Lecture 2

Quantum mechanics in one dimension

Quantum mechanics in one dimension

Schrödinger equation for non-relativistic quantum particle:

$$i\hbar\partial_t\Psi(\mathbf{r},t)=\hat{H}\Psi(\mathbf{r},t)$$

where
$$\hat{H} = -\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r})$$
 denotes quantum Hamiltonian.

- To acquire intuition into general properties, we will review some simple and familiar(?) applications to one-dimensional systems.
- Divide consideration between potentials, V(x), which leave particle free (i.e. unbound), and those that bind particle.

Quantum mechanics in 1d: Outline

- Unbound states
 - Free particle
 - Potential step
 - Potential barrier
 - Rectangular potential well
- Bound states
 - Rectangular potential well (continued)
 - δ -function potential
- Beyond local potentials
 - Kronig-Penney model of a crystal
 - Anderson localization

Unbound particles: free particle

$$i\hbar\partial_t\Psi(x,t)=-rac{\hbar^2\partial_x^2}{2m}\Psi(x,t)$$

• For V = 0 Schrödinger equation describes travelling waves.

$$\Psi(x,t) = A e^{i(kx-\omega t)}, \qquad E(k) = \hbar\omega(k) = \frac{\hbar^2 k^2}{2m}$$

where $k=\frac{2\pi}{\lambda}$ with λ the wavelength; momentum $p=\hbar k=\frac{h}{\lambda}$.

• Spectrum is continuous, semi-infinite and, apart from k=0, has two-fold degeneracy (right and left moving particles).

Unbound particles: free particle

$$i\hbar\partial_t\Psi(x,t)=-rac{\hbar^2\partial_x^2}{2m}\Psi(x,t)$$

$$\Psi(x,t)=A\,e^{i(kx-\omega t)}$$

$$\Psi(x,t) = A e^{i(kx - \omega t)}$$

- For infinite system, it makes no sense to fix wave function amplitude, A, by normalization of total probability.
- Instead, fix particle flux: $j = -\frac{\hbar}{2m} (i \Psi^* \partial_x \Psi + \text{c.c.})$

$$j = |A|^2 \frac{\hbar k}{m} = |A|^2 \frac{p}{m}$$

Note that definition of j follows from continuity relation,

$$\partial_t |\Psi|^2 = -\nabla \cdot \mathbf{j}$$

Preparing a wave packet

 To prepare a localized wave packet, we can superpose components of different wave number (cf. Fourier expansion),

$$\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(k) e^{ikx} dk$$

where Fourier elements set by

$$\psi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x) e^{-ikx} dx.$$

• Normalization of $\psi(k)$ follows from that of $\psi(x)$:

$$\int_{-\infty}^{\infty} \psi^*(k)\psi(k)dk = \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx = 1$$

• Both $|\psi(x)|^2 dx$ and $|\psi(k)|^2 dk$ represent probabilities densities.

Preparing a wave packet: example

The Fourier transform of a normalized Gaussian wave packet,

$$\psi(x) = \left(\frac{1}{2\pi\alpha}\right)^{1/4} e^{ik_0x} e^{-\frac{x^2}{4\alpha}}.$$

(moving at velocity $v = \hbar k_0/m$) is also a Gaussian,

$$\psi(k) = \left(\frac{2\alpha}{\pi}\right)^{1/4} e^{-\alpha(k-k_0)^2},$$

• Although we can localize a wave packet to a region of space, this has been at the expense of having some width in k.

Preparing a wave packet: example

For the Gaussian wave packet,

$$\Delta x = \left\langle \left[x - \langle x \rangle \right]^2 \right\rangle^{1/2} \equiv \left[\langle x^2 \rangle - \langle x \rangle^2 \rangle \right]^{1/2} = \sqrt{\alpha}, \qquad \Delta k = \frac{1}{\sqrt{4\alpha}}$$

- i.e. $\Delta x \, \Delta k = \frac{1}{2}$, constant.
- In fact, as we will see in the next lecture, the Gaussian wavepacket has minimum uncertainty,

$$\Delta p \, \Delta x = \frac{\hbar}{2}$$

• Stationary form of Schrödinger equation, $\Psi(x,t)=e^{-iEt/\hbar}\psi(x)$:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + V(x)\right] \psi(x) = E\psi(x)$$

- As a linear second order differential equation, we must specify boundary conditions on both ψ and its derivative, $\partial_{\times}\psi$.
- As $|\psi(x)|^2$ represents a probablility density, it must be everywhere finite $\Rightarrow \psi(x)$ is also finite.
- Since $\psi(x)$ is finite, and E and V(x) are presumed finite, so $\partial_x^2 \psi(x)$ must be finite.

- Consider beam of particles (energy E) moving from left to right incident on potential step of height V_0 at position x = 0.
- If beam has unit amplitude, reflected and transmitted (complex) amplitudes set by r and t,

$$\psi_{<}(x) = e^{ik_{<}x} + r e^{-ik_{<}x} \quad x < 0$$

$$\psi_{>}(x) = t e^{ik_{>}x} \quad x > 0$$

where $\hbar k_{<} = \sqrt{2mE}$ and $\hbar k_{>} = \sqrt{2m(E - V_0)}$.

• Applying continuity conditions on ψ and $\partial_x \psi$ at x=0,

(a)
$$1+r=t (b) ik_{<}(1-r)=ik_{>}t$$
 $\Rightarrow r=\frac{k_{<}-k_{>}}{k_{<}+k_{>}}, t=\frac{2k_{<}}{k_{<}+k_{>}}$

• For $E>V_0$, both $\hbar k_<$ and $\hbar k_>=\sqrt{2m(E-V_0)}$ are real, and

$$j_{\rm i} = rac{\hbar k_{<}}{m}, \qquad j_{
m r} = |r|^2 rac{\hbar k_{<}}{m}, \qquad j_{
m t} = |t|^2 rac{\hbar k_{>}}{m}$$

Defining reflectivity, R, and transmittivity, T,

$$R = \frac{\text{reflected flux}}{\text{incident flux}}, \qquad T = \frac{\text{transmitted flux}}{\text{incident flux}}$$

$$R = |r|^2 = \left(\frac{k_{<} - k_{>}}{k_{<} + k_{>}}\right)^2, \quad T = |t|^2 \frac{k_{>}}{k_{<}} = \frac{4k_{<}k_{>}}{(k_{<} + k_{>})^2}, \quad R + T = 1$$

• For $E < V_0$, $\hbar k_> = \sqrt{2m(E - V_0)}$ becomes pure imaginary, wavefunction, $\psi_>(x) \simeq te^{-|k_>|x}$, decays evanescently, and

$$j_{\rm i} = \frac{\hbar k_{\rm <}}{m}, \qquad j_{\rm r} = |r|^2 \frac{\hbar k_{\rm <}}{m}, \qquad j_{\rm t} = 0$$

Beam is completely reflected from barrier,

$$R = |r|^2 = \left| \frac{k_{<} - k_{>}}{k_{<} + k_{>}} \right|^2 = 1, \quad T = 0, \quad R + T = 1$$

- Transmission across a potential barrier prototype for generic quantum scattering problem dealt with later in the course.
- Problem provides platform to explore a phenomenon peculiar to quantum mechanics – quantum tunneling.

• Wavefunction parameterization:

$$\psi_1(x) = e^{ik_1x} + r e^{-ik_1x}$$
 $x \le 0$
 $\psi_2(x) = A e^{ik_2x} + B e^{-ik_2x}$ $0 \le x \le a$
 $\psi_3(x) = t e^{ik_1x}$ $a \le x$

where
$$\hbar k_1 = \sqrt{2mE}$$
 and $\hbar k_2 = \sqrt{2m(E - V_0)}$.

• Continuity conditions on ψ and $\partial_x \psi$ at x=0 and x=a,

$$\begin{cases} 1+r=A+B \\ Ae^{ik_2a}+Be^{-ik_2a}=te^{ik_1a} \end{cases}, \qquad \begin{cases} k_1(1-r)=k_2(A-B) \\ k_2(Ae^{ik_2a}-Be^{-ik_2a})=k_1te^{ik_1a} \end{cases}$$

Solving for transmission amplitude,

$$t = \frac{2k_1k_2e^{-ik_1a}}{2k_1k_2\cos(k_2a) - i(k_1^2 + k_2^2)\sin(k_2a)}$$

which translates to a transmissivity of

$$T = |t|^2 = \frac{1}{1 + \frac{1}{4} \left(\frac{k_1}{k_2} - \frac{k_2}{k_1}\right)^2 \sin^2(k_2 a)}$$

and reflectivity, R = 1 - T (particle conservation).

• For $E > V_0 > 0$, T shows oscillatory behaviour with T reaching unity when $k_2 a \equiv \frac{a}{\hbar} \sqrt{2m(E - V_0)} = n\pi$ with n integer.

• At $k_2a = n\pi$, fulfil **resonance** condition: interference eliminates altogether the reflected component of wave.

$$T = |t|^2 = \frac{1}{1 + \frac{1}{4} \left(\frac{k_1}{k_2} - \frac{k_2}{k_1}\right)^2 \sin^2(k_2 a)}$$

• For $V_0 > E > 0$, $k_2 = i\kappa_2$ turns pure imaginary, and wavefunction decays within, but penetrates, barrier region – quantum tunneling.

• For $\kappa_2 a \gg 1$ (weak tunneling), $T \simeq \frac{16k_1^2\kappa_2^2}{(k_1^2 + \kappa_2^2)^2}e^{-2\kappa_2 a}$.

Unbound particles: tunneling

- Although tunneling is a robust, if uniquely quantum, phenomenon, it is often difficult to discriminate from thermal activation.
- Experimental realization provided by Scanning Tunneling Microscope (STM)

$$T = |t|^2 = \frac{1}{1 + \frac{1}{4} \left(\frac{k_1}{k_2} - \frac{k_2}{k_1}\right)^2 \sin^2(k_2 a)}$$

- For scattering from potential well ($V_0 < 0$), while E > 0, result still applies continuum of unbound states with resonance behaviour.
- However, now we can find **bound states** of the potential well with E < 0.
- But, before exploring these bound states, let us consider the general scattering problem in one-dimension.

- Consider localized potential, V(x), subject to beam of quantum particles incident from left and right.
- Outside potential, wavefunction is plane wave with $\hbar k = \sqrt{2mE}$.
- Relation between the incoming and outgoing components of plane wave specified by scattering matrix (or S-matrix)

$$\left(egin{array}{c} C \\ B \end{array}
ight) = \left(egin{array}{cc} S_{11} & S_{12} \\ S_{21} & S_{22} \end{array}
ight) \left(egin{array}{c} A \\ D \end{array}
ight) \quad \Longrightarrow \quad \Psi_{
m out} = S\Psi_{
m in}$$

• With $j_{\text{left}} = \frac{\hbar k}{m} (|A|^2 - |B|^2)$ and $j_{\text{right}} = \frac{\hbar k}{m} (|C|^2 - |D|^2)$, particle conservation demands that $j_{\text{left}} = j_{\text{right}}$, i.e.

$$|A|^2 + |D|^2 = |B|^2 + |C|^2$$
 or $\Psi_{\rm in}^\dagger \Psi_{\rm in} = \Psi_{\rm out}^\dagger \Psi_{\rm out}$

• Then, since $\Psi_{\rm out} = S\Psi_{\rm in}$,

$$\Psi_{\mathrm{in}}^{\dagger}\Psi_{\mathrm{in}}\stackrel{!}{=}\Psi_{\mathrm{out}}^{\dagger}\Psi_{\mathrm{out}}=\Psi_{\mathrm{in}}^{\dagger}\underbrace{\mathcal{S}^{\dagger}\mathcal{S}}\Psi_{\mathrm{in}}$$

and it follows that S-matrix is **unitary**: $S^{\dagger}S = \mathbb{I}$

For matrices that are unitary, eigenvalues have unit magnitude.

Proof: For eigenvector $|v\rangle$, such that $S|v\rangle = \lambda |v\rangle$,

$$\langle v|S^{\dagger}S|v\rangle = |\lambda|^2\langle v|v\rangle = \langle v|v\rangle$$

i.e. $|\lambda|^2 = 1$, and $\lambda = e^{i\theta}$.

• S-matrix characterised by two scattering phase shifts, $e^{2i\delta_1}$ and $e^{2i\delta_2}$, (generally functions of k).

- In three dimensions, plane wave can be decomposed into superposition of incoming and outgoing spherical waves:
- If $V(\mathbf{r})$ short-ranged, scattering wavefunction takes asymptotic form,

$$e^{i\mathbf{k}\cdot\mathbf{r}} = \frac{i}{2L} \sum_{k=0}^{\infty} i^{\ell} (2\ell+1) \left[\frac{e^{-i(kr-\ell\pi/2)}}{2} - \frac{S_{\ell}(k)}{2} \frac{e^{i(kr-\ell\pi/2)}}{2} \right] P_{\ell}(\cos\theta)$$

• For a symmetric potential, V(x) = V(-x), S-matrix has the form

$$S = \left(\begin{array}{cc} t & r \\ r & t \end{array}\right)$$

where r and t are complex reflection and transmission amplitudes.

From the unitarity condition, it follows that

$$S^{\dagger}S = \mathbb{I} = \left(egin{array}{ccc} |t|^2 + |r|^2 & rt^* + r^*t \ rt^* + r^*t & |t|^2 + |r|^2 \end{array}
ight)$$

i.e.
$$rt^* + r^*t = 0$$
 and $|r|^2 + |t|^2 = 1$ (or $r^2 = -\frac{t}{t^*}(1 - |t|^2)$).

• For application to a δ -function potential, see problem set I.

Quantum mechanics in 1d: bound states

- Rectangular potential well (continued)
- $oldsymbol{0}$ δ -function potential

Bound particles: potential well

- For a potential well, we seek bound state solutions with energies lying in the range $-V_0 < E < 0$.
- Symmetry of potential \Rightarrow states separate into those symmetric and those antisymmetric under parity transformation, $x \to -x$.
- Outside well, (bound state) solutions have form

$$\psi_1(x) = Ce^{\kappa x}$$
 for $x > a$, $\hbar \kappa = \sqrt{-2mE} > 0$

In central well region, general solution of the form

$$\psi_2(x) = A\cos(kx)$$
 or $B\sin(kx)$, $\hbar k = \sqrt{2m(E + V_0)} > 0$

Bound particles: potential well

• Applied to even states, $\psi_1(x) = Ce^{-\kappa x}$, $\psi_2(x) = A\cos(kx)$, continuity of ψ and $\partial_x \psi$ implies

$$Ce^{-\kappa a} = A\cos(ka)$$

 $-\kappa Ce^{-\kappa a} = -Ak\sin(ka)$

(similarly odd).

• Quantization condition:

$$\kappa a = \begin{cases} ka \tan(ka) & \text{even} \\ -ka \cot(ka) & \text{odd} \end{cases}$$

$$\kappa a = \left(\frac{2ma^2 V_0}{\hbar^2} - (ka)^2\right)^{1/2}$$

ullet \Rightarrow at least one bound state.

Bound particles: potential well

- Uncertainty relation, $\Delta p \Delta x > h$, shows that confinement by potential well is balance between narrowing spatial extent of ψ while keeping momenta low enough not to allow escape.
- In fact, one may show (exercise!) that, in one dimension, arbitrarily weak binding always leads to development of at least one bound state.
- In higher dimension, potential has to reach critical strength to bind a particle.

Bound particles: δ -function potential

• For δ -function potential $V(x) = -aV_0\delta(x)$,

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} - aV_0 \delta(x)\right] \psi(x) = E\psi(x)$$

- (Once again) symmetry of potential shows that stationary solutions of Schrödinger equation are eigenstates of parity, $x \to -x$.
- States with odd parity have $\psi(0) = 0$, i.e. insensitive to potential.

Bound particles: δ -function potential

$$\left[-rac{\hbar^2\partial_x^2}{2m}-aV_0\delta(x)
ight]\psi(x)=E\psi(x)$$

Bound state with even parity of the form,

$$\psi(x) = A \left\{ \begin{array}{ll} e^{\kappa x} & x < 0 \\ e^{-\kappa x} & x > 0 \end{array} \right., \qquad \hbar \kappa = \sqrt{-2mE}$$

Integrating Schrödinger equation across infinitesimal interval,

$$\left|\partial_{x}\psi\right|_{+\epsilon}-\left|\partial_{x}\psi\right|_{-\epsilon}=-\frac{2maV_{0}}{\hbar^{2}}\psi(0)$$

find $\kappa=\frac{maV_0}{\hbar^2}$, leading to bound state energy $E=-\frac{ma^2V_0^2}{2\hbar^2}$

Quantum mechanics in 1d: beyond local potentials

- Kronig-Penney model of a crystal
- Anderson localization

 Kronig-Penney model provides caricature of (one-dimensional) crystal lattice potential,

$$V(x) = aV_0 \sum_{n=-\infty}^{\infty} \delta(x - na)$$

- Since potential is repulsive, all states have energy E > 0.
- Symmetry: translation by lattice spacing a, V(x + a) = V(x).
- Probability density must exhibit same translational symmetry, $|\psi(x+a)|^2 = |\psi(x)|^2$, i.e. $\psi(x+a) = e^{i\phi}\psi(x)$.

• In region (n-1)a < x < na, general solution of Schrödinger equation is plane wave like,

$$\psi_n(x) = A_n \sin[k(x - na)] + B_n \cos[k(x - na)]$$

with
$$\hbar k = \sqrt{2mE}$$

• Imposing boundary conditions on $\psi_n(x)$ and $\partial_x \psi_n(x)$ and requiring $\psi(x+a)=e^{i\phi}\psi(x)$, we can derive a constraint on allowed k values (and therefore E) similar to quantized energies for bound states.

$$\psi_n(x) = A_n \sin[k(x - na)] + B_n \cos[k(x - na)]$$

• Continuity of wavefunction, $\psi_n(na) = \psi_{n+1}(na)$, translates to

$$B_{n+1}\cos(ka) = B_n + A_{n+1}\sin(ka) \qquad (1)$$

Discontinuity in first derivative,

$$\partial_x \psi_{n+1}|_{x=na} - \partial_x \psi_n|_{na} = \frac{2maV_0}{\hbar^2} \psi_n(na)$$

leads to the condition,

$$k\left[A_{n+1}\cos(ka) + B_{n+1}\sin(ka) - A_n\right] = \frac{2maV_0}{\hbar^2}B_n$$
 (2)

• Rearranging equations (1) and (2), and using the relations $A_{n+1}=e^{i\phi}A_n$ and $B_{n+1}=e^{i\phi}B_n$, we obtain

$$\cos \phi = \cos(ka) + \frac{maV_0}{\hbar^2 k} \sin(ka)$$

Example: Naturally occuring photonic crystals

• "Band gap" phenomena apply to any wave-like motion in a periodic system including light traversing dielectric media,

e.g. photonic crystal structures in beetles and butterflies!

Band-gaps lead to perfect reflection of certain frequencies.

Anderson localization

- We have seen that even a weak potential can lead to the formation of a bound state.
- However, for such a confining potential, we expect high energy states to remain unbound.
- Curiously, and counter-intuitively, in 1d a weak extended disorder potential always leads to the exponential localization of all quantum states, no matter how high the energy!
- First theoretical insight into the mechanism of localization was achieved by Neville Mott!

Summary: Quantum mechanics in 1d

- In one-dimensional quantum mechanics, an arbitrarily weak binding potential leads to the development of at least one bound state.
- For quantum particles incident on a spatially localized potential barrier, the scattering properties are defined by a unitary S-matrix, $\psi_{\rm out} = S\psi_{\rm in} \ .$
- The scattering properties are characterised by eigenvalues of the S-matrix, $e^{2i\delta_i}$.
- For potentials in which $E < V_{\rm max}$, particle transfer across the barrier is mediated by tunneling.
- For an extended periodic potential (e.g. Kronig-Penney model), the spectrum of allow energies show "band gaps" where propagating solutions don't exist.
- For an extended random potential (however weak), all states are localized, however high is the energy!