
Lecture 3

Operator methods in quantum mechanics



Background

Although wave mechanics is capable of describing quantum
behaviour of bound and unbound particles, some properties can not
be represented this way, e.g. electron spin degree of freedom.

It is therefore convenient to reformulate quantum mechanics in
framework that involves only operators, e.g. Ĥ.

Advantage of operator algebra is that it does not rely upon

particular basis, e.g. for Ĥ = p̂2

2m , we can represent p̂ in spatial
coordinate basis, p̂ = −i!∂x , or in the momentum basis, p̂ = p.

Equally, it would be useful to work with a basis for the
wavefunction, ψ, which is coordinate-independent.
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(from ladder operators to coherent states)



Dirac notation

Orthogonal set of square integrable functions (such as
wavefunctions) form a vector space (cf. 3d vectors).

In Dirac notation, state vector or wavefunction, ψ, is represented
symbolically as a “ket”, |ψ〉.

Any wavefunction can be expanded as sum of basis state vectors,
(cf. v = x êx + y êy + · · · )

|ψ〉 = λ1|ψ1〉+ λ2|ψ2〉+ · · ·

Alongside ket, we can define a “bra”, 〈ψ| which together form the
scalar product,

〈φ|ψ〉 ≡
∫ ∞

−∞
dx φ∗(x)ψ(x) = 〈ψ|φ〉∗
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Dirac notation

For a complete basis set, φi , we can define the expansion

|ψ〉 =
∑

i

φi |i〉

where 〈j |ψ〉 =
∑

i

φi 〈j |i〉︸︷︷︸
δij

= φj .

For example, in the real space basis, |ψ〉 =

∫
dx ψ(x)|x〉.

Then, since 〈x |x ′〉 = δ(x − x ′),

〈x ′|ψ〉 =

∫
dx ψ(x) 〈x ′|x〉︸ ︷︷ ︸

δ(x−x′)

= ψ(x ′)

In Dirac formulation, real space representation recovered from inner
product, ψ(x) = 〈x |ψ〉; equivalently ψ(p) = 〈p|ψ〉.



Operators

An operator Â maps one state vector, |ψ〉, into another, |φ〉, i.e.

Â|ψ〉 = |φ〉.

If Â|ψ〉 = a|ψ〉 with a real, then |ψ〉 is said to be an eigenstate (or
eigenfunction) of Â with eigenvalue a.

e.g. plane wave state ψp(x) = 〈x |ψp〉 = A e ipx/! is an eigenstate of
the momentum operator, p̂ = −i!∂x , with eigenvalue p.

For every observable A, there is an operator Â which acts upon the
wavefunction so that, if a system is in a state described by |ψ〉, the
expectation value of A is

〈A〉 = 〈ψ|Â|ψ〉 =

∫ ∞

−∞
dx ψ∗(x)Âψ(x)
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Operators

Every operator corresponding to observable is linear and Hermitian,

i.e. for any two wavefunctions |ψ〉 and |φ〉, linearity implies

Â(α|ψ〉+ β|φ〉) = α Â|ψ〉+ β Â|φ〉

For any linear operator Â, the Hermitian conjugate (a.k.a. the
adjoint) is defined by relation

〈φ|Âψ〉 =

∫
dx φ∗(Âψ) =

∫
dx ψ(Â†φ)∗ = 〈Â†φ|ψ〉

Hermiticity implies that Â† = Â, e.g. p̂ = −i!∂x .



Operators

From the definition, 〈Â†φ|ψ〉 = 〈φ|Âψ〉, some useful relations follow:

1 From complex conjugation, 〈Â†φ|ψ〉∗ = 〈ψ|Â†φ〉 = 〈Âψ|φ〉,

i.e. 〈(Â†)†ψ|φ〉 = 〈Âψ|φ〉, ⇒ (Â†)† = Â

2 From 〈φ|ÂB̂ψ〉 = 〈Â†φ|B̂ψ〉 = 〈B̂†Â†φ|ψ〉,
it follows that (ÂB̂)† = B̂†Â†.

Operators are associative,i.e. (ÂB̂)Ĉ = Â(B̂Ĉ ),
but not (in general) commutative,

ÂB̂|ψ〉 = Â(B̂|ψ〉) = (ÂB̂)|ψ〉 &= B̂Â|ψ〉 .
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Operators

A physical variable must have real expectation values (and
eigenvalues) ⇒ physical operators are Hermitian (self-adjoint):

〈ψ|Ĥ|ψ〉∗ =

[∫ ∞

−∞
ψ∗(x)Ĥψ(x)dx

]∗

=

∫ ∞

−∞
ψ(x)(Ĥψ(x))∗dx = 〈Ĥψ|ψ〉

i.e. 〈Ĥψ|ψ〉 = 〈ψ|Ĥψ〉 = 〈Ĥ†ψ|ψ〉, and Ĥ† = Ĥ.

Eigenfunctions of Hermitian operators Ĥ|i〉 = Ei |i〉 form complete
orthonormal basis, i.e. 〈i |j〉 = δij

For complete set of states |i〉, can expand a state function |ψ〉 as

|ψ〉 =
∑

i

|i〉〈i |ψ〉
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Resolution of identity

|ψ〉 =
∑

i

|i〉〈i |ψ〉

If we sum over complete set of states, obtain the (useful) resolution
of identity,

∑

i

|i〉〈i | = I

i.e. in coordinate basis,
∑

i φ
∗
i (x)φi (x ′) = δ(x − x ′).

As in 3d vector space, expansion |φ〉 =
∑

i bi |i〉 and |ψ〉 =
∑

i ci |i〉
allows scalar product to be taken by multiplying components,
〈φ|ψ〉 =

∑
i b
∗
i ci .
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Example: resolution of identity

Basis states can be formed from any complete set of orthogonal
states including position or momentum,

∫ ∞

−∞
dx |x〉〈x | =

∫ ∞

−∞
dp|p〉〈p| = I.

From these definitions, can recover Fourier representation,

ψ(x) ≡ 〈x |ψ〉 =

∫ ∞

−∞
dp 〈x |p〉︸ ︷︷ ︸
e ipx/!/

√
2π!

〈p|ψ〉 =
1√
2π!

∫ ∞

−∞
dp e ipx/! ψ(p)

where 〈x |p〉 denotes plane wave state |p〉 expressed in the real space
basis.



Time-evolution operator

Formally, we can evolve a wavefunction forward in time by applying
time-evolution operator.

For time-independent Hamiltonian, |ψ(t)〉 = Û(t)|ψ(0)〉, where
time-evolution operator (a.k.a. the “propagator”):

Û(t) = e−i Ĥt/!

follows from time-dependent Schrödinger equation, Ĥ|ψ〉 = i!∂t |ψ〉.

By inserting the resolution of identity, I =
∑

i |i〉〈i |, where |i〉 are

eigenstates of Ĥ with eigenvalue Ei ,

|ψ(t)〉 = e−i Ĥt/! ∑

i

|i〉〈i |ψ(0)〉 =
∑

i

|i〉〈i |ψ(0)〉e−iEi t/!
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i

|i〉〈i |ψ(0)〉 =
∑

i

|i〉〈i |ψ(0)〉e−iEi t/!



Time-evolution operator

Û = e−i Ĥt/!

Time-evolution operator is an example of a Unitary operator:

Unitary operators involve transformations of state vectors which
preserve their scalar products, i.e.

〈φ|ψ〉 = 〈Ûφ|Ûψ〉 = 〈φ|Û†Ûψ〉 !
= 〈φ|ψ〉

i.e. Û†Û = I



Uncertainty principle for non-commuting operators

For non-commuting Hermitian operators, we can establish a bound
on the uncertainty in the expectation values of Â and B̂:

Given a state |ψ〉, the mean square uncertainty defined as

(∆A)2 = 〈ψ|(Â− 〈Â〉)2ψ〉 = 〈ψ|Û2ψ〉
(∆B)2 = 〈ψ|(B̂ − 〈B̂〉)2ψ〉 = 〈ψ|V̂ 2ψ〉

where Û = Â− 〈Â〉, 〈Â〉 ≡ 〈ψ|Âψ〉, etc.

Consider then the expansion of the norm ||Û|ψ〉+ iλV̂ |ψ〉||2,

〈ψ|Û2ψ〉+ λ2〈ψ|V̂ 2ψ〉+ iλ〈Ûψ|V̂ψ〉 − iλ〈V̂ψ|Ûψ〉 ≥ 0

i.e. (∆A)2 + λ2(∆B)2 + iλ〈ψ|[Û, V̂ ]|ψ〉 ≥ 0

Since 〈Â〉 and 〈B̂〉 are just constants, [Û, V̂ ] = [Â, B̂].
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Given a state |ψ〉, the mean square uncertainty defined as
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Uncertainty principle for non-commuting operators

(∆A)2 + λ2(∆B)2 + iλ〈ψ|[Â, B̂]|ψ〉 ≥ 0

Minimizing with respect to λ,

2λ(∆B)2 + iλ〈ψ|[Â, B̂]|ψ〉 = 0, iλ =
1

2

〈ψ|[Â, B̂]|ψ〉
(∆B)2

and substituting back into the inequality,

(∆A)2(∆B)2 ≥ −1

4
〈ψ|[Â, B̂]|ψ〉2

i.e., for non-commuting operators,

(∆A)(∆B) ≥ i

2
〈[Â, B̂]〉



Uncertainty principle for non-commuting operators

(∆A)(∆B) ≥ i

2
〈[Â, B̂]〉

For the conjugate operators of momentum and position (i.e.
[p̂, x̂ ] = −i!, recover Heisenberg’s uncertainty principle,

(∆p)(∆x) ≥ i

2
〈[p̂, x ]〉 =

!
2

Similarly, if we use the conjugate coordinates of time and energy,
[Ê , t] = i!,

(∆t)(∆E ) ≥ i

2
〈[t, Ê ]〉 =

!
2



Time-evolution of expectation values

For a general (potentially time-dependent) operator Â,

∂t〈ψ|Â|ψ〉 = (∂t〈ψ|)Â|ψ〉+ 〈ψ|∂tÂ|ψ〉+ 〈ψ|Â(∂t |ψ〉)

Using i!∂t |ψ〉 = Ĥ|ψ〉, −i!(∂t〈ψ|) = 〈ψ|Ĥ, and Hermiticity,

∂t〈ψ|Â|ψ〉 =
1

! 〈i Ĥψ|Â|ψ〉+ 〈ψ|∂tÂ|ψ〉+
1

! 〈ψ|Â|(−i Ĥψ)〉

=
i

!

(
〈ψ|ĤÂ|ψ〉 − 〈ψ|ÂĤ|ψ〉

)

︸ ︷︷ ︸
〈ψ|[Ĥ, Â]|ψ〉

+〈ψ|∂tÂ|ψ〉

For time-independent operators, Â, obtain Ehrenfest Theorem,

∂t〈ψ|Â|ψ〉 =
i

! 〈ψ|[Ĥ, Â]|ψ〉 .
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+〈ψ|∂tÂ|ψ〉
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Ehrenfest theorem: example

∂t〈ψ|Â|ψ〉 =
i

! 〈ψ|[Ĥ, Â]|ψ〉 .

For the Schrödinger operator, Ĥ = p̂2

2m + V (x),

∂t〈x〉 =
i

! 〈[Ĥ, x̂ ]〉 =
i

! 〈[
p̂2

2m
, x ]〉 =

〈p̂〉
m

Similarly,

∂t〈p̂〉 =
i

! 〈[Ĥ,−i!∂x ]〉 = −〈(∂x Ĥ)〉 = −〈∂xV 〉

i.e. Expectation values follow Hamilton’s classical equations of
motion.



Symmetry in quantum mechanics

Symmetry considerations are very important in both low and high
energy quantum theory:

1 Structure of eigenstates and spectrum reflect symmetry of the
underlying Hamiltonian.

2 Transition probabilities between states depend upon
transformation properties of perturbation =⇒ “selection
rules”.

Symmetries can be classified as discrete and continuous,

e.g. mirror symmetry is discrete, while rotation is continuous.



Symmetry in quantum mechanics

Formally, symmetry operations can be represented by a group of
(typically) unitary transformations (or operators), Û such that

Ô → Û†ÔÛ

Such unitary transformations are said to be symmetries of a
general operator Ô if

Û†ÔÛ = Ô

i.e., since Û† = Û−1 (unitary), [Ô, Û] = 0.

If Ô ≡ Ĥ, such unitary transformations are said to be symmetries of
the quantum system.



Continuous symmetries: Examples

Operators p̂ and r̂ are generators of space-time transformations:

For a constant vector a, the unitary operator

Û(a) = exp

[
− i

!a · p̂
]

effects spatial translations, Û†(a)f (r)Û(a) = f (r + a).

Proof: Using the Baker-Hausdorff identity (exercise),

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + · · ·

with eÂ ≡ Û† = ea·∇ and B̂ ≡ f (r), it follows that

Û†(a)f (r)Û(a) = f (r) + ai1(∇i1 f (r)) +
1

2!
ai1ai2(∇i1∇i2 f (r)) + · · ·

= f (r + a) by Taylor expansion
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Continuous symmetries: Examples

Operators p̂ and r̂ are generators of space-time transformations:

For a constant vector a, the unitary operator

Û(a) = exp

[
− i

!a · p̂
]

effects spatial translations, Û†(a)f (r)Û(a) = f (r + a).

Therefore, a quantum system has spatial translation symmetry iff

Û(a)Ĥ = ĤÛ(a), i.e. p̂Ĥ = Ĥp̂

i.e. (sensibly) Ĥ = Ĥ(p̂) must be independent of position.

Similarly (with L̂ = r × p̂ the angular momemtum operator),





Û(b) = exp[− i
!b · r̂]

Û(θ) = exp[− i
!θên · L̂]

Û(t) = exp[− i
! Ĥt]

effects






momentum translations
spatial rotations
time translations
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Discrete symmetries: Examples

The parity operator, P̂, involves a sign reversal of all coordinates,

P̂ψ(r) = ψ(−r)

discreteness follows from identity P̂2 = 1.

Eigenvalues of parity operation (if such exist) are ±1.

If Hamiltonian is invariant under parity, [P̂, Ĥ] = 0, parity is said to
be conserved.

Time-reversal is another discrete symmetry, but its representation
in quantum mechanics is subtle and beyond the scope of course.



Consequences of symmetries: multiplets

Consider a transformation Û which is a symmetry of an operator
observable Â, i.e. [Û, Â] = 0.

If Â has eigenvector |a〉, it follows that Û|a〉 will be an eigenvector
with the same eigenvalue, i.e.

ÂU|a〉 = ÛÂ|a〉 = aU|a〉

This means that either:

1 |a〉 is an eigenvector of both Â and Û (e.g. |p〉 is eigenvector

of Ĥ = p̂2

2m and Û = e ia·p̂/!), or

2 eigenvalue a is degenerate: linear space spanned by vectors
Ûn|a〉 (n integer) are eigenvectors with same eigenvalue.

e.g. next lecture, we will address central potential where Ĥ is
invariant under rotations, Û = e iθên·L̂/! – states of angular
momentum, *, have 2* + 1-fold degeneracy generated by L̂±.
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If Â has eigenvector |a〉, it follows that Û|a〉 will be an eigenvector
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invariant under rotations, Û = e iθên·L̂/! – states of angular
momentum, *, have 2* + 1-fold degeneracy generated by L̂±.



Consequences of symmetries: multiplets
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momentum, *, have 2* + 1-fold degeneracy generated by L̂±.



Heisenberg representation

Schrödinger representation: time-dependence of quantum system
carried by wavefunction while operators remain constant.

However, sometimes useful to transfer time-dependence to
operators: For observable B̂, time-dependence of expectation value,

〈ψ(t)|B̂|ψ(t)〉 = 〈e−i Ĥt/!ψ(0)|B̂|e−i Ĥt/!ψ(0)〉

= 〈ψ(0)|e i Ĥt/!B̂e−i Ĥt/!|ψ(0)〉

Heisenberg representation: if we define B̂(t) = e i Ĥt/!B̂e−i Ĥt/!,
time-dependence transferred from wavefunction and

∂tB̂(t) =
i

!e i Ĥt/![Ĥ, B̂]e−i Ĥt/! =
i

! [Ĥ, B̂(t)]

cf. Ehrenfest’s theorem
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Quantum harmonic oscillator

The harmonic oscillator holds priviledged position in quantum
mechanics and quantum field theory.

Ĥ =
p̂2

2m
+

1

2
mω2x2

It also provides a useful platform to illustrate some of the
operator-based formalism developed above.

To obtain eigenstates of Ĥ, we could seek solutions of linear second
order differential equation,

[
− !2

2m
∂2

x +
1

2
mω2x2

]
ψ = Eψ

However, complexity of eigenstates (Hermite polynomials) obscure
useful features of system – we therefore develop an alternative
operator-based approach.
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Quantum harmonic oscillator

Ĥ =
p̂2

2m
+

1

2
mω2x2

Form of Hamiltonian suggests that it can be recast as the “square
of an operator”: Defining the operators (no hats!)

a =

√
mω

2!

(
x + i

p̂

mω

)
, a† =

√
mω

2!

(
x − i

p̂

mω

)

we have a†a =
mω

2! x2 +
p̂2

2!mω
− i

2! [p̂, x ]︸ ︷︷ ︸
−i!

=
Ĥ

!ω
− 1

2

Together with aa† = Ĥ
!ω + 1

2 , we find that operators fulfil the
commutation relations

[a, a†] ≡ aa† − a†a = 1
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Ĥ

!ω
− 1

2

Together with aa† = Ĥ
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Quantum harmonic oscillator

Ĥ =
p̂2

2m
+
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mω2x2

Form of Hamiltonian suggests that it can be recast as the “square
of an operator”: Defining the operators (no hats!)
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2! x2 +
p̂2

2!mω
− i

2! [p̂, x ]︸ ︷︷ ︸
−i!

=
Ĥ

!ω
− 1

2

Setting n̂ = a†a, Ĥ = !ω(n̂ + 1/2)

Since operator n̂ = a†a positive definite, eigenstates have energies
E ≥ !ω/2.



Quantum harmonic oscillator

Ĥ = !ω(a†a + 1/2)

Ground state |0〉 identified by finding state for which

a|0〉 =

√
mω

2!

(
x + i

p̂

mω

)
|0〉 = 0

In coordinate basis,

〈x |a|0〉 = 0 =

∫
dx ′ 〈x |a|x ′〉〈x ′|0〉 =

(
x +

!
mω

∂x

)
ψ0(x)

i.e. ground state has energy E0 = !ω/2 and

ψ0(x) = 〈x |0〉 =
(mω

π!

)1/4
e−mωx2/2!

N.B. typo in handout!



Quantum harmonic oscillator

Ĥ = !ω(a†a + 1/2)

Excited states found by acting upon this state with a†.

Proof: using [a, a†] ≡ aa† − a†a = 1, if n̂|n〉 = n|n〉,

n̂(a†|n〉) = a† aa†︸︷︷︸
a†a + 1

|n〉 = (a† a†a︸︷︷︸
n̂

+a†)|n〉 = (n + 1)a†|n〉

equivalently, [n̂, a†] = n̂a† − a†n̂ = a†.

Therefore, if |n〉 is eigenstate of n̂ with eigenvalue n, then a†|n〉 is
eigenstate with eigenvalue n + 1.

Eigenstates form a “tower”; |0〉, |1〉 = C1a†|0〉, |2〉 = C2(a†)2|0〉, ...,
with normalization Cn.



Quantum harmonic oscillator

Ĥ = !ω(a†a + 1/2)

Excited states found by acting upon this state with a†.

Proof: using [a, a†] ≡ aa† − a†a = 1, if n̂|n〉 = n|n〉,

n̂(a†|n〉) = a† aa†︸︷︷︸
a†a + 1

|n〉 = (a† a†a︸︷︷︸
n̂

+a†)|n〉 = (n + 1)a†|n〉

equivalently, [n̂, a†] = n̂a† − a†n̂ = a†.

Therefore, if |n〉 is eigenstate of n̂ with eigenvalue n, then a†|n〉 is
eigenstate with eigenvalue n + 1.

Eigenstates form a “tower”; |0〉, |1〉 = C1a†|0〉, |2〉 = C2(a†)2|0〉, ...,
with normalization Cn.



Quantum harmonic oscillator

Ĥ = !ω(a†a + 1/2)

Normalization: If 〈n|n〉 = 1, 〈n|aa†|n〉 = 〈n|(n̂ + 1)|n〉 = (n + 1),
i.e. with |n + 1〉 = 1√

n+1
a†|n〉, state |n + 1〉 also normalized.

|n〉 =
1√
n!

(a†)n|0〉, 〈n|n′〉 = δnn′

are eigenstates of Ĥ with eigenvalue En = (n + 1/2)!ω and

a†|n〉 =
√

n + 1|n + 1〉, a|n〉 =
√

n|n − 1〉

a and a† represent ladder operators that lower/raise energy of
state by !ω.



Quantum harmonic oscillator

In fact, operator representation achieves something remarkable and
far-reaching: the quantum harmonic oscillator describes motion of a
single particle in a confining potential.

Eigenvalues turn out to be equally spaced, cf. ladder of states.

Although we can find a coordinate representation ψn(x) = 〈x |n〉,
operator representation affords a second interpretation, one that
lends itself to further generalization in quantum field theory.

Quantum harmonic oscillator can be interpreted as a simple system
involving many fictitious particles, each of energy !ω.



Quantum harmonic oscillator

In new representation, known as the Fock space representation,
vacuum |0〉 has no particles, |1〉 a single particle, |2〉 has two, etc.

Fictitious particles created and annihilated by raising and lowering
operators, a† and a with commutation relations, [a, a†] = 1.

Later in the course, we will find that these commutation relations
are the hallmark of bosonic quantum particles and this
representation, known as second quantization underpins the
quantum field theory of relativistic particles (such as the photon).



Quantum harmonic oscillator: “dynamical echo”

How does a general wavepacket |ψ(0)〉 evolve under the action of

the quantum time-evolution operator, Û(t) = e−i Ĥt/!?

For a general initial state, |ψ(t)〉 = Û(t)|ψ(0)〉. Inserting the
resolution of identity on the complete set of eigenstates,

|ψ(t)〉 = e−i Ĥt/! ∑

n

|n〉〈n|ψ(0)〉 =
∑

i

|n〉〈n|ψ(0)〉e−iEnt/!

For the harmonic oscillator, En = !ω(n + 1/2).

Therefore, at times t = 2π
ω m, m integer, |ψ(t)〉 = e−iωt/2|ψ(0)〉

leading to the coherent reconstruction (echo) of the wavepacket.

At times t = π
ω (2m + 1), the “inverted” wavepacket

ψ(x , t) = e−iωt/2ψ(−x , 0) is perfectly reconstructed (exercise).
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Quantum harmonic oscillator: time-dependence

In Heisenberg representation, we have seen that ∂tB̂ =
i

! [Ĥ, B̂].

Therefore, making use of the identity, [Ĥ, a] = −!ωa (exercise),

∂ta = −iωa, i.e. a(t) = e−iωta(0)

Combined with conjugate relation a†(t) = e iωta†(0), and using

x =
√

!
2mω (a† + a), p̂ = −i

√
m!ω

2 (a− a†) (exercise)

p̂(t) = p̂(0) cos(ωt)−mωx̂(0) sin(ωt)

x̂(t) = x̂(0) cos(ωt) +
p̂(0)

mω
sin(ωt)

i.e. operators obey equations of motion of the classical harmonic
oscillator.

But how do we use these equations...?
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Quantum harmonic oscillator: time-dependence

p̂(t) = p̂(0) cos(ωt)−mωx̂(0) sin(ωt)

x̂(t) = x̂(0) cos(ωt) +
p̂(0)

mω
sin(ωt)

Consider dynamics of a (real) wavepacket defined by φ(x) at t = 0.
Suppose we know expectation values, p2

0 = 〈φ|p̂2|φ〉, x2
0 = 〈φ|x2|φ〉,

and we want to determine 〈φ(t)|p̂2|φ(t)〉.
In Heisenberg representation, 〈φ(t)|p̂2|φ(t)〉 = 〈φ|p̂2(t)|φ〉 and

p̂2(t) = p̂2(0) cos2(ωt) + (mωx(0))2 sin2(ωt)

−mω(x(0)p̂(0) + p̂(0)x(0))

Since 〈φ|(x(0)p̂(0) + p̂(0)x(0))|φ〉 = 0 for φ(x) real, we have

〈φ|p̂2(t)|φ〉 = p2
0 cos2(ωt) + (mωx0)

2 sin2(ωt)

and similarly 〈φ|x̂2(t)|φ〉 = x2
0 cos2(ωt) + p2

0
(mω)2 sin2(ωt)
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Coherent states

The ladder operators can be used to construct a wavepacket which
most closely resembles a classical particle – the coherent or
Glauber states.

Such states have numerous applications in quantum field theory and
quantum optics.

The coherent state is defined as the eigenstate of the annihilation
operator,

a|β〉 = β|β〉

Since a is not Hermitian, β can take complex eigenvalues.

The eigenstates are constructed from the harmonic oscillator ground
state the by action of the unitary operator,

|β〉 = Û(β)|0〉, Û(β) = eβa†−β∗a
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Coherent states

|β〉 = Û(β)|0〉, Û(β) = eβa†−β∗a

The proof follows from the identity (problem set I),

aÛ(β) = Û(β)(a + β)

i.e. Û is a translation operator, Û†(β)aÛ(β) = a + β.

By making use of the Baker-Campbell-Hausdorff identity

eX̂ eŶ = eX̂+Ŷ+ 1
2 [X̂ ,Ŷ ]

valid if [X̂ , Ŷ ] is a c-number, we can show (problem set)

Û(β) = eβa†−β∗a = e−|β|2/2eβa†e−β∗a

i.e., since e−β∗a|0〉 = |0〉,

|β〉 = e−|β|2/2eβa† |0〉



Coherent states

a|β〉 = β|β〉, |β〉 = e−|β|2/2eβa† |0〉

Expanding the exponential, and noting that |n〉 = 1√
n!

(a†)n|0〉, |β〉
can be represented in number basis,

|β〉 =
∞∑

n=0

(βa†)n

n!
|0〉 =

∑

n

e−|β|2/2 βn

√
n!

|n〉

i.e. Probability of observing n excitations is

Pn = |〈n|β〉|2 = e−|β|2 |β|2n

n!

a Poisson distribution with average occupation, 〈β|a†a|β〉 = |β|2.



Coherent states

a|β〉 = β|β〉, |β〉 = e−|β|2/2eβa† |0〉

Furthermore, one may show that the coherent state has minimum
uncertainty ∆x ∆p = !

2 .

In the real space representation (problem set I),

ψβ(x) = 〈x |β〉 = N exp

[
− (x − x0)2

4(∆x)2
− i

!p0x

]

where (∆x)2 = !
2mω and

x0 =

√
!

2mω
(β∗ + β) = A cos ϕ

p0 = i

√
!mω

2
(β∗ − β) = mωA sin ϕ

where A =
√

2!
mω and β = |β|e iϕ.



Coherent States: dynamics

a|β〉 = β|β〉, |β〉 =
∑

n

e−|β|2/2 βn

√
n!

|n〉

Using the time-evolution of the stationary states,

|n(t)〉 = e−iEnt/!|n(0)〉, En = !ω(n + 1/2)

it follows that

|β(t)〉 = e−iωt/2
∑

n

e−|β|2/2 βn

√
n!

e−inωt |n〉 = e−iωt/2|e−iωtβ〉

Therefore, the form of the coherent state wavefunction is preserved
in the time-evolution, while centre of mass and momentum follow
that of the classical oscillator,

x0(t) = A cos(ϕ + ωt), p0(t) = mωA sin(ϕ + ωt)



Summary: operator methods

Operator methods provide a powerful formalism in which we may
bypass potentially complex coordinate representations of
wavefunctions.

Operator methods allow us to expose the symmetry content of
quantum systems – providing classification of degenerate
submanifolds and multiplets.

Operator methods can provide insight into dynamical properties of
quantum systems without having to resolve eigenstates.

Quantum harmonic oscillator provides example of
“complementarity” – states of oscillator can be interpreted as a
confined single particle problem or as a system of fictitious
non-interacting quantum particles.

This last point is subtle but the implications are very far-reaching!
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