
Lecture 22
Relativistic Quantum Mechanics



Background

Why study relativistic quantum mechanics?

1 Many experimental phenomena cannot be understood within purely
non-relativistic domain.

e.g. quantum mechanical spin, emergence of new sub-atomic
particles, etc.

2 New phenomena appear at relativistic velocities.

e.g. particle production, antiparticles, etc.

3 Aesthetically and intellectually it would be profoundly unsatisfactory
if relativity and quantum mechanics could not be united.



Background

When is a particle relativistic?

1 When velocity approaches speed of light c or, more intrinsically,
when energy is large compared to rest mass energy, mc2.

e.g. protons at CERN are accelerated to energies of ca. 300GeV
(1GeV= 109eV) much larger than rest mass energy, 0.94 GeV.

2 Photons have zero rest mass and always travel at the speed of light
– they are never non-relativistic!



Background

What new phenomena occur?

1 Particle production

e.g. electron-positron pairs by energetic γ-rays in matter.

2 Vacuum instability: If binding energy of electron

Ebind =
Z 2e4m

2!2
> 2mc2

a nucleus with initially no electrons is instantly screened by creation
of electron/positron pairs from vacuum

3 Spin: emerges naturally from relativistic formulation



Background

When does relativity intrude on QM?

1 When Ekin ∼ mc2, i.e. p ∼ mc

2 From uncertainty relation, ∆x∆p > h, this translates to a length

∆x >
h

mc
= λc

the Compton wavelength.

3 for massless particles, λc =∞, i.e. relativity always important for,
e.g., photons.



Relativistic quantum mechanics: outline

1 Special relativity (revision and notation)

2 Klein-Gordon equation

3 Dirac equation

4 Quantum mechanical spin

5 Solutions of the Dirac equation

6 Relativistic quantum field theories

7 Recovery of non-relativistic limit



Special relativity (revision and notation)

Space-time is specified by a 4-vector

A contravariant 4-vector

x = (xµ) ≡ (x0, x1, x2, x3) ≡ (ct, x)

transformed into covariant 4-vector xµ = gµνxν by Minkowskii
metric

(gµν) = (gµν) =





1
−1

−1
−1



 , gµνgνλ = gµ
λ ≡ δµ

λ,

Scalar product: x · y = xµyµ = xµyνgµν = xµyµ



Special relativity (revision and notation)

Lorentz group: consists of linear transformations, Λ, preserving
x · y , i.e. for xµ %→ x ′µ = Λµ

νxν = x · y

x ′ · y ′ = gµνx ′
µ
y ′

ν
= gµνΛµ

αΛν
β︸ ︷︷ ︸

= gαβ

xαyβ = gαβxαyβ

e.g. Lorentz transformation along x1

Λµ
ν =





γ −γv/c
−γv/c γ

1 0
0 1



 , γ =
1

(1− v2/c2)1/2
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Special relativity (revision and notation)

4-vectors classified as time-like or space-like

x2 = (ct)2 − x2

1 forward time-like: x2 > 0, x0 > 0

2 backward time-like: x2 > 0, x0 < 0

3 space-like: x2 < 0



Special relativity (revision and notation)

Lorentz group splits up into four components:

1 Every LT maps time-like vectors (x2 > 0) into time-like vectors

2 Orthochronous transformations Λ0
0 > 0, preserve

forward/backward sign

3 Proper: det Λ = 1 (as opposed to −1)

4 Group of proper orthochronous transformation: L↑
+ – subgroup

of Lorentz group – excludes time-reversal and parity

T =





−1
1

1
1



 , P =





1
−1

−1
−1





5 Remaining components of group generated by

L↓
− = TL↑

+, L↑
− = PL↑

+, L↓
+ = TPL↑

+.
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Special relativity (revision and notation)

1 Special relativity requires theories to be invariant under LT or, more
generally, Poincaré transformations: xµ → Λµ

νxν + aµ

2 Generators of proper orthochronous transformations, Λ ∈ L↑
+, can

be reached by infinitesimal transformations

Λµ
ν = δµ

ν + ωµ
ν , ωµ

ν ( 1

gµνΛµ
αΛν

β = gαβ + ωαβ + ωβα + O(ω2)
!
= gαβ

i.e. ωαβ = −ωβα, ωαβ has six independent components

L↑
+ has six independent generators: three rotations and three boosts

3 covariant and contravariant derivative, chosen s.t. ∂µxµ = 1

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇

)
, ∂µ =

∂

∂xµ
=

(
1

c

∂

∂t
,−∇

)
.

4 d’Alembertian operator: ∂2 = ∂µ∂µ =
1

c2

∂2

∂t2
−∇2
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Klein-Gordon equation



Klein-Gordon equation

How to make wave equation relativistic?

According to canonical quantization procedure in NRQM:

p̂ = −i!∇, Ê = i!∂t , i.e. pµ ≡ (E/c ,p) %→ p̂µ

transforms as a 4-vector under LT

What if we apply quantization procedure to energy?

pµpµ = (E/c)2 − p2 = m2c2, m − rest mass

E (p) = +
(
m2c4 + p2c2

)1/2 %−→ i!∂tψ =
[
m2c4 − !2c2∇2

]1/2
ψ

Meaning of square root? Taylor expansion:

i!∂tψ = mc2ψ − !2∇2

2m
ψ − !4(∇2)2

8m3c2
ψ + · · ·

i.e. time-evolution of ψ specified by infinite number of boundary
conditions %→ non-locality, and space/time asymmetry – suggests
that this equation is a poor starting point...
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Klein-Gordon equation

Alternatively, apply quantization to energy-momentum invariant:

E 2 = p2c2 + m2c4, −!2∂2
t ψ =

(
−!2c2∇2 + m2c4

)
ψ

Setting kc =
2π

λc
=

mc

! , leads to Klein-Gordon equation,

(
∂2 + k2

c

)
ψ = 0

Klein-Gordon equation is local and manifestly Lorentz covariant.

Invariance of ψ under rotations means that, if valid at all,
Klein-Gordon equation limited to spinless particles

But can |ψ|2 be interpreted as probability density?
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Klein-Gordon equation: Probabilities

Probabilities? Take lesson from non-relativistic quantum mechanics:

ψ∗

Schrodinger eqn.
︷ ︸︸ ︷(

i!∂t +
!2∇2

2m

)
ψ = 0,

c.c.︷ ︸︸ ︷

ψ

(
−i!∂t +

!2∇2

2m

)
ψ∗ = 0

i.e. ∂t |ψ|2 − i
!

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0

cf. continuity relation – conservation of probability: ∂tρ +∇ · j = 0

ρ = |ψ|2, j = −i
!

2m
(ψ∗∇ψ − ψ∇ψ∗)
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Klein-Gordon equation: Probabilities

Applied to KG equation: ψ∗
(

1

c2
∂2

t −∇2 + k2
c

)
ψ = 0

!2∂t (ψ∗∂tψ − ψ∂tψ
∗)− !2c2∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0

cf. continuity relation – conservation of probability: ∂tρ +∇ · j = 0.

ρ = i
!

2mc2
(ψ∗∂tψ − ψ∂tψ

∗) , j = −i
!

2m
(ψ∗∇ψ − ψ∇ψ∗)

With 4-current jµ = (ρc , j), continuity relation ∂µjµ = 0.

i.e. Klein-Gordon density is the time-like component of a 4-vector.
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Klein-Gordon equation: viability?

But is Klein-Gordon equation acceptable?

Density ρ = i
!

2mc2
(ψ∗∂tψ − ψ∂tψ

∗) is not positive definite.

Klein-Gordon equation is not first order in time derivative
therefore we must specify ψ and ∂tψ everywhere at t = 0.

Klein-Gordon equation has both positive and negative energy
solutions.

Could we just reject negative energy solutions? Inconsistent – local
interactions can scatter between positive and negative energy states

(
∂2 + k2

c

)
ψ = F (ψ) self − interaction

[
(∂ + iqA/!c)2 + k2

c

]
ψ = 0 interaction with EM field
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Relativistic quantum mechanics: summary

When the kinetic energy of particles become comparable to rest
mass energy, p ∼ mc particles enter regime where relativity intrudes
on quantum mechanics.

At these energy scales qualitatively new phenomena emerge:

e.g. particle production, existence of antiparticles, etc.

By applying canonical quantization procedure to energy-momentum
invariant, we are led to the Klein-Gordon equation,

(∂2 + k2
c )ψ = 0

where λ =
λc

2π
=

!
mc

denotes the Compton wavelength.

However, the Klein-Gordon equation does not lead to a positive
definite probability density and admits positive and negative energy
solutions – these features led to it being abandoned as a viable
candidate for a relativistic quantum mechanical theory.
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Relativistic Quantum Mechanics:

Dirac equation



Relativistic quantum mechanics: outline

1 Special relativity (revision and notation)

2 Klein-Gordon equation
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4 Quantum mechanical spin

5 Solutions of the Dirac equation

6 Relativistic quantum field theories

7 Recovery of non-relativistic limit



Dirac Equation

Dirac placed emphasis on two constraints:

1 Relativistic equation must be first order in time derivative (and
therefore proportional to ∂µ = (∂t/c ,∇)).

2 Elements of wavefunction must obey Klein-Gordon equation.

Dirac’s approach was to try to factorize Klein-Gordon equation:
(∂2 + m2)ψ = 0 (where henceforth we set ! = c = 1)

(−iγν∂ν −m)(iγµ∂µ −m)ψ = 0

i.e. with p̂µ = i∂µ

(γµp̂µ −m) ψ = 0
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Dirac Equation

(γµp̂µ −m) ψ = 0

Equation is acceptable if:

1 ψ satisfies Klein-Gordon equation, (∂2 + m2)ψ = 0;
2 there must exist 4-vector current density which is conserved

and whose time-like component is a positive density;
3 ψ does not have to satisfy any auxiliary boundary conditions.

From condition (1) we require (assuming [γµ, p̂ν ] = 0)

0 = (γν p̂ν + m) (γµp̂µ −m) ψ = ( γνγµ

︸ ︷︷ ︸
(γνγµ+γµγν)/2

p̂ν p̂µ −m2)ψ

=

(
1

2
{γν , γµ}p̂ν p̂µ −m2

)
ψ = (gνµp̂ν p̂µ −m2)ψ = (p2 −m2)ψ

i.e. obeys Klein-Gordon if {γµ, γν} ≡ γµγν + γνγµ = 2gνµ

⇒ γµ, and therefore ψ, can not be scalar.
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Dirac Equation: Hamiltonian formulation

(γµp̂µ −m) ψ = 0, {γµ, γν} = 2gνµ

To bring Dirac equation to the form i∂tψ = Ĥψ, consider

γ0(γµp̂µ −m)ψ = γ0(γ0p̂0 − γ · p̂−m)ψ = 0

Since (γ0)2 ≡ 1
2{γ

0, γ0} = g00 = I,

γ0(γµp̂µ −m)ψ = i∂tψ − γ0γ · p̂ψ −mγ0ψ = 0

i.e. Dirac equation can be written as i∂tψ = Ĥψ with

Ĥ = α · p̂ + βm, α = γ0γ, β = γ0

Using identity {γµ, γν} = 2gµν ,

β2 = I, {α, β} = 0, {αi , αj} = 2δij (exercise)
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Ĥ = α · p̂ + βm, α = γ0γ, β = γ0

Using identity {γµ, γν} = 2gµν ,

β2 = I, {α, β} = 0, {αi , αj} = 2δij (exercise)



Dirac Equation: Hamiltonian formulation

(γµp̂µ −m) ψ = 0, {γµ, γν} = 2gνµ

To bring Dirac equation to the form i∂tψ = Ĥψ, consider
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Dirac Equation: γ matrices

i∂tψ = Ĥψ, Ĥ = α · p̂ + βm, α = γ0γ, β = γ0

Hermiticity of Ĥ assured if α† = α, and β† = β, i.e.

(γ0γ)† ≡ γ†γ0† = γ0γ, and γ0† = γ0

So we obtain the defining properties of Dirac γ matrices,

γµ† = γ0γµγ0, {γµ, γν} = 2gµν

Since space-time is four-dimensional, γ must be of dimension at
least 4× 4 – ψ has at least four components.

However, 4-component wavefunction ψ does not transform as
4-vector – it is known as a spinor (or bispinor).
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Dirac Equation: conjugation, density and current

(γµp̂µ −m) ψ = 0,

Applying complex conjugation to Dirac equation

[(γµp̂µ −m)ψ]† = ψ†
(
−iγ†

µ←−
∂ µ −m

)
= 0, ψ†←−∂ µ ≡ (∂µψ)†

Since (γ0)2 = I, we can write,

0 = ψ†γ0

︸ ︷︷ ︸
ψ̄

(−i γ0γ†
µ

︸ ︷︷ ︸
γµγ0

←−
∂ µ −mγ0) = −ψ̄

(
iγµ←−∂ µ + m

)
γ0

Introducing Feynman ‘slash’ notation -a ≡ γµaµ, obtain conjugate
form of Dirac equation

ψ̄(i
←−
-∂ + m) = 0
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Dirac Equation: conjugation, density and current

ψ̄(i
←−
-∂ + m) = 0, -∂ = γµ∂µ

The, combining the Dirac equation, (i
−→
-∂ −m)ψ = 0 with its

conjugate, we have ψ̄(i
←−
-∂ + m)ψ = 0 = −ψ̄(i

−→
-∂ −m)ψ, i.e.

ψ̄
(←−
-∂ +

−→
-∂

)
ψ = ∂µ(ψ̄γµψ︸ ︷︷ ︸

jµ

) = 0

We therefore identify jµ = (ρ, j) = (ψ†ψ,ψ†αψ) as the 4-current.

So, in contrast to the Klein-Gordon equation, the density
ρ = j0 = ψ†ψ is, as required, positive definite.

Motivated by this triumph(!), let us now consider what constraints
relativistic covariance imposes and what consequences follow.
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Relativistic covariance

If ψ(x) obeys the Dirac equation its counterpart ψ′(x ′) in a LT
frame x ′ν = Λν

µxµ, must obey the Dirac equation,
(

iγν ∂

∂x ′ν
−m

)
ψ′(x ′) = 0

If observer can reconstruct ψ′(x ′) from ψ(x) there must exist a
local (linear) transformation,

ψ′(x ′) = S(Λ)ψ(x)

where S(Λ) is a 4× 4 matrix, i.e.
(

iγµ ∂xν

∂x ′µ
∂

∂xν
−m

)
S(Λ)ψ(x) = 0

Compatible with Dirac equation if S(Λ)γνS−1(Λ) = (Λ−1)ν
µγµ
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Relativistic covariance

ψ′(x ′) = S(Λ)ψ(x), S(Λ)γνS−1(Λ) = (Λ−1)ν
µγµ

But how do we determine S(Λ)? For an infinitesimal (i.e. proper
orthochronous) LT

Λµ
ν = δµ

ν + ωµ
ν , (Λ−1)µ

ν = δµ
ν − ωµ

ν + · · ·

(recall that generators, ωµν = −ωνµ, are antisymmetric).

This allows us to form the Taylor expansion of S(Λ):

S(Λ) ≡ S(I + ω) = S(I)︸︷︷︸
I

+

(
∂S

∂ω

)

µν︸ ︷︷ ︸

− i

4
Σµν

ωµν + O(ω2)

where Σµν = −Σνµ (follows from antisymmetry of ω) is a matrix in
bispinor space, and ωµν is a number.
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Relativistic covariance

S(Λ) = I− i

4
Σµνωµν + · · · , S−1(Λ) = I +

i

4
Σµνωµν + · · ·

Requiring that S(Λ)γνS−1(Λ) = (Λ−1)ν
µγµ, a little bit of algebra

(see problem set/handout) shows that matrices Σµν must obey the
relation,

[Σµη, γν ] = 2i
(
γµδν

η − γηδν
µ

)

This equation is satisfied by (exercise)

Σαβ =
i

2
[γα, γβ]

In summary, under set of infinitesimal Lorentz transformation,
x ′ = Λx , where Λ = I + ω, relativistic covariance of Dirac equation
demands that wavefunction transforms as ψ′(x ′) = S(Λ)ψ where
S(Λ) = I− i

4Σµνωµν + O(ω2) and Σµν = i
2 [γµ, γν ].
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Relativistic covariance

S(Λ) = I− i

4
Σµνωµν + · · ·

“Finite” transformations (i.e. non-infinitesimal) generated by

S(Λ) = exp

[
− i

4
Σαβωαβ

]
, ωαβ = Λαβ − gαβ

1 Transformations involving unitary matrices S(Λ), where
S†S = I translate to spatial rotations.

2 Transformations involving Hermitian matrices S(Λ), where
S† = S translate to Lorentz boosts.

So what?? What are the consequences of relativistic covariance?
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Angular momentum and spin

For infinitesimal anticlockwise rotation by angle θ
around n

x′ . x + θn× x ≡ Λ x, Λ . I + θ n×︸ ︷︷ ︸
ω

i.e. ωij = θ εikjnk , ω0i = ωi0 = 0.

In non-relativistic quantum mechanics:

ψ′(x′) = ψ(x) = ψ(Λ−1x′) . ψ((I− ω) · x′)
. ψ(x′)− ω · x′ ·∇ψ(x′) + · · ·
= ψ(x′)− iθn× x′ · (−i∇)ψ(x′) + · · ·
= (1− iθn · L̂)ψ(x′) + · · · ≡ Ûψ(x′)

cf. generator of rotations: Û = e−iθn·L̂.
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Angular momentum and spin

But relativistic covariance of Dirac equation demands
that ψ′(x ′) = S(Λ)ψ(x)

With ωij = θ εijknk , ω0i = ωi0 = 0,

S(Λ) . I− i

4
Σαβωαβ = I− i

4
Σijεikjnkθ

In Dirac/Pauli representation σk – Pauli spin matrices

Σij =
i

2
[γi , γj ] = εijk

(
σk 0
0 σk

)
, γi =

(
0 σi

−σi 0

)

i.e. S(Λ) = I− iθn · S where

Sk =
1

4
εijkΣij =

1

4
εijkεijl︸ ︷︷ ︸

δjjδkl − δjlδjk = 2δkl

σl ⊗ I =
1

2

(
σk 0
0 σk

)
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Angular momentum and spin

Altogether, combining components of transformation,

ψ′(x ′) =

I− iθn · S︷︸︸︷
S(Λ) ψ(x)︸︷︷︸
(I− iθn · L̂)ψ(x ′)

. (I− iθn · (S + L̂))ψ(x ′)

we obtain

ψ′(x ′) = S(Λ)ψ(Λ−1x ′) . (1− iθn · Ĵ)ψ(x ′)

where Ĵ = L̂ + S represents total angular momentum.

Intrinsic contribution to angular momentum known as spin.

[Si ,Sj ] = iεijkSk , (Si )
2 =

1

4
for each i

Dirac equation is relativistic wave equation for spin 1/2 particles.
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for each i

Dirac equation is relativistic wave equation for spin 1/2 particles.



Parity

So far we have only dealt with the subgroup of proper
orthochronous Lorentz transformations, L↑

+.

Taking into account Parity, Pµν =





1
−1

−1
−1





relativistic covariance demands S(Λ)γνS−1(Λ) = (Λ−1)ν
µγµ

S−1(P)γ0S(P) = γ0, S−1(P)γ iS(P) = −γ i

achieved if S(P) = γ0e iφ, where φ denotes arbitrary phase.

But since P2 = I, e iφ = 1 or −1

ψ′(x ′) = S(P)ψ(Λ−1x ′) = ηγ0ψ(Px ′)

where η = ±1 — intrinsic parity of the particle
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Lecture 24

Relativistic Quantum Mechanics:
Solutions of the Dirac equation



Relativistic quantum mechanics: outline

1 Special relativity (revision and notation)

2 Klein-Gordon equation

3 Dirac equation

4 Quantum mechanical spin

5 Solutions of the Dirac equation

6 Relativistic quantum field theories

7 Recovery of non-relativistic limit



Free particle solutions of Dirac Equation

(-p −m)ψ = 0, -p = iγµ∂µ

Free particle solution of Dirac equation is a plane wave:

ψ(x) = e−ip·xu(p) = e−iEt+ip·xu(p)

where u(p) is the bispinor amplitude.

Since components of ψ obey KG equation, (pµpµ −m2)ψ = 0,

(p0)
2 − p2 −m2 = 0, E ≡ p0 = ±

√
p2 + m2

So, once again, as with Klein-Gordon equation we encounter
positive and negative energy solutions!!
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Free particle solutions of Dirac Equation

ψ(x) = e−ip·xu(p) = e−iEt+ip·xu(p)

What about bispinor amplitude, u(p)?

In Dirac/Pauli representation,

γ0 =

(
I2

−I2

)
, γ =

(
σ

−σ

)

the components of the bispinor obeys the condition,

(γµpµ −m)u(p) =

(
p0 −m −σ · p
σ · p −p0 −m

)
u(p) = 0

i.e. bispinor elements:

u(p) =

(
ξ
η

)
,

{
(p0 −m)ξ = σ · pη
σ · pξ = (p0 + m)η



Free particle solutions of the Dirac Equation

u(p) =

(
ξ
η

)
,

{
(p0 −m)ξ = σ · pη
σ · pξ = (p0 + m)η

Consistent when (p0)2 = p2 + m2 and η =
σ · p

p0 + m
ξ

u(r)(p) = N(p)

(
χ(r)

σ · p
p0 + m

χ(r)

)

where χ(r) are a pair of orthogonal two-component vectors with
index r = 1, 2, and N(p) is normalization.

Helicity: Eigenvalue of spin projected along direction of motion

1

2
σ · p

|p|χ
(±) ≡ S · p

|p|χ
(±) = ±1

2
χ(±)

e.g. if p = p ê3, χ(+) = (1, 0), χ(−) = (0, 1)
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Free particle solutions of the Dirac Equation

So, general positive energy plane wave solution written in eigenbasis
of helicity,

ψ(±)
p (x) = N(p)e−ip·x




χ(±)

± |p|
p0 + m

χ(±)





But how to deal with the problem of negative energy states? Must
we reject the Dirac as well as the Klein-Gordon equation?

In fact, the existence of negative energy states provided the key that
led to the discovery of antiparticles.

To understand why, let us consider the problem of scattering from a
potential step...
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Klein paradox and antiparticles

Consider plane wave, unit amplitude, energy E , momentum p ê3,
and spin ↑ (χ = (1, 0)) incident on potential barrier V (x) = V θ(x3)

ψin = e−ip0t+ipx3

(
χ(+)

p

p0 + m
χ(+)

)

At barrier, spin is conserved, component r is reflected (E , −p ê3),
and component t is transmitted (E ′ = E − V , p′ ê3)

From Klein-Gordon condition (energy-momentum invariant):
p2

0 ≡ E 2 = p2 + m2 and p′0
2 ≡ E ′2 = p′2 + m2
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Klein paradox and antiparticles

ψin = e−ip0t+ipx3

(
χ(+)

p

p0 + m
χ(+)

)

Boundary conditions: since Dirac equation is first order, require only
continuity of ψ at interface (cf. Schrodinger eqn.)




1
0

p/(E + m)
0



 + r





1
0

−p/(E + m)
0



 = t





1
0

p′/(E ′ + m)
0





(helicity conserved in reflection)

Equating (generically complex) coefficients:

1 + r = t,
p

E + m
(1− r) =

p′

E ′ + m
t



Klein paradox and antiparticles

1 + r = t (1),
p

E + m
(1− r) =

p′

E ′ + m
t (2)

From (2), 1− r = ζt where

ζ =
p′

p

(E + m)

(E ′ + m)

Together with (1), (1 + ζ)t = 2

t =
2

1 + ζ
,

1 + r

1− r
=

1

ζ
, r =

1− ζ

1 + ζ

Interpret solution by studying vector current: j = ψ̄γψ = ψ†αψ

j3 = ψ†α3ψ, α3 = γ0γ3 =

(
σ3

σ3

)



Klein paradox and antiparticles

j3 = ψ†
(

σ3

σ3

)
ψ

(Up to overall normalization) the incident, transmitted and reflected
currents given by,

j (i)3 =
(

1 0 p
E+m 0

) (
0 σ3

σ3 0

)




1
0
p

E+m
0



 =
2p

E + m
,

j (t)3 =
1

E ′ + m
(p′ + p′∗)|t|2, j (r)3 = − 2p

E + m
|r |2

where we note that, depending on height of the potential, p′ may
be complex (cf. NRQM).



Klein paradox and antiparticles

ζ =
p′

p

E + m

E ′ + m

Therefore, ratio of reflected/transmitted to incident currents,

j (r)3

j (i)3

= −|r |2 = −
∣∣∣∣
1− ζ

1 + ζ

∣∣∣∣
2

j (t)3

j (i)3

= |t|2 (p′ + p′∗)

2p

E + m

E ′ + m
=

4

|1 + ζ|2
1

2
(ζ + ζ∗) =

2(ζ + ζ∗)

|1 + ζ|2

From which we can confirm current conservation, j (i)3 = j (r)3 + j (t)3 :

1 +
j (r)3

j (i)3

=
|1 + ζ|2 − |1− ζ|2

|1 + ζ|2 =
2(ζ + ζ∗)

|1 + ζ|2 =
j (t)3

j (i)3



Klein paradox and antiparticles

j (r)3

j (i)3

= −|r |2 = −
∣∣∣∣
1− ζ

1 + ζ

∣∣∣∣
2

Three distinct regimes in energy:

1 E ′ ≡ (E − V ) > m:

i.e. p′2 = E ′2 −m2 > 0, p′ > 0 (beam propagates to right).

Therefore ζ ≡ p′

p

E + m

E ′ + m
> 0 and real; |j (r)3 | < |j (i)3 | as expected,

i.e. for E ′ > m, as in non-relativistic quantum mechanics, some of
the beam is reflected and some transmitted.



Klein paradox and antiparticles

j (r)3

j (i)3

= −|r |2 = −
∣∣∣∣
1− ζ

1 + ζ

∣∣∣∣
2

Three distinct regimes in energy:

2 m > E ′ > −m:

i.e. p′2 = E ′2 −m2 < 0, p′ pure imaginary.

Particles have insufficient energy to surmount potential barrier.

Therefore, ζ ≡ p′

p

E + m

E ′ + m
pure imaginary, |j (r)3 | = |j (i)3 |.

i.e. all beam is reflected; ψ has evanescant decays on the right hand
side of the barrier (cf. NRQM).



Klein paradox and antiparticles

j (r)3

j (i)3

= −|r |2 = −
∣∣∣∣
1− ζ

1 + ζ

∣∣∣∣
2

Three distinct regimes in energy:

3 E ′ = E − V < −m:

i.e. step height V > E +m ≥ 2m larger than twice rest mass energy.

p′2 = E ′2 −m2 > 0, p′ > 0 (beam propagates to the right)

But ζ =
p′

p

(E + m)

(E ′ + m)
< 0 real!

Therefore |j (r)3 | > |j (i)3 |!! – more current is reflected than is incident
– Klein Paradox (also holds for Klein-Gordon equation).

But particle current conserved – it is as though an additional beam
of particles were incident from right.



Klein paradox and antiparticles

Physical Interpretation:

“Particles” from right should be interpreted as antiparticles
propagating to right

i.e. incoming beam stimulates emission of particle/antiparticle pairs
at barrier.

Particles combine with reflected to beam to create current to left
that is larger than incident current while antiparticles propagate to
the right in the barrier region.



Klein paradox and antiparticles

Negative energy states

Existence of antiparticles suggests redefinition of plane wave states
with E < 0: Dirac particles are, in fact, fermions and Pauli
exclusion applies.

Dirac vacuum corresponds to infinite sea of filled negative energy
states.

When V > 2m the potential step is in a precarious situation: It
becomes energetically favourable to create particle/antiparticle pairs
– cf. vacuum instability.

Incident beam stimulates excitation of a positive energy particle
from negative energy sea leaving behind positive energy “hole” – an
antiparticle.



Klein paradox and antiparticles

cf. creation of electron-positron pair
vacuum due to high energy photon.



Klein paradox and antiparticles

Therefore, for E < 0, we should set p0 = +
√

p2 + m2 and
ψ(x) = e+ip·xv(p) where (-p + m)v(p) = 0 (N.B. “+”)

v (r)(p) = N(p)

( σ · p
p0 + m

χ(r)

χ(r)

)

But Dirac equation was constructed on premace that ψ associated
with “single particle” (cf. Schrödinger equation). However, for
V > 2m, theory describes creation of particle/antiparticle pairs.

ψ must be viewed as a quantum field capable of describing an
indefinite number of particles!!

In fact, Dirac equation must be viewed as field equation, cf. wave
equation for harmonic chain. As with chain, quantization of theory
leads to positive energy quantum particles (cf. phonons).

Allows reinstatement of Klein-Gordon theory as a relativistic theory
for scalar (spin 0 particles)...
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Quantization of Klein-Gordon field

Klein-Gordon equation abandoned as candidate for relativistic
theory on basis that (i) it admitted negative energy solutions, and
(ii) probability density was not positive definite.

But Klein paradox suggests reinterpretation of Dirac wavefunction
as a quantum field.

If φ were a classical field, Klein-Gordon equation, (∂2 −m2)φ = 0
would be associated with Lagrangian density,

L =
1

2
∂µφ∂µφ− 1

2
m2φ2

Defining canonical momentum, π(x) = ∂φ̇L = φ̇(x)

H = πφ̇− L =
1

2

[
π2 + (∇φ)2 + m2φ2

]

H is +ve definite! i.e. if quantized, only +ve energies appear.
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Quantization of Klein-Gordon field

Promoting fields to operators π %→ π̂ and φ %→ φ̂, with “equal time”
commutation relations, [φ̂(x, t), π̂(x′, t)] = iδ3(x− x′), (for m = 0,
cf. harmonic chain!)

Ĥ =

∫
d3x

[
1

2

(
π̂2 + (∇φ̂)2 + m2φ̂2

)]

Turning to Fourier space (with k0 ≡ ωk =
√

k2 + m2)

φ̂(x) =

∫
d3k

(2π)32ωk

(
a(k)e−ik·x + a†(k)e ik·x) , π̂(x) ≡ ∂0φ̂(x)

where
[
a(k), a†(k′)

]
= (2π)32ωkδ3(k− k′),

Ĥ =

∫
d3k

(2π)32ωk
ωk

[
a†(k)a(k) +

1

2

]

Bosonic operators a† and a create and annihilate relativistic scalar
(bosonic, spin 0) particles
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Quantization of Dirac field

Dirac equation associated with Lagrangian density,

L = ψ̄ (iγµ∂µ −m)ψ, i.e. ∂ψ̄L = (iγµ∂µ −m) ψ = 0

With momentum π = ∂ψ̇L = iψ̄γ0 = iψ†, Hamiltonian density

H = πψ̇ − L = ψ̄iγ0∂0ψ − L = ψ̄ (−iγ ·∇+ m) ψ

Once again, we can follow using canonical quantization procedure,
promoting fields to operators – but, in this case, one must impose
equal time anti-commutation relations,

{ψ̂α(x, t), π̂(x′, t)} ≡ ψ̂α(x, t)π̂β(x′, t) + π̂β(x, t)ψ̂α(x′, t)

= iδ3(x− x′)δαβ
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Quantization of Dirac field

Turning to Fourier space (with k0 ≡ ωk =
√

k2 + m2)

ψ(x) =
2∑

r=1

∫
d3k

(2π)32ωk

[
ar (k)u(r)(k)e−ik·x + b†r (k)v (r)(k)e ik·x

]

with equal time anti-commutation relations (hallmark of fermions!)
{
ar (k), a†s (k

′)
}

=
{
br (k), b†s (k

′)
}

= (2π)32ωkδrsδ
3(k− k′)

{
a†r (k), a†s (k

′)
}

=
{
b†r (k), b†s (k

′)
}

= 0

which accommdates Pauli exclusion a†r (k)2 = 0(!), obtain

Ĥ =
2∑

r=1

∫
d3k

(2π)32ωk
ωk

[
a†r (k)ar (k) + b†r (k)br (k)

]

Physically a(k)u(r)(k)e−ik·x annihilates +ve energy fermion particle
(helicity r), and b†(k)v (r)(k)e ik·x creates a +ve energy antiparticle.



Low energy limit of the Dirac equation

Previously, we have explored the relativistic (fine-structure)
corrections to the hydrogen atom. At the time, we alluded to these
as the leading relativistic contributions to the Dirac theory.

In the following section, we will explore how these corrections
emerge from relativistic formulation.

But first, we must consider interaction of charged particle with
electromagnetic field.

As with non-relativistic quantum mechanics, interaction of Dirac
particle of charge q (q = −e for electron) with EM field defined by
minimal substitution, pµ %−→ pµ − qAµ, where Aµ = (φ,A), i.e.

(-p − q -A−m)ψ = 0



Low energy limit of the Dirac equation

Previously, we have explored the relativistic (fine-structure)
corrections to the hydrogen atom. At the time, we alluded to these
as the leading relativistic contributions to the Dirac theory.

In the following section, we will explore how these corrections
emerge from relativistic formulation.

But first, we must consider interaction of charged particle with
electromagnetic field.

As with non-relativistic quantum mechanics, interaction of Dirac
particle of charge q (q = −e for electron) with EM field defined by
minimal substitution, pµ %−→ pµ − qAµ, where Aµ = (φ,A), i.e.

(-p − q -A−m)ψ = 0



Low energy limit of the Dirac equation

For particle moving in potential (φ,A), stationary form of Dirac
Hamiltonian given by Ĥψ = Eψ where, restoring factors of ! and c ,

Ĥ = cα · (p̂− qA) + mc2β + qφ

=

(
mc2 + qφ cσ · (p̂− qA)

cσ · (p̂− qA) −mc2 + qφ

)

To develop non-relativistic limit, consider bispinor ψT = (ψa, ψb),
where the elements obey coupled equations,

(mc2 + qφ)ψa + cσ · (p̂− qA)ψb = Eψa

cσ · (p̂− qA)ψa − (mc2 − qφ)ψb = Eψb

If we define energy shift over rest mass energy, W = E −mc2,

ψb =
1

2mc2 + W − qφ
cσ · (p̂− qA)ψa
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If we define energy shift over rest mass energy, W = E −mc2,

ψb =
1

2mc2 + W − qφ
cσ · (p̂− qA)ψa



Low energy limit of the Dirac equation

ψb =
1

2mc2 + W − qφ
cσ · (p̂− qA)ψa

In the non-relativistic limit, W ( mc2 and we can develop an
expansion in v/c . At leading order, ψb . 1

2mc2 cσ · (p̂− qA)ψa.

Substituted into first equation, obtain Pauli equation
ĤNRψa = Wψa where, defining V = qφ,

ĤNR =
1

2m
[σ · (p̂− qA)]2 + V .

Making use of Pauli matrix identity σiσj = δij + iεijkσk ,

ĤNR =
1

2m
(p̂− qA)2 − q!

2m
σ · (∇× A) + V

i.e. spin magnetic moment,

µS =
q!
2m

σ = g
q

2m
Ŝ, with gyromagnetic ratio, g = 2.



Low energy limit of the Dirac equation

ψb =
1

2mc2 + W − qφ
cσ · (p̂− qA)ψa

In the non-relativistic limit, W ( mc2 and we can develop an
expansion in v/c . At leading order, ψb . 1

2mc2 cσ · (p̂− qA)ψa.

Substituted into first equation, obtain Pauli equation
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Low energy limit of the Dirac equation

ψb =
1

2mc2 + W − V
cσ · (p̂− qA)ψa

Taking into account the leading order (in v/c) correction (with
A = 0 for simplicity), we have

ψb .
1

2mc2

(
1− W − V

2mc2

)
cσ · p̂ψa

Then substituted into the second bispinor equation (and taking into
account correction from normalization) we find

Ĥ . p̂2

2m
+ V − p̂4

8m3c2
︸ ︷︷ ︸

k.e.

+
1

2m2c2
S · (∇V )× p̂

︸ ︷︷ ︸
spin−orbit coupling

+
!2

8m2c2
(∇2V )

︸ ︷︷ ︸
Darwin term



Low energy limit of the Dirac equation

ψb =
1

2mc2 + W − V
cσ · (p̂− qA)ψa

Taking into account the leading order (in v/c) correction (with
A = 0 for simplicity), we have

ψb .
1

2mc2

(
1− W − V

2mc2

)
cσ · p̂ψa

Then substituted into the second bispinor equation (and taking into
account correction from normalization) we find
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Synopsis: (mostly revision) Lectures 1-4ish

1 Foundations of quantum physics:
†Historical background; wave mechanics to Schrödinger equation.

2 Quantum mechanics in one dimension:

Unbound particles: potential step, barriers and tunneling; bound
states: rectangular well, δ-function well; †Kronig-Penney model .

3 Operator methods:

Uncertainty principle; time evolution operator; Ehrenfest’s theorem;
†symmetries in quantum mechanics; Heisenberg representation;
quantum harmonic oscillator; †coherent states.

4 Quantum mechanics in more than one dimension:

Rigid rotor; angular momentum; raising and lowering operators;
representations; central potential; atomic hydrogen.

† non-examinable *in this course*.



Synopsis: Lectures 5-10

5 Charged particle in an electromagnetic field:

Classical and quantum mechanics of particle in a field; normal
Zeeman effect; gauge invariance and the Aharonov-Bohm effect;
Landau levels, †Quantum Hall effect.

6 Spin:

Stern-Gerlach experiment; spinors, spin operators and Pauli
matrices; spin precession in a magnetic field; parametric resonance;
addition of angular momenta.

7 Time-independent perturbation theory:

Perturbation series; first and second order expansion; degenerate
perturbation theory; Stark effect; nearly free electron model.

8 Variational and WKB method:

Variational method: ground state energy and eigenfunctions;
application to helium; †Semiclassics and the WKB method.

† non-examinable *in this course*.



Synopsis: Lectures 11-15

9 Identical particles:

Particle indistinguishability and quantum statistics; space and spin
wavefunctions; consequences of particle statistics; ideal quantum
gases; †degeneracy pressure in neutron stars; Bose-Einstein
condensation in ultracold atomic gases.

10 Atomic structure:

Relativistic corrections – spin-orbit coupling; Darwin term; Lamb
shift; hyperfine structure. Multi-electron atoms; Helium; Hartree
approximation †and beyond; Hund’s rule; periodic table; LS and jj
coupling schemes; atomic spectra; Zeeman effect.

11 Molecular structure:

Born-Oppenheimer approximation; H+
2 ion; H2 molecule; ionic and

covalent bonding; LCAO method; from molecules to solids;
†application of LCAO method to graphene; molecular spectra;
rotation and vibrational transitions.

† non-examinable *in this course*.



Synopsis: Lectures 16-19

12 Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic
chain; quantization of atomic chain; phonons; classical theory of the
EM field; †waveguide; quantization of the EM field and photons.

13 Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden
approximation; harmonic perturbations and Fermi’s Golden rule.

14 Radiative transitions:

Light-matter interaction; spontaneous emission; absorption and
stimulated emission; Einstein’s A and B coefficents; dipole
approximation; selection rules; lasers.

† non-examinable *in this course*.



Synopsis: Lectures 20-24

15 Scattering theory
†Elastic and inelastic scattering; †method of particle waves; †Born
series expansion; Born approximation from Fermi’s Golden rule;
†scattering of identical particles.

16 Relativistic quantum mechanics:
†Klein-Gordon equation; †Dirac equation; †relativistic covariance and
spin; †free relativistic particles and the Klein paradox; †antiparticles;
†coupling to EM field: †minimal coupling and the connection to
non-relativistic quantum mechanics; †field quantization.

† non-examinable *in this course*.


