
Lecture 20

Scattering theory



Scattering theory

Scattering theory is important as it underpins one of the most ubiquitous
tools in physics.

Almost everything we know about nuclear and atomic physics has
been discovered by scattering experiments,

e.g. Rutherford’s discovery of the nucleus, the discovery of
sub-atomic particles (such as quarks), etc.

In low energy physics, scattering phenomena provide the standard
tool to explore solid state systems,

e.g. neutron, electron, x-ray scattering, etc.

As a general topic, it therefore remains central to any advanced
course on quantum mechanics.

In these two lectures, we will focus on the general methodology
leaving applications to subsequent courses.



Scattering theory: outline

Notations and definitions; lessons from classical scattering

Low energy scattering: method of partial waves

High energy scattering: Born perturbation series expansion

Scattering by identical particles

Bragg scattering.



Scattering phenomena: background

In an idealized scattering experiment, a sharp beam of particles (A)
of definite momentum k are scattered from a localized target (B).

As a result of collision, several outcomes are possible:

A + B −→






A + B elastic
A + B∗
A + B + C

}
inelastic

C absorption

In high energy and nuclear physics, we are usually interested in deep
inelastic processes.

To keep our discussion simple, we will focus on elastic processes in
which both the energy and particle number are conserved –
although many of the concepts that we will develop are general.



Scattering phenomena: differential cross section

Both classical and quantum mechanical scattering phenomena are
characterized by the scattering cross section, σ.

Consider a collision experiment in which a detector measures the
number of particles per unit time, N dΩ, scattered into an element
of solid angle dΩ in direction (θ, φ).

This number is proportional to the incident flux of particles, jI
defined as the number of particles per unit time crossing a unit area
normal to direction of incidence.

Collisions are characterised by the differential cross section defined
as the ratio of the number of particles scattered into direction (θ, φ)
per unit time per unit solid angle, divided by incident flux,

dσ

dΩ
=

N

jI



Scattering phenomena: cross section

From the differential, we can obtain the total cross section by
integrating over all solid angles

σ =

∫
dσ

dΩ
dΩ =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

dσ

dΩ

The cross section, which typically depends sensitively on energy of
incoming particles, has dimensions of area and can be separated into
σelastic, σinelastic, σabs, and σtotal.

In the following, we will focus on elastic scattering where internal
energies remain constant and no further particles are created or
annihilated,

e.g. low energy scattering of neutrons from protons.

However, before turning to quantum scattering, let us consider
classical scattering theory.



Scattering phenomena: classical theory

In classical mechanics, for a central
potential, V (r), the angle of scattering is
determined by impact parameter b(θ).

The number of particles scattered per unit
time between θ and θ + dθ is equal to the
number incident particles per unit time
between b and b + db.

Therefore, for incident flux jI, the number
of particles scattered into the solid angle
dΩ =2 π sin θ dθ per unit time is given by

N dΩ =2 π sin θ dθ N = 2πb db jI

i.e.
dσ(θ)

dΩ
≡ N

jI
=

b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣



Scattering phenomena: classical theory

dσ(θ)

dΩ
=

b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣

For elastic scattering from a hard (impenetrable) sphere,

b(θ) = R sinα = R sin

(
π − θ

2

)
= −R cos(θ/2)

As a result, we find that
∣∣ db
dθ

∣∣ = R
2 sin(θ/2) and

dσ(θ)

dΩ
=

R2

4

As expected, total scattering cross section is just
∫

dΩ dσ
dΩ = πR2,

the projected area of the sphere.



Scattering phenomena: classical theory

For classical Coulomb scattering,

V (r) =
κ

r

particle follows hyperbolic trajectory.

In this case, a straightforward calculation
obtains the Rutherford formula:

dσ

dΩ
=

b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ =
κ2

16E 2

1

sin4 θ/2

At high energy, there is a departure – manifestation of nuclear
structure.



Quantum scattering: basics and notation

Simplest scattering experiment: plane wave impinging on localized
potential, V (r), e.g. electron striking atom, or α particle a nucleus.

Basic set-up: flux of particles, all at the same energy, scattered from
target and collected by detectors which measure angles of deflection.

In principle, if all incoming particles represented by wavepackets, the
task is to solve time-dependent Schrödinger equation,

i! ∂tΨ(r, t) =

[
− !2

2m
∇2 + V (r)

]
Ψ(r, t)

and find probability amplitudes for outgoing waves.



Quantum scattering: basics and notation

However, if beam is “switched on” for times long as compared with
“encounter-time”, steady-state conditions apply.

If wavepacket has well-defined energy (and hence momentum), may
consider it a plane wave: Ψ(r, t) = ψ(r)e−iEt/!.

Therefore, seek solutions of time-independent Schrödinger equation,

Eψ(r) =

[
− !2

2m
∇2 + V (r)

]
ψ(r)

subject to boundary conditions that incoming component of
wavefunction is a plane wave, e ik·r (cf. 1d scattering problems).

E = (!k)2/2m is energy of incoming particles while flux given by,

j = −i
!

2m
(ψ∗∇ψ − ψ∇ψ∗) =

!k
m



Lessons from revision of one-dimension

In one-dimension, interaction of plane wave, e ikx , with localized
target results in degree of reflection and transmission.

Both components of outgoing scattered wave are plane waves with
wavevector ±k (energy conservation).

Influence of potential encoded in complex amplitude of reflected
and transmitted wave – fixed by time-independent Schrödinger
equation subject to boundary conditions (flux conservation).



Scattering in more than one dimension

In higher dimension, phenomenology is similar – consider plane wave
incident on localized target:

Outside localized target region, wavefunction involves superposition
of incident plane wave and scattered (spherical wave)

ψ(r) % e ik·r + f (θ, φ)
e ikr

r

Scattering amplitude f (θ, φ) records complex amplitude of
component along direction (θ, φ) relative to incident beam.



Scattering phenomena: partial waves

If we define z-axis by k vector, plane wave can be decomposed into
superposition of incoming and outgoing spherical wave:

If V (r) isotropic, short-ranged (faster than 1/r), and elastic
(particle/energy conserving), scattering wavefunction given by,

e ik·r = ψ(r) % i

2k

∞∑

$=0

i$(2) + 1)

[
e−i(kr−$π/2)

r
− S$(k)

e i(kr−$π/2)

r

]
P$(cos θ)

where P$(cos θ) = ( 4π
2$+1 )1/2Y$0(θ).where |S$(k)| = 1 (i.e.

S$(k) = e2iδ!(k) with δ$(k) are phase shifts).



Scattering phenomena: partial waves

ψ(r) % i

2k

∞∑

$=0

i$(2) + 1)

[
e−i(kr−$π/2)

r
− S$(k)

e i(kr−$π/2)

r

]
P$(cos θ)

If we set, ψ(r) % e ik·r + f (θ)
e ikr

r

f (θ) =
∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

where f$(k) =
S$(k)− 1

2ik
define partial wave scattering amplitudes.

i.e. f$(k) are defined by phase shifts, δ$(k), where S$(k) = e2iδ!(k).
But how are phase shifts related to cross section?



Scattering phenomena: scattering cross section

ψ(r) % e ik·r + f (θ)
e ikr

r

Particle flux associated with ψ(r) obtained from current operator,

j = −i
!
m

(ψ∗∇ψ + ψ∇ψ∗) = −i
!
m

Re[ψ∗∇ψ]

= −i
!
m

Re

{[
e ik·r + f (θ)

e ikr

r

]∗
∇

[
e ik·r + f (θ)

e ikr

r

]}

Neglecting rapidly fluctuation contributions (which average to zero)

j =
!k
m

+
!k

m
êr

|f (θ)|2

r2
+ O(1/r3)



Scattering phenomena: scattering cross section

j =
!k
m

+
!k

m
êr

|f (θ)|2

r2
+ O(1/r3)

(Away from direction of incident beam, êk) the flux of particles
crossing area, dA = r2dΩ, that subtends solid angle dΩ at the
origin (i.e. the target) given by

NdΩ = j · êrdA =
!k

m

|f (θ)|2

r2
r2dΩ + O(1/r)

By equating this flux with the incoming flux jI × dσ, where jI = !k
m ,

we obtain the differential cross section,

dσ =
NdΩ

jI
=

j · êr dA

jI
= |f (θ)|2 dΩ, i.e.

dσ

dΩ
= |f (θ)|2



Scattering phenomena: partial waves

dσ

dΩ
= |f (θ)|2, f (θ) =

∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

From the expression for dσ
dΩ , we obtain the total scattering

cross-section:

σtot =

∫
dσ =

∫
|f (θ)|2dΩ

With orthogonality relation,

∫
dΩ P$(cos θ)P$′(cos θ) =

4π

2) + 1
δ$$′ ,

σtot =
∑

$,$′

(2) + 1)(2)′ + 1)f ∗$ (k)f$′(k)

∫
dΩP$(cos θ)P$′(cos θ)

︸ ︷︷ ︸
4πδ!!′/(2$+1)

= 4π
∑

$

(2) + 1)|f$(k)|2



Scattering phenomena: partial waves

σtot = 4π
∑

$

(2) + 1)|f$(k)|2, f (θ) =
∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

Making use of the relation f$(k) =
1

2ik
(e2iδ!(k) − 1) =

e iδ!(k)

k
sin δ$,

σtot =
4π

k2

∞∑

$=0

(2) + 1) sin2 δ$(k)

Since P$(1) = 1, f (0) =
∑

$(2) + 1)f$(k) =
∑

$(2) + 1) eiδ!(k)

k sin δ$,

Im f (0) =
k

4π
σtot

One may show that this “sum rule”, known as optical theorem,
encapsulates particle conservation.



Method of partial waves: summary

ψ(r) = e ik·r + f (θ)
e ikr

r

The quantum scattering of particles from a localized target is fully
characterised by the differential cross section,

dσ

dΩ
= |f (θ)|2

The scattering amplitude, f (θ), which depends on the energy
E = Ek , can be separated into a set of partial wave amplitudes,

f (θ) =
∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

where partial amplitudes, f$(k) = eiδ!

k sin δ$ defined by scattering
phase shifts δ$(k). But how are phase shifts determined?



Method of partial waves

For scattering from a central potential,
the scattering amplitude, f , must be
symmetrical about axis of incidence.

In this case, both scattering wavefunction, ψ(r), and scattering
amplitudes, f (θ), can be expanded in Legendre polynomials,

ψ(r) =
∞∑

$=0

R$(r)P$(cos θ)

cf. wavefunction for hydrogen-like atoms with m = 0.

Each term in expansion known as partial wave, and is simultaneous
eigenfunction of L̂2 and L̂z having eigenvalue !2)() + 1) and 0, with
) = 0, 1, 2, · · · referred to as s, p, d , · · · waves.

From the asymtotic form of ψ(r) we can determine the phase shifts
δ$(k) and in turn the partial amplitudes f$(k).



Method of partial waves

ψ(r) =
∞∑

$=0

R$(r)P$(cos θ)

Starting with Schrödinger equation for scattering wavefunction,
[

p̂2

2m
+ V (r)

]
ψ(r) = Eψ(r), E =

!2k2

2m

separability of ψ(r) leads to radial equation,
[
− !2

2m

(
∂2

r +
2

r
∂r −

)() + 1)

r2

)
+ V (r)

]
R$(r) =

!2k2

2m
R$(r)

Rearranging equation, we obtain the radial equation,

[
∂2

r +
2

r
∂r −

)() + 1)

r2
− U(r) + k2

]
R$(r) = 0

where U(r) = 2mV (r)/!2 represents effective potential.



Method of partial waves

[
∂2

r +
2

r
∂r −

)() + 1)

r2
− U(r) + k2

]
R$(r) = 0

Providing potential sufficiently short-ranged, scattering wavefunction
involves superposition of incoming and outgoing spherical waves,

R$(r) %
i

2k

∞∑

$=0

i$(2) + 1)

(
e−i(kr−$π/2)

r
− e2iδ!(k) e

i(kr−$π/2)

r

)

R0(r) %
1

kr
e iδ0(k) sin(kr + δ0(k))

However, at low energy, kR ' 1, where R is typical range of
potential, s-wave channel () = 0) dominates.

Here, with u(r) = rR0(r), radial equation becomes,

[
∂2

r − U(r) + k2
]
u(r) = 0

with boundary condition u(0) = 0 and, as expected, outside radius

of potential, R, u(r)
r%R
= A sin(kr + δ0).



Method of partial waves

[
∂2

r − U(r) + k2
]
u(r) = 0

Alongside phase shift, δ0 it is convenient to introduce scattering
length, a0, defined by condition that u(a0) = 0 for kR ' 1, i.e.

u(a0) = sin(ka0 + δ0) = sin(ka0) cos δ0 + cos(ka0) sin δ0

= sin δ0 [cot δ0 sin(ka0) + cos(kr)] % sin δ0 [ka0 cot δ0 + 1]

leads to scattering length a0 = − lim
k→0

1

k
tan δ0(k).

From this result, we find the scattering cross section

σtot =
4π

k2
sin2 δ0(k)

k→0% 4π

k2

(ka0)2

1 + (ka0)2
% 4πa2

0

i.e. a0 characterizes effective size of target.



Example I: Scattering by hard-sphere

[
∂2

r − U(r) + k2
]
u(r) = 0, a0 = − lim

k→0

1

k
tan δ0

Consider hard sphere potential,

U(r) =

{
∞ r < R
0 r > R

With the boundary condition u(R) = 0, suitable for an impenetrable
sphere, the scattering wavefunction given by

u(r) = A sin(kr + δ0), δ0 = −kR

i.e. scattering length a0 % R, f0(k) = eikR

k sin(kR), and the total
scattering cross section is given by,

σtot % 4π
sin2(kR)

k2
% 4πR2

Factor of 4 enhancement over classical value, πR2, due to
diffraction processes at sharp potential.



Example II: Scattering by attractive square well

[
∂2

r − U(r) + k2
]
u(r) = 0

As a proxy for scattering from a binding potential, let us consider
quantum particles incident upon an attractive square well potential,
U(r) = −U0θ(R − r), where U0 > 0.

Once again, focussing on low energies, kR ' 1, this translates to
the radial potential,

[
∂2

r + U0θ(R − r) + k2
]
u(r) = 0

with the boundary condition u(0) = 0.



Example II: Scattering by attractive square well

[
∂2

r + U0θ(R − r) + k2
]
u(r) = 0

From this radial equation, we obtain the solution,

u(r) =

{
C sin(Kr) r < R
sin(kr + δ0) r > R

where K 2 = k2 + U0 > k2 and δ0 denotes scattering phase shift.

From continuity of wavefunction and derivative at r = R,

C sin(KR) = sin(kR + δ0), CK cos(KR) = k cos(kR + δ0)

we obtain the self-consistency condition for δ0 = δ0(k),

K cot(KR) = k cot(kR + δ0)



Example II: Scattering by attractive square well

K cot(KR) = k cot(kR + δ0)

From this result, we obtain

tan δ0(k) =
k tan(KR)− K tan(kR)

K + k tan(kR) tan(KR)
, K 2 = k2 + U0

With kR ' 1, K % U1/2
0 (1 + O(k2/U0)), find scattering length,

a0 = − lim
k→0

1

k
tan δ0 % −R

(
tan(KR)

KR
− 1

)

which, for KR < π/2 leads to a negative scattering length.



Example II: Scattering by attractive square well

a0 = − lim
k→0

1

k
tan δ0 % −R

(
tan(KR)

KR
− 1

)

So, at low energies, the scattering from an attractive square
potential leads to the ) = 0 phase shift,

δ0 % −ka0 % kR

(
tan(KR)

KR
− 1

)

and total scattering cross-section,

σtot %
4π

k2
sin2 δ0(k) % 4πR2

(
tan(KR)

KR
− 1

)2

, K % U1/2
0

But what happens when KR % π/2?



Example II: Scattering by attractive square well

a0 % −R

(
tan(KR)

KR
− 1

)
, K % U1/2

0

If KR ' 1, a0 < 0 and wavefunction drawn
towards target – hallmark of attractive potential.

As KR → π/2, both scattering length a0 and
cross section σtot % 4πa2

0 diverge.

As KR increased, a0 turns positive, wavefunction
pushed away from target (cf. repulsive potential)
until KR = π when σtot = 0 and process repeats.

Why?



Example II: Scattering by attractive square well

In fact, when KR = π/2, the attractive square well just meets the
criterion to host a single s-wave bound state.

At this value, there is a zero energy resonance leading to the
divergence of the scattering length, and with it, the cross section –
the influence of the target becomes effectively infinite in range.

When KR = 3π/2, the potential becomes capable of hosting a
second bound state, and there is another resonance, and so on.

When KR = nπ, the scattering cross section vanishes identically and
the target becomes invisible – the Ramsauer-Townsend effect.



Resonances

More generally, the )-th partial cross-section

σ$ =
4π

k2
(2) + 1)

1

1 + cot2 δ$(k)
, σtot =

∑

$

σ$

takes maximum value if there is an energy at which cot δ$ vanishes.

If this occurs as a result of δ$(k) increasing rapidly through odd
multiple of π/2, cross-section exhibits a narrow peak as a function
of energy – a resonance.

Near the resonance,

cot δ$(k) =
ER − E

Γ(E )/2

where ER is resonance energy.



Resonances

If Γ(E ) varies slowly in energy, partial cross-section in vicinity of
resonance given by Breit-Wigner formula,

σ$(E ) =
4π

k2
(2) + 1)

Γ2(ER)/4

(E − ER)2 + Γ2(ER)/4

Physically, at E = ER, the amplitude of the wavefunction within the
potential region is high and the probability of finding the scattered
particle inside the well is correspondingly high.

The parameter Γ = !/τ represents typical lifetime, τ , of metastable
bound state formed by particle in potential.



Application: Feshbach resonance phenomena

Ultracold atomic gases provide arena in
which resonant scattering phenomena
exploited – far from resonance, neutral
alkali atoms interact through short-ranged
van der Waals interaction.

However, effective strength of interaction
can be tuned by allowing particles to form
virtual bound state – a resonance.

By adjusting separation between entrance
channel states and bound state through
external magnetic field, system can be
tuned through resonance.

This allows effective interaction to be
tuned from repulsive to attractive simply
by changing external field.



Scattering theory: summary

The quantum scattering of particles from a localized target is fully
characterised by differential cross section,

dσ

dΩ
= |f (θ)|2

where ψ(r) = e ik·r + f (θ, φ) eikr

r denotes scattering wavefunction.

The scattering amplitude, f (θ), which depends on the energy
E = Ek , can be separated into a set of partial wave amplitudes,

f (θ) =
∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

where f$(k) = eiδ!

k sin δ$ defined by scattering phase shifts δ$(k).



Scattering theory: summary

The partial amplitudes/phase shifts fully characterise scattering,

σtot =
4π

k2

∞∑

$=0

(2) + 1) sin2 δ$(k)

The individual scattering phase shifts can then be obtained from the
solutions to the radial scattering equation,

[
∂2

r +
2

r
∂r −

)() + 1)

r2
− U(r) + k2

]
R$(r) = 0

Although this methodology is “straightforward”, when the energy of
incident particles is high (or the potential weak), many partial waves
contribute.

In this case, it is convenient to switch to a different formalism, the
Born approximation.



Lecture 21

Scattering theory:
Born perturbation series expansion



Recap

Previously, we have seen that the properties of a scattering system,

[
p̂2

2m
+ V (r)

]
ψ(r) =

!2k2

2m
ψ(r)

are encoded in the scattering amplitude, f (θ, φ), where

ψ(r) % e ik·r + f (θ, φ)
e ikr

r

For an isotropic scattering potential V (r), the scattering amplitudes,
f (θ), can be obtained as an expansion in harmonics, P$(cos θ).

At low energies, k → 0, this partial wave expansion is dominated
by small ).

At higher energies, when many partial waves contribute, expansion
is inconvenient – helpful to develop a different methodology, the
Born series expansion



Lippmann-Schwinger equation

Returning to Schrödinger equation for scattering wavefunction,

(
∇2 + k2

)
ψ(r) = U(r)ψ(r)

with V (r) = !2U(r)
2m , general solution can be written as

ψ(r) = φ(r) +

∫
G0(r, r

′)U(r′)ψ(r′)d3r ′

where
(
∇2 + k2

)
φ(r) = 0 and

(
∇2 + k2

)
G0(r, r′) = δd(r − r′).

Formally, these equations have the solution

φk(r) = e ik·r, G0(r, r
′) = − 1

4π

e ik|r−r′|

|r − r′|



Lippmann-Schwinger equation

Together, leads to Lippmann-Schwinger equation:

ψk(r) = e ik·r − 1

4π

∫
d3r ′

e ik|r−r′|

|r − r′| U(r′)ψk(r
′)

In far-field, |r − r′| % r − êr · r′ + · · · ,

e ik|r−r′|

|r − r′| %
e ikr

r
e−ik′·r′

where k′ ≡ k êr .

i.e. ψk(r) = e ik·r + f (θ, φ) eikr

r where, with φk = e ik·r,

f (θ, φ) % − 1

4π

∫
d3r ′ e−ik′·r′U(r′)ψk(r

′) ≡ − 1

4π
〈φk′ |U|ψk〉



Lippmann-Schwinger equation

f (θ, φ) = − 1

4π

∫
d3r ′ e−ik′·r′U(r′)ψk(r

′) ≡ − 1

4π
〈φk′ |U|ψk〉

The corresponding differential cross-section:

dσ

dΩ
= |f (θ, φ)|2 =

m2

(2π)2!4
|Tk,k′ |2

where, in terms of the original scattering potential, V (r) = !2U(r)
2m ,

Tk,k′ = 〈φk′ |V |ψk〉

denotes the transition matrix element.



Born approximation

ψ(r) = φ(r) +

∫
G0(r, r

′)U(r′)ψ(r′)d3r ′ (∗)

At zeroth order in V (r), scattering wavefunction translates to

unperturbed incident plane wave, ψ(0)
k (r) = φk(r) = e ik·r.

In this approximation, (*) leads to expansion first order in U,

ψ(1)
k (r) = φk(r) +

∫
d3r ′ G0(r, r

′)U(r′)ψ(0)
k (r′)

and then to second order in U,

ψ(2)
k (r) = φk(r) +

∫
d3r ′ G0(r, r

′)U(r′)ψ(1)
k (r′)

and so on.

i.e. expressed in coordinate-independent basis,

|ψk〉 = |φk〉+ Ĝ0Û|φk〉+ Ĝ0ÛĜ0Û|φk〉+ · · · =
∞∑

n=0

(Ĝ0Û)n|φk〉



Born approximation

|ψk〉 = |φk〉+ Ĝ0Û|φk〉+ Ĝ0ÛĜ0Û|φk〉+ · · · =
∞∑

n=0

(Ĝ0Û)n|φk〉

Then, making use of the identity f (θ, φ) = − 1
4π 〈φk′ |U|ψk〉,

scattering amplitude expressed as Born series expansion

f = − 1

4π
〈φk′ |U + UG0U + UG0UG0U + · · · |φk〉

Physically, incoming particle undergoes a sequence of multiple
scattering events from the potential.



Born approximation

f = − 1

4π
〈φk′ |U + UG0U + UG0UG0U + · · · |φk〉

Leading term in Born series known as first Born approximation,

fBorn = − 1

4π
〈φk′ |U|φk〉

Setting ∆ = k− k′, where !∆ denotes momentum transfer, Born
scattering amplitude for a central potential

fBorn(∆) = − 1

4π

∫
d3r e i∆·rU(r) = −

∫ ∞

0
rdr

sin(∆r)

∆
U(r)

where, noting that |k′| = |k|, ∆ = 2k sin(θ/2).



Example: Coulomb scattering

Due to long range nature of the Coulomb scattering potential, the
boundary condition on the scattering wavefunction does not apply.

We can, however, address the problem by working with the screened

(Yukawa) potential, U(r) = U0
e−r/α

r , and taking α →∞. For this
potential, one may show that (exercise)

fBorn = −U0

∫ ∞

0
dr

sin(∆r)

∆
e−r/α = − U0

α−2 + ∆2

Therefore, for α →∞, we obtain

dσ

dΩ
= |f (θ)|2 =

U2
0

16k4 sin4 θ/2

which is just the Rutherford formula.



From Born approximation to Fermi’s Golden rule

Previously, in the leading approximation, we found that the
transition rate between states and i and f induced by harmonic
perturbation Ve iωt is given by Fermi’s Golden rule,

Γi→f =
2π

! |〈f|V |i〉|2δ(!ω − (Ef − Ei))

In a three-dimensional scattering problem, we should consider the
initial state as a plane wave state of wavevector k and the final
state as the continuum of states with wavevectors k′ with ω = 0.

In this case, the total transition (or scattering) rate into a fixed solid
angle, dΩ, in direction (θ, φ) given by

Γk→k′ =
∑

k′∈dΩ

2π

! |〈k′|V |k〉|2δ(Ek − Ek′) =
2π

! |〈k′|V |k〉|2g(Ek)

where g(Ek) =
∑

k′ δ(Ek − Ek′) = dn
dE is density of states at energy

Ek = !2k2

2m .



From Born approximation to Fermi’s Golden rule

Γk→k′ =
2π

! |〈k′|V |k〉|2g(Ek)

With

g(Ek) =
dn

dk

dk

dE
=

k2dΩ

(2π/L)3
1

!2k/m

and incident flux jI = !k/m, the differential cross section,

dσ

dΩ
=

1

L3

Γk→k′

jI
=

1

(4π)2
|〈k′|2mV

!2
|k〉|2

At first order, Born approximation and Golden rule coincide.



Scattering by identical particles

So far, we have assumed that incident particles and target are
distinguishable. When scattering involves identical particles, we
have to consider quantum statistics:

Consider scattering of two identical particles. In centre of mass
frame, if an outgoing particle is detected at angle θ to incoming, it
could have been (a) deflected through θ, or (b) through π − θ.

Classically, we could tell whether (a) or (b) by monitoring particles
during collision – however, in quantum scattering, we cannot track.



Scattering by identical particles

Therefore, in centre of mass frame, we must write scattering
wavefunction in appropriately symmetrized/antisymmetrized form –
for bosons,

ψ(r) = e ikz + e−ikz + (f (θ) + f (π − θ))
e ikr

r

The differential cross section is then given by

dσ

dΩ
= |f (θ) + f (π − θ)|2

as opposed to |f (θ)|2 + |f (π− θ)|2 as it would be for distinguishable
particles.



Scattering by an atomic lattice

As a final application of Born approximation,
consider scattering from crystal lattice: At low
energy, scattering amplitude of particles is again
independent of angle (s-wave).

In this case, the solution of the Schrödinger equation by a single
atom i located at a point Ri has the asymptotic form,

ψ(r) = e ik·(r−Ri ) + f
e ik|r−Ri |

|r − Ri |

Since k|r − Ri | % kr − k′ · Ri , with k′ = k êr we have

ψ(r) = e−ik·Ri

[
e ik·r + fe−i(k′−k)·Ri

e ikr

r

]

From this result, we infer effective scattering amplitude,

f (θ) = f exp [−i∆ · Ri ] , ∆ = k′ − k



Scattering by an atomic lattice

If we consider scattering from a crystal lattice, we must sum over all
atoms leading to the total differential scattering cross-section,

dσ

dΩ
= |f (θ)|2 =

∣∣∣∣∣f
∑

Ri

exp [−i∆ · Ri ]

∣∣∣∣∣

2

For periodic cubic crystal of dimension Ld ,
sum translates to Bragg condition,

dσ

dΩ
= |f |2 (2π)3

L3
δ(3)(k′ − k− 2πn/L)

where integers n known as Miller indices of
Bragg planes.



Scattering theory: summary

The quantum scattering of particles from a localized target is fully
characterised by differential cross section,

dσ

dΩ
= |f (θ)|2

where ψ(r) = e ik·r + f (θ, φ) eikr

r denotes scattering wavefunction.

The scattering amplitude, f (θ), which depends on the energy
E = Ek , can be separated into a set of partial wave amplitudes,

f (θ) =
∞∑

$=0

(2) + 1)f$(k)P$(cos θ)

where f$(k) = eiδ!

k sin δ$ defined by scattering phase shifts δ$(k).



Scattering theory: summary

The partial amplitudes/phase shifts fully characterise scattering,

σtot =
4π

k2

∞∑

$=0

(2) + 1) sin2 δ$(k)

The individual scattering phase shifts can then be obtained from the
solutions to the radial scattering equation,

[
∂2

r +
2

r
∂r −

)() + 1)

r2
− U(r) + k2

]
R$(r) = 0

Although this methodology is “straightforward”, when the energy of
incident particles is high (or the potential weak), many partial waves
contribute.

In this case, it is convenient to switch to a different formalism, the
Born approximation.



Scattering theory: summary

Formally, the solution of the scattering wavefunction can be
presented as the integral (Lippmann-Schwinger) equation,

ψk(r) = e ik·r − 1

4π

∫
d3r ′

e ik|r−r′|

|r − r′| U(r′)ψk(r
′)

This expression allows the scattering amplitude to be developed as a
power series in the interaction, U(r).

In the leading approximation, this leads to the Born approximation
for the scattering amplitude,

fBorn(∆) = − 1

4π

∫
d3re i∆·rU(r)

where ∆ = k− k′ and ∆ = 2k sin(θ/2).


