = £(¢ + 1)12.

L2|¢, m) = £(¢ 4 1)R2|¢, m)

L,|¢, m) = mh|¢, m)

@ Both / and m are integer or half odd integers,
but spacing of ladder of m always unity.



Angular momentum: raising and lowering operators

L3¢, m) = (0 4+ 1)R2|, m), L, |6, m) = mhl¢, m)

1= 2
@ Finally, making use of identity, f L1 =A2(221) %

1
my=2%1--------% .

~ 2 ~ ~ ~
HLiw, m>H — (0, m| (L2 124 hLZ) 1, m)

we find that

L6, m) = /€l +1) — m(m+ 1)A|l,m+ 1)

L_|t,m)=\/0(¢+1)—m(m—1)A|l,m—1)




Representation of the angular momentum states

Although we can use an operator-based formalism to construct

eigenvalues of L2 and L, it is sometimes useful to have coordinate
representation of states, Y;,(6,¢) = (6, ¢|¢, m).

@ Using the expression for the gradient operator
in spherical polars,

1 1 ‘
— Arar € _a € . a A .
V=€ +e9r 9+e¢rsm9 ? z //‘,
A 0 T\
with L = —/hAr x V, a little algebra shows, |0
4 |
. | N
L, = —ihdy, Ly = he™® (£0y + icotfOy) ~ 7y
"
X — —

1 1
2| L : 2
sin 980(5m 900) + sin’ 08¢

L2=_h




Representation of the angular momentum states

[, = —ih0g, Zi — het'? (09 + i cot 00, )

@ Beginning with L, = —ih0y,

— ih@¢ ng(e, ¢) = mhyﬁm(ea ¢)

since equation is separable, we have the solution

Yém(‘ga ¢) — F(@)eimqb

with —¢ < m < /.

@ N.B. if £ (and therefore m) integer, continuity of wavefunction,
Yem(0, 0+ 27) = Yem(6, @), is assured.

[Not so if £ is half-integer.]



Representation of the angular momentum states

Yom(6, ¢) = F(6)e™?, [+ = het'® (£0y + icot80,)

@ (Drawing analogy with procedure to find HO states) to find F(6),
consider state of maximal m, |¢,¢), for which L |¢,¢) = 0.

@ Making use of coordinate representation of raising operator

0=(0,0|L,|t,0) = he® (Dg + i cot BD4) Yeu(H, H)



Representation of the angular momentum states

Yom(6, ¢) = F(6)e™?, [+ = het'® (£0y + icot80,)

@ (Drawing analogy with procedure to find HO states) to find F(6),
consider state of maximal m, |¢,¢), for which L |¢,¢) = 0.

@ Making use of coordinate representation of raising operator
0=(0,p|L, |0, 0) = he'® (Dy + i cot80,) €™ F(h)
= he'(“H1)? (9, — L cot 0) F()
i.e. DgF(0) = £ cot OF(6) with the solution F(6) = Csin®#.



Representation of the angular momentum states

Yom(6, ¢) = F(6)e™?, [+ = het'® (£0y + icot80,)

@ (Drawing analogy with procedure to find HO states) to find F(6),
consider state of maximal m, |¢,¢), for which L |¢,¢) = 0.

@ Making use of coordinate representation of raising operator
0=(0,p|L, |0, 0) = he'® (Dy + i cot80,) €™ F(h)
= he'(“H1)? (9, — L cot 0) F()
i.e. DgF(0) = £ cot OF(6) with the solution F(6) = Csin®#.

@ The 2/ states with values of m lower than ¢ generated by repeated
application of L_ on |¢, /).

Yim(0,¢) = C(—0g + i cot004) ™™ [sing Geieﬂ

-~

[




Representation of the angular momentum states

@ Eigenfunctions of L? are known as spherical harmonics,

20+ 1 (0 — |m[)1]"/?
4w (£ + |m|)!

Yim(6,¢) = (=1)™" Pl (cos B)e™®

. _ ¢2ym/2 m
where the functions P;"({) = (& 256)! jg,,:i (€2 — 1)* are known as

associated Legendre polynomials.




Representation of the angular momentum states

@ Eigenfunctions of L? are known as spherical harmonics,

20+ 1 (0 — |m[)1]"/?

|m| im¢
I (C+ |m)) P, '(cosf)e

Yem(6, ¢) = (=1)™H™

. _ ¢2ym/2 m
where the functions P;"({) = (& 2556)! jg,,:i (€2 — 1)* are known as

associated Legendre polynomials.

@ | see no reason why you should ever memorize these functions!



Representation of the angular momentum states

@ Eigenfunctions of L? are known as spherical harmonics,

20+ 1 (0 — |m[)I1]"?

|m| im¢
& (01 |m)) P, " (cosf)e

Yem(8, ¢) = (—1)™H™!

. _ 2 m/?2 m
where the functions P;"(§) = (& 2556)! jg,:fe (€2 — 1)* are known as

associated Legendre polynomials.

@ As an example of the first few (unnormalized) spherical harmonics:

Yoo =1
Y10 = cos @, Y1 = e®siné
Yoo =3cos’0 —1, Yo =e'®sinfcosh, Yo = ¢ sin® 0

@ States with £ =0,1,2,3,... are known as s, p, d, f,...-orbitals.

@ Note symmetries: Yy _p, = (=1)"Y, and PYym = (—1)* Yim.



Representation of the angular momentum states

radial coordinate fixed by |Re Yy,,(6, ¢)| and colours indicate relative sign of real part.



Rigid rotor model

@ After this lengthy digression, we return to problem of quantum
mechanical rotor Hamiltonian and the rigid diatomic molecule.

@ Eigenstates of the Hamiltonian,

RPK?  R?
Ex.e = +2I£(€+1)

where, for each set of quantum numbers (K, /), there is a
2¢ + 1-fold degeneracy.

@ With this background, we now turn to general problem of 3d system
with centrally symmetric potential, V/(r) (e.g. atomic hydrogen).



The central potential

@ When central force field is entirely radial, the Hamiltonian for the
relative coordinate is given by

N\

;oD
A= +V
>+ V()

@ Using the identity,

L? = (r x p)* = ripjri; — ribjribi = r’p° — (r- p)> + ih(r - p)



The central potential

@ When central force field is entirely radial, the Hamiltonian for the
relative coordinate is given by
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A= +V
>+ V()

@ Using the identity,
L? = (r x p)? = ripjripj — ribjripi = r’p® — (r -)? +ih(r - )

with r-p = —ihr - V = —ihr0,, find p* =3 2 [(rdr)? + ro,]



The central potential

@ When central force field is entirely radial, the Hamiltonian for the
relative coordinate is given by

A= +V
>+ V()

@ Using the identity,
L? = (r x p)? = ripyripj — ribjripi = r’p* — (r- p)* + in(r - p)
L2 A2 )
with r-p = —ifr -V = —ihr0,, find p* =522 (rdr)? + ro,]
@ Noting that (rd,)? + r0, = r*0? + 2r0,, we obtain the Schrodinger
equation,

om mr?

[ i (82 + 8) + V(r) + 2L2 ] Y(r) = Evy(r)




The central potential

ih(r) = E9(r)

r 2mr?

2 1 2
[_h (02+20) 4 o 4 v

@ From separability, 1¥(r) = R(r)Ye.m(0, ¢), where

2 a%+ga, + ” ((f+1)+ V(r)| R(r) = ER(r)
2m 2

r mr?



The central potential

ih(r) = E9(r)

2mr?

2 1 2
[_h (02+20) 4 o 4 v

@ From separability, 1¥(r) = R(r)Ye.m(0, ¢), where

[—h—z (97+20,) + I e+ V(r)| R(r) = ER()

r mr?

@ Finally, setting R(r) = u(r)/r, obtain “one-dimensional” equation

[_ hzrir 4 \/eﬂc(r)] u(r) = Eu(r), Veg(r)= 2/?#26(6 + 1)+ V(r)

with boundary condition u(0) = 0, and normalization,

[t = [ edrRoR = [ drlut =1



The central potential

ih(r) = E9(r)

2mr?

2 1 2
[_h (02+20) 4 o 4 v

@ From separability, 1¥(r) = R(r)Ye.m(0, ¢), where

[—h—z (97+20,) + I e+ V(r)| R(r) = ER()

r mr?

@ Finally, setting R(r) = u(r)/r, obtain “one-dimensional” equation

2

2mr?

((£+1)+ V(r)

[— h;ff + Veff(r)] u(r) = Eu(r), Vea(r) =

with boundary condition u(0) = 0, and normalization,

/d3r\¢(r)|2 :/ r?dr |R(r)|? :/ dr|u(r))? =1
0 0
@ So, for bound state, lim, . |u(r)] < =75~ with € > 0.



The central potential: bound states

[_ hz,ir 4 \/eﬂc(r)] u(r) = Eu(r), Veg(r)= 2mr2€(€ + 1)+ V(r)

@ Since u(0) =0, we may “map” Hamiltonian from half-line to full
with the condition that we admit only antisymmetric wavefunctions.

@ Existence of bound states can then be related back to the
one-dimensional case:

Previously, we have seen that a (symmetric) attractive potential
always leads to a bound state in one-dimension. However, odd
parity states become bound only at a critical strength of interaction.

So, for a general attractive potential V/(r), the existence of a bound
state is not guaranteed even for £ = 0.



Atomic hydrogen

|

ﬁzir 4 \/eﬂc(r)] u(r) = u(r), Ve (r) = 2Zr2 0+1)+ V(r)

@ The hydrogen atom consists of an electron bound to a proton by

the Coulomb potential,

e? 1

47T€0 r

V(r) =

and, strictly speaking, m denotes the reduced mass (generalization
to nuclear charge Ze follows straightforwardly).

Since we are interested in finding bound states of proton-electron
system, we are looking for solutions with E < 0.

Here we sketch the methodology in outline — for details, refer back
to IB.



Atomic hydrogen

2

((0+1)+ V(r)

om 2mr?

[_ h2 07 + Veff(r)] u(r) = Eu(r), Vo (1) =

@ To simplify equation, set p = kr, where hk = v/ —2mE

2 o B v L+ 1) @k
dyu(p) = (1 ST up),  w=



Atomic hydrogen

2

[— A 0e+1) + V(r)

2m

+ Veff(r)] U(r) — Eu(r)7 Veff(r) — 2mr2

@ To simplify equation, set p = kr, where hk = v/ —2mE

2v U0+ 1) B
1 — P + p2 )U(IO), U = 4—7'('€E

o2u(e) = (

® At large separations, d5u(p) ~ u(p) and u(p) ~ e~7.

@ Near origin, dominant term for small p is centrifugal component,

(), o

dpu(p) =~ p

for which u(p) ~ p**1.



Atomic hydrogen

@ Finally, defining u(p) = e=?p*Ttw(p), equation for w(p) reveals
2

that v = 4260 sg Must take integer values, n — principal quantum

number, i.e.




Atomic hydrogen

@ Finally, defining u(p) = e=?p*Ttw(p), equation for w(p) reveals
2

that v = 4260 sg Must take integer values, n — principal quantum

number, i.e.

2 \° m 1 1
(47reo) 2h? n? m
@ Therefore, p = k,r, where K, =/ —2mE, = 4;260 %% = ﬁ with
4rreq h?
a0 = —2% — 0529 x 107°m
e m

the atomic Bohr radius.

@ Formally, the set of functions w,(p) = L2F! (2p) are known as
associated Laguerre polynomials L5(z).



Atomic hydrogen

@ Translating back from p to r,

/
Roe(r) = Ne—Zr/n3s (70

For principal quantum number n, and

'€: n_ 1, Rn’n_]_ OC rn_l

€

—Zr/nag

3
Z 2
R10=2(—) g4/
do
1 7 3/2
R =5 = (2)
2v/6 \ a0
1 7 3/2
\@ do

V4
) B s(2zr/nao

Probability density = r2|Rn (r)|2

Ground state
n=1
=0
— Dashed line : Radius by Bohr's quantum theory
J
5 10
n=2
=0
) l 1 |
2 10 15
| : n=2
| f=1
L1 |
5 10 i5
n=3
- =0
ol m i
5 10 15 20 25
£ =3
f=1
| |
5 10 15 20 25
o =3
/N 2
I I | . J
5 10 15 20 25

r/a, (ao:Bohrradius )



Atomic hydrogen

@ But why the high degeneracy? Since [I:I, IA_] = 0, we expect that
states of given £ have a 2¢ + 1-fold degeneracy.

@ Instead, we find that each principal quantum number n has an
n’-fold degeneracy, i.e. for given n, all allowed /-states degenerate.
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n’-fold degeneracy, i.e. for given n, all allowed /-states degenerate.

@ As a rule, degeneracies are never accidental but always reflect
some symmetry — which we must have missed(!)



Atomic hydrogen

@ But why the high degeneracy? Since [I:I, IA_] = 0, we expect that
states of given £ have a 2¢ + 1-fold degeneracy.

@ Instead, we find that each principal quantum number n has an
n’-fold degeneracy, i.e. for given n, all allowed /-states degenerate.

@ As a rule, degeneracies are never accidental but always reflect
some symmetry — which we must have missed(!)

@ In fact, one may show that the (Runge-Lenz) vector operator

e2r

~ 1 ~ ~
R=—(pxL-Lxp)— —
2m(p>< % P) Aeg r

is also conserved by the Hamiltonian dynamics, [H, R] = 0.

@ From this operator, we can identify generators for the complete
degenerate subspace (cf. Ly) — a piece of mathematical physics
(happily) beyond the scope of these lectures.



@ For problems involving a central potential,

P2
A= +V
5+ V(1)

Hamiltonian is invariant under spatial rotations, U = e~ %%l

@ This invariance implies that the states separate into degenerate
multiplets |¢, m) with fixed by angular momentum /.

L2|¢, m) = (0 4+ 1)R2|6, m), L, |6, m) = mhl¢, m)

@ The 2/ + 1 states within each multiplet are generated by the action
of the angular momentum raising and lowering operators,

Lilt,m) = /0(t+1) —m(m=E1)A|l,m=*1)




@ In the case of atomic hydrogen,

N, 2
p=P __°
2m  Amegr

an additional symmetry leads to degeneracy of states of given
principal quantum number, n,

2N\ m 1 1
E,,:—( e ) m1l_ 1lp
47eg

@ The extent of the wavefunction is characterized by the Bohr radius,

4eq h?
0= -2 0529 %10 m
e m




