Lecture 20

Scattering theory



Scattering theory

Scattering theory is important as it underpins one of the most ubiquitous
tools in physics.

@ Almost everything we know about nuclear and atomic physics has
been discovered by scattering experiments,

e.g. Rutherford’s discovery of the nucleus, the discovery of
sub-atomic particles (such as quarks), etc.

@ In low energy physics, scattering phenomena provide the standard
tool to explore solid state systems,

e.g. neutron, electron, x-ray scattering, etc.

@ As a general topic, it therefore remains central to any advanced
course on quantum mechanics.

@ In these two lectures, we will focus on the general methodology
leaving applications to subsequent courses.



Scattering theory: outline

@ Notations and definitions; lessons from classical scattering
@ Low energy scattering: method of partial waves

@ High energy scattering: Born perturbation series expansion
@ Scattering by identical particles

@ Bragg scattering.



Scattering phenomena: background

@ In an idealized scatteri
of definite momentum

ng experiment, a sharp beam of particles (A)
k are scattered from a localized target (B).

@ As a result of collision, several outcomes are possible:

A+B— «

( A+B elastic
A+ B* : .
A+B4C } inelastic
C absorption

\

@ In high energy and nuclear physics, we are usually interested in deep

inelastic processes.

@ To keep our discussion simple, we will focus on elastic processes in
which both the energy and particle number are conserved —
although many of the concepts that we will develop are general.



Scattering phenomena: differential cross section

Both classical and quantum mechanical scattering phenomena are
characterized by the scattering cross section, o.

@ Consider a collision experiment in which a detector measures the
number of particles per unit time, N d{2, scattered into an element
of solid angle dQQ in direction (0, ¢).

@ This number is proportional to the incident flux of particles, j;
defined as the number of particles per unit time crossing a unit area
normal to direction of incidence.



Scattering phenomena: differential cross section

Both classical and quantum mechanical scattering phenomena are
characterized by the scattering cross section, o.

@ Consider a collision experiment in which a detector measures the
number of particles per unit time, N d{2, scattered into an element
of solid angle dQQ in direction (0, ¢).

@ This number is proportional to the incident flux of particles, j;
defined as the number of particles per unit time crossing a unit area
normal to direction of incidence.

@ Collisions are characterised by the differential cross section defined
as the ratio of the number of particles scattered into direction (6, ¢)
per unit time per unit solid angle, divided by incident flux,




Scattering phenomena: cross section

@ From the differential, we can obtain the total cross section by
integrating over all solid angles

a—/—dQ /zwdqb/ desme—

@ The cross section, which typically depends sensitively on energy of
incoming particles, has dimensions of area and can be separated into

Oeclastic' Oinelastic: Oabs: and Ototal -



Scattering phenomena: cross section

@ From the differential, we can obtain the total cross section by
integrating over all solid angles

a—/—dQ /zwdqb/ desme—

@ The cross section, which typically depends sensitively on energy of
incoming particles, has dimensions of area and can be separated into

Oeclastic' Oinelastic: Oabs: and Ototal -

@ In the following, we will focus on elastic scattering where internal
energies remain constant and no further particles are created or
annihilated,

e.g. low energy scattering of neutrons from protons.

@ However, before turning to quantum scattering, let us consider
classical scattering theory.



Scattering phenomena: classical theory

@ In classical mechanics, for a central
potential, V/(r), the angle of scattering is 0
determined by impact parameter b(6).

@ The number of particles scattered per unit
time between 6 and 6 + d6 is equal to the
number incident particles per unit time
between b and b + db.

aftar
Thombon & Rex




Scattering phenomena: classical theory

@ In classical mechanics, for a central
potential, V/(r), the angle of scattering is
determined by impact parameter b(6).

@ The number of particles scattered per unit
time between 6 and 6 + d6 is equal to the
number incident particles per unit time
between b and b + db.

@ Therefore, for incident flux j;, the number
of particles scattered into the solid angle
d€2 =2 7wsin 6 df per unit time is given by

NdSQ2 =2 nmsin0dd N =2rbdb

aftar
Thombon & Rex

do(@) N b

db

ST T G sind

do




Scattering phenomena: classical theory

do(6) b |db
dQ  sind |do

@ For elastic scattering from a hard (impenetrable) sphere,
b(f#) = Rsina = Rsin ( > = —Rcos(6/2)

@ As a result, we find that ‘% = Zsin(#/2) and

T—0

do(0)

R2

df2

4

@ As expected, total scattering cross section is just [ ng—g = 1TR?

the projected area of the sphere.




Scattering phenomena: classical theory

@ For classical Coulomb scattering,

(4]
I r

Geiger and Marsden's
data points

particle follows hyperbolic trajectory.

Theoretical scattering
of ona point charge

deren

Scattered alpha particles
B

. . . 10° b Af off another
@ In this case, a straightforward calculation | [Fuerford
obtains the Rutherford formula: 07 | formula
o (" :c'r‘- 4;1-" ﬁlfF' HET‘- Hlm-’f |.‘I3r+" IJW-

Scaliering angle

do b |db| K 1
dQ sinf |df| 16E2sin*0/2




Scattering phenomena: classical theory

@ For classical Coulomb scattering,

The scattered intensity departs
from the Rutherford scattering
formula at about 27.5 MaV

particle follows hyperbolic trajectory.

@ In this case, a straightforward calculation
obtains the Rutherford formula:

Relative intensity of scatterad

alpha particles at 60°

fﬁlphaenargy
do b |db] K2 1 e
df? - sinf | df - ]_6E2 sin4 9/2 5 20 25 30 35 40

@ At high energy, there is a departure — manifestation of nuclear
structure.



Quantum scattering: basics and notation

@ Simplest scattering experiment: plane wave impinging on localized
potential, V/(r), e.g. electron striking atom, or « particle a nucleus.

@ Basic set-up: flux of particles, all at the same energy, scattered from
target and collected by detectors which measure angles of deflection.

scattering
center

dQ




Quantum scattering: basics and notation

@ Simplest scattering experiment: plane wave impinging on localized
potential, V/(r), e.g. electron striking atom, or « particle a nucleus.

@ Basic set-up: flux of particles, all at the same energy, scattered from
target and collected by detectors which measure angles of deflection.

scattering
3 center

dQ

@ In principle, if all incoming particles represented by wavepackets, the
task is to solve time-dependent Schrodinger equation,

ihO(r, t) = [—%W + V(r)] W(r, t)

and find probability amplitudes for outgoing waves.




Quantum scattering: basics and notation

@ However, if beam is “switched on” for times long as compared with
“encounter-time”, steady-state conditions apply.

@ If wavepacket has well-defined energy (and hence momentum), may
consider it a plane wave: W(r,t) = ¢(r)e~Et/".



Quantum scattering: basics and notation

@ However, if beam is “switched on” for times long as compared with
“encounter-time”, steady-state conditions apply.

@ If wavepacket has well-defined energy (and hence momentum), may
consider it a plane wave: W(r,t) = ¢(r)e~Et/".

@ Therefore, seek solutions of time-independent Schrodinger equation,

E6(r) = |39+ V)| w0

subject to boundary conditions that incoming component of
wavefunction is a plane wave, e'*" (cf. 1d scattering problems).



Quantum scattering: basics and notation

@ However, if beam is “switched on” for times long as compared with
“encounter-time”, steady-state conditions apply.

@ If wavepacket has well-defined energy (and hence momentum), may
consider it a plane wave: W(r,t) = ¢(r)e~Et/".

@ Therefore, seek solutions of time-independent Schrodinger equation,

E6(r) = |39+ V)| w0

subject to boundary conditions that incoming component of
wavefunction is a plane wave, e'*" (cf. 1d scattering problems).

@ E = (hk)?/2m is energy of incoming particles while flux given by,

h hk
j = —is— (VY — V) = —

2m



Lessons from revision of one-dimension

@ In one-dimension, interaction of plane wave, e'™ with localized

target results in degree of reflection and transmission.

I\‘u-_!l:_l

NI
N/ |

@ Both components of outgoing scattered wave are plane waves with
wavevector +k (energy conservation).




Lessons from revision of one-dimension

@ In one-dimension, interaction of plane wave, e'™ with localized

target results in degree of reflection and transmission.

I\‘u-_!l:_l

NI
N/ |

@ Both components of outgoing scattered wave are plane waves with
wavevector +k (energy conservation).

@ Influence of potential encoded in complex amplitude of reflected
and transmitted wave — fixed by time-independent Schrodinger
equation subject to boundary conditions (flux conservation).



Scattering in more than one dimension

@ In higher dimension, phenomenology is similar — consider plane wave
incident on localized target:




Scattering in more than one dimension

@ In higher dimension, phenomenology is similar — consider plane wave
incident on localized target:

@ Outside localized target region, wavefunction involves superposition
of incident plane wave and scattered (spherical wave)

eikr

P(r) ~ "+ £(6, ¢)

r




Scattering in more than one dimension

@ In higher dimension, phenomenology is similar — consider plane wave

incident on localized target:

abhbdii

L]
.
-
-
.
.

@ Outside localized target region, wavefunction involves superposition
of incident plane wave and scattered (spherical wave)

P(r) ~ "+ £(6, ¢)

€

ikr

r

@ Scattering amplitude f(6, ¢) records complex amplitude of
component along direction (6, ¢) relative to incident beam.



Scattering phenomena: partial waves

@ If we define z-axis by k vector, plane wave can be decomposed into
superposition of incoming and outgoing spherical wave:

. 00 —i(kr—£m/2) i(kr—{m /2)
ik-r ! 24 € — © F
- — E 20 + 1
e 2k€ 0, (2¢ )[ p »(cos 0)

r

where Py(cosf) = (%:{1)1/2 Yoo (6).



Scattering phenomena: partial waves
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@ If we define z-axis by k vector, plane wave can be decomposed into
superposition of incoming and outgoing spherical wave:

@ If V(r) isotropic, short-ranged (faster than 1/r), and elastic
(particle/energy conserving), scattering wavefunction given by,

. 00 —i(kr—£m/2) i(kr—4m /2)
W(r) ~ T gz:%/ (2¢+1) [ S¢(k) ; Pe(cos )

r

where |S,(k)| =1 (i.e. S;(k) = e?¢(k) with §,(k) are phase shifts).
B @4



Scattering phenomena: partial waves

—i(kr—tx/2)

P(r) o~ i Z ‘(204 1) [e p — Sy(k) p Py(cos 6)
=0

. ikr
o If we set, (r) ~ e'*" + £(0) er

f(0) = i(% + 1)fy(k)Py(cos6)
=0

Se(k) — 1
2ik

@ i.e. fy(k) are defined by phase shifts, §,(k), where S;(k) = e2/9¢(k).
But how are phase shifts related to cross section?

where fy(k) = define partial wave scattering amplitudes.



Scattering phenomena: scattering cross section

ikr
Y(r) ~ e 4 £(6)=

scattering
center

dQ

r

@ Particle flux associated with (r) obtained from current operator,

h h
j= =i (4 Ve + V) = —i—Rely" Vy]

i eikr

= iR { 0] v e ] }




Scattering phenomena: scattering cross section

ikr
Y(r) ~ e 4 £(6)=

scattering
center

dQ

r

@ Particle flux associated with (r) obtained from current operator,

h h
j= =i (4 Ve + V) = —i—Rely" Vy]

i eikr

= iR { 0] v e ] }

@ Neglecting rapidly fluctuation contributions (which average to zero)

L bk kg [FO)

hk
+ e 5
m m r

+0(1/r%)




Scattering phenomena: scattering cross section

. hk Bk, |F(0)?
.l - _|_ er 2
m m r

+ 0(1/r%)

scattering
center

dQ

@ (Away from direction of incident beam, &) the flux of particles
crossing area, dA = r’dQ, that subtends solid angle dQ2 at the
origin (i.e. the target) given by

hk |£(6)]*

m r?

NdQ =j-&,dA = r?dQ + O(1/r)



Scattering phenomena: scattering cross section

. hk Bk, |F(0)?
.l - _|_ er 2
m m r

+ 0(1/r%)

scattering
center

dQ

@ (Away from direction of incident beam, &) the flux of particles
crossing area, dA = r’dQ, that subtends solid angle dQ2 at the
origin (i.e. the target) given by

hk |£(6)]*

m r?

NdQ =j-&,dA = r?dQ + O(1/r)

@ By equating this flux with the incoming flux j;1 X do, where j; = %

we obtain the differential cross section,

— = : = |f(0)|° dS2, lL.e. — = |f(0
= T = () 0 = If)

do =




Scattering phenomena: partial waves

do

70 = |f(6)]%, f(0) = i(% + 1)fy(k)P¢(cos 6)

¢=0

@ From the expression for < oG+ we obtain the total scattering

cross-section:
Utot:/d02/|f(9)|2d9



Scattering phenomena: partial waves

do

70 = |f(6)]%, f(0) = i(% + 1)fy(k)P¢(cos 6)

¢=0

@ From the expression for < oG+ we obtain the total scattering

cross-section:
Utot:/d02/|f(9)|2d9

4
@ With orthogonality relation, /dQ Py(cos 0) Py (cos ) = T

Sopr
20+1 ¢

G0 = S (20 + 1)(20 + 1) (k) fr(K) / dQP, (cos 0) Py (cos f)
0,0 < y

N~

47T5££//(2€—|—1)
— 47TZ(25+ 1)|f(k)[?
V4



Scattering phenomena: partial waves

Orot = 41 Y (20 + DIR(K)2,  F(0) = i(% +1)f,(k)Py(cos )
12 ¢=0

i6¢ (k)
k

1 :
@ Making use of the relation f;(k) = ﬂ(ez"sf(k) —1) =
I

€ .
sin dyp,

4T _
Tiot = 75 Z(% + 1) sin 6,(k)
=0




Scattering phenomena: partial waves

Orot = 41 Y (20 + DIR(K)2,  F(0) = i(% +1)f,(k)Py(cos )
12 ¢=0

1 ..
@ Making use of the relation f;(k) = ﬁ(ez"s@(k) —1) = D sin g,
I

4T :
Tiot = 75 Z(% + 1) sin 6,(k)
=0

oi00(K)

o Since P,(1) =1, £(0) = 3 ,(20 + 1)fy(k) = 3=,(20 + 1) sin

k
Im f(O) = EUtot

One may show that this “sum rule”, known as optical theorem,
encapsulates particle conservation.



Method of partial waves: summary

eikr ________
scattering

center
dQ

Y(r) = e™" + £(0)

r

@ The quantum scattering of particles from a localized target is fully
characterised by the differential cross section,

do
——= =|f(0)f
—& = ()



Method of partial waves: summary

ikr

Y(r) = e™" + £(0)

scattering
center

dQ

r

@ The quantum scattering of particles from a localized target is fully
characterised by the differential cross section,

do
— = |f(O)f
= 1f(0)
@ The scattering amplitude, f(#), which depends on the energy
E = E4, can be separated into a set of partial wave amplitudes,
F(0) =) (20 + 1)fy(k)Py(cosb)
(=0

Ly

where partial amplitudes, f;(k) = %~ sin, defined by scattering
phase shifts §,(k).




Method of partial waves: summary

ikr

Y(r) = e™" + £(0)

scattering
center

dQ

r

@ The quantum scattering of particles from a localized target is fully
characterised by the differential cross section,

do
— = |f(O)f
= 1f(0)
@ The scattering amplitude, f(#), which depends on the energy
E = E4, can be separated into a set of partial wave amplitudes,
F(0) =) (20 + 1)fy(k)Py(cosb)
(=0

Ly

where partial amplitudes, f;(k) = %~ sin, defined by scattering
phase shifts §;(k). But how are phase shifts determined?




Method of partial waves

@ For scattering from a central potential,
the scattering amplitude, f, must be
symmetrical about axis of incidence.

scattering
center

dQ

@ In this case, both scattering wavefunction, 1 (r), and scattering
amplitudes, f(6), can be expanded in Legendre polynomials,

p(r) =) Ru(r)Py(cos )
¢=0

cf. wavefunction for hydrogen-like atoms with m = 0.



Method of partial waves

@ For scattering from a central potential,
the scattering amplitude, f, must be
symmetrical about axis of incidence.

scattering
center

dQ

@ In this case, both scattering wavefunction, 1 (r), and scattering
amplitudes, f(6), can be expanded in Legendre polynomials,

p(r) =) Ru(r)Py(cos )
¢=0

cf. wavefunction for hydrogen-like atoms with m = 0.

@ Each term in expansion known as partial wave, and is simultaneous
eigenfunction of L? and L, having eigenvalue #%¢(¢ + 1) and 0, with
¢=0,1,2,--- referred to as s, p,d,--- waves.



Method of partial waves

@ For scattering from a central potential,
the scattering amplitude, f, must be
symmetrical about axis of incidence.

scattering
center

dQ

@ In this case, both scattering wavefunction, 1 (r), and scattering
amplitudes, f(6), can be expanded in Legendre polynomials,

p(r) =) Ru(r)Py(cos )
¢=0

cf. wavefunction for hydrogen-like atoms with m = 0.

@ Each term in expansion known as partial wave, and is simultaneous
eigenfunction of L? and L, having eigenvalue #%¢(¢ + 1) and 0, with
¢=0,1,2,--- referred to as s, p,d,--- waves.

@ From the asymtotic form of v (r) we can determine the phase shifts
d¢(k) and in turn the partial amplitudes fy(k).



Method of partial waves

P(r) =) Ri(r)Py(cosb)
£=0

scattering
center

dQ

@ Starting with Schrodinger equation for scattering wavefunction,

[132 N V(r)] b(r) = Ep(r), E= 72 k>

2m 2m
separability of ¥ (r) leads to radial equation,

[ G (@z _a, s 1)> + v(r)] JORLLYE

om r2 2m




Method of partial waves

@b(r) — % Rg(r)Pg(COS 9) ! 7\( zsccaetrt]%gi"ng

dQ

@ Starting with Schrodinger equation for scattering wavefunction,

[132 N V(r)] b(r) = Ep(r), E= 72 k>

2m 2m
separability of ¥ (r) leads to radial equation,

[ G (@z _a, s 1)> + v(r)] JORLLYE

om r2 2m

@ Rearranging equation, we obtain the radial equation,

[63 + %a, D e+ k2] R(r) = 0

r2

where U(r) = 2mV/(r)/h? represents effective potential.



Method of partial waves

[63 + %ar G Ry k2] R(r) = 0

r2

@ Providing potential sufficiently short-ranged, scattering wavefunction
involves superposition of incoming and outgoing spherical waves,

—l(kr—ﬁﬂ'/2)

6 2150 (K) ei(kr—EW/Z)
Re(r) kz (2e+1)( . — e2ide . )




Method of partial waves

[a% + %ar G Ry k2] R(r) = 0

r2

@ Providing potential sufficiently short-ranged, scattering wavefunction
involves superposition of incoming and outgoing spherical waves,

Ro(r) ~ 1 e'%k) sin(kr + 8o(k))

kr

@ However, at low energy, kR < 1, where R is typical range of
potential, s-wave channel (¢ = 0) dominates.

@ Here, with u(r) = rRy(r), radial equation becomes,

(07 — U(r) + k*] u(r) =0

with boundary condition u(O) = 0 and, as expected, outside radius
of potential, R, u(r) "Z Asm(kr + do).



Method of partial waves

(07 — U(r) + k*] u(r) =0

@ Alongside phase shift, dg it is convenient to introduce scattering
length, ag, defined by condition that u(ap) = 0 for kR < 1, i.e.

u(ag) = sin(kag + dp) = sin(kag) cos dy + cos(kag) sin dg
= sin dp [cot dg sin(kag) + cos(kr)] =~ sin dy [kag cot o + 1]

1
leads to scattering length ap = — Aimo p tan do(k).



Method of partial waves

(07 — U(r) + k*] u(r) =0

@ Alongside phase shift, dg it is convenient to introduce scattering
length, ag, defined by condition that u(ap) = 0 for kR < 1, i.e.

u(ag) = sin(kag + dp) = sin(kag) cos dy + cos(kag) sin dg
= sin dp [cot dg sin(kag) + cos(kr)] =~ sin dy [kag cot o + 1]

1
leads to scattering length ap = — Aimo p tan do(k).

@ From this result, we find the scattering cross section

dr . , k—0 41 (kag)? 5
Tior = 75 SIn do(k) = K211 (kag)? ~ 477 a5

l.e. ag characterizes effective size of target.



Example |: Scattering by hard-sphere

1
(07 — U(r) + k*] u(r) =0, ag = — llimo L tan do

@ Consider hard sphere potential,

oo r<R
w”:{o r>R



Example |: Scattering by hard-sphere

o 2 _ — _ im =
102 — U(r) + k%] u(r) =0, ag llino , tan do

@ Consider hard sphere potential,

oo r<R
w”:{o r>R

@ With the boundary condition u(R) = 0, suitable for an impenetrable
sphere, the scattering wavefunction given by

u(r) = Asin(kr + o), do = —kR



Example |: Scattering by hard-sphere

1
(07 — U(r) + k*] u(r) =0, ag = — llimo L tan do

@ Consider hard sphere potential,

{oo r< R

Ur=40 >R

@ With the boundary condition u(R) = 0, suitable for an impenetrable
sphere, the scattering wavefunction given by

u(r) = Asin(kr + o), do = —kR

eikR

@ i.e. scattering length ap ~ R, fo(k) = —sin(kR), and the total
scattering cross section is given by,
. 2
sin“(kR) 5
Otot == 47 2 ~ 4R
Factor of 4 enhancement over classical value, 7R?, due to
diffraction processes at sharp potential.




Example Il: Scattering by attractive square well

(07 = U(r) + K] u(r) = 0 R f

@ As a proxy for scattering from a binding potential, let us consider

quantum particles incident upon an attractive square well potential,
U(r) = —UyO(R — r), where Uy > 0.



Example Il: Scattering by attractive square well

[83 — U(r) + kz} u(r)=0 0 R

@ As a proxy for scattering from a binding potential, let us consider
quantum particles incident upon an attractive square well potential,

U(r) = —UyO(R — r), where Uy > 0.

@ Once again, focussing on low energies, kR < 1, this translates to
the radial potential,

(07 + UsO(R — r) + k*] u(r) =0

with the boundary condition u(0) = 0.



Example Il: Scattering by attractive square well

[3,2 + UoO(R — r) + kz] u(r)=20 G 0 ‘

@ From this radial equation, we obtain the solution,

| Csin(Kr) r<R
u(r) = { sin(kr +d9) r >R

where K? = k? + Uy > k? and &y denotes scattering phase shift.



Example Il: Scattering by attractive square well

(07 + Uob(R —r) + k*] u(r) =0 T R

@ From this radial equation, we obtain the solution,

| Csin(Kr) r<R
u(r) = { sin(kr +9dp) r>R

where K? = k? + Uy > k? and &y denotes scattering phase shift.

@ From continuity of wavefunction and derivative at r = R,
Csin(KR) = sin(kR + dg), CK cos(KR) = k cos(kR + dp)

we obtain the self-consistency condition for dg = dg(k),

K cot(KR) = k cot(kR + do)




Example Il: Scattering by attractive square well

KCOt(KR) = kCOt(kR -+ 50) 0 R :

@ From this result, we obtain

ktan(KR) — K tan(kR)

= K? = k? + U,
K + ktan(kR) tan(KR)’ o

tan 50(/()




Example Il: Scattering by attractive square well

KCOt(KR) = kCOt(kR -+ 50) 0 R

@ From this result, we obtain

ktan(KR) — K tan(kR)

= K? = k? + U,
K + ktan(kR) tan(KR)’ o

tan 50(/()

o With kR < 1, K ~ Uy/?(1 + O(k?/Up)), find scattering length,

1 tan(KR
2 = — lim —tanéoz—R( el )—1>

k—0 k KR

which, for KR < w/2 leads to a negative scattering length.



Example Il: Scattering by attractive square well

k—0 k KR

1 KR
ap = — lim —tandg ~ —R (tan( ) — 1) 0 R

@ So, at low energies, the scattering from an attractive square
potential leads to the ¢ = 0 phase shift,

§o ~ —kag ~ kR (ta”(KR) _ 1)

KR




Example Il: Scattering by attractive square well

1 tan(KR) |
ao——ATO;tanéo_—R( P —1) G R

@ So, at low energies, the scattering from an attractive square
potential leads to the ¢ = 0 phase shift,

tan(KR)
0o ~ —kapg ~ kR —1
: =t ( KR )

@ and total scattering cross-section,

47

tan( KR
Otot 2 —= sin’ do(k) ~ 47t R? ( an(KR) —

KR

2
L yl/2
o 1), K ~ U,



Example Il: Scattering by attractive square well

k—0 k KR

1
ap = — lim —tandg ~ —R (tan(KR) — 1) 0 R

@ So, at low energies, the scattering from an attractive square
potential leads to the ¢ = 0 phase shift,

tan(KR)
0o ~ —kapg ~ kR —1
0 do ( KR )

@ and total scattering cross-section,

4 . > tan(KR) 2 1/2
Otot 2 ﬁsm do(k) ~ 47t R? ( - 1) : K ~ UO/

@ But what happens when KR ~ 7 /27



Example Il: Scattering by attractive square well

uir}

tan( KR
ao~—R( anng )—1), K =~ Uy/?
=
@ If KR« 1, ag < 0 and wavefunction drawn / U

towards target — hallmark of attractive potential.



Example Il: Scattering by attractive square well

tan(KR
aoz—R(an}((R)—l>, K:Ug/z

-~

uir}

@ If KR« 1, ag < 0 and wavefunction drawn
towards target — hallmark of attractive potential.

@y 4
Ui

@ As KR — 7/2, both scattering length ap and g
Cross section oo = 47?3% diverge. U




Example Il: Scattering by attractive square well

tan(KR
aog—R(ani((R)—l), K:Ug/z

@ If KR« 1, ag < 0 and wavefunction drawn
towards target — hallmark of attractive potential.

@ As KR — 7/2, both scattering length ap and
Cross section oo = 47ra% diverge.

@ As KR increased, ag turns positive, wavefunction
pushed away from target (cf. repulsive potential)

until KR = m when o, = 0 and process repeats.
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@ If KR« 1, ag < 0 and wavefunction drawn
towards target — hallmark of attractive potential.

@ As KR — 7/2, both scattering length ap and
Cross section oo = 47ra% diverge.
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Example Il: Scattering by attractive square well

tan(KR
aog—R(ani((R)—l), K:Ug/z

@ If KR« 1, ag < 0 and wavefunction drawn
towards target — hallmark of attractive potential.

@ As KR — 7/2, both scattering length ap and
Cross section oo = 47ra% diverge.

@ As KR increased, ag turns positive, wavefunction
pushed away from target (cf. repulsive potential)
until KR = m when oot = 0 and process repeats.

@ Why?

uir}
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Example Il: Scattering by attractive square well

1%

@ In fact, when KR = 7 /2, the attractive square well just meets the
criterion to host a single s-wave bound state.

@ At this value, there is a zero energy resonance leading to the
divergence of the scattering length, and with it, the cross section —
the influence of the target becomes effectively infinite in range.

@ When KR = 37 /2, the potential becomes capable of hosting a
second bound state, and there is another resonance, and so on.

@ When KR = nm, the scattering cross section vanishes identically and
the target becomes invisible — the Ramsauer-Townsend effect.



Resonances

@ More generally, the /-th partial cross-section

A 1
Oy (2€—|— O'tot:ZO'g
14

- 1
k2 )1 + cot? dp( k)’

takes maximum value if there is an energy at which cot 0, vanishes.
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@ More generally, the /-th partial cross-section
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takes maximum value if there is an energy at which cot 0, vanishes.

@ If this occurs as a result of (k) increasing rapidly through odd

multiple of /2, cross-section exhibits a narrow peak as a function
of energy — a resonance.



Resonances

@ More generally, the /-th partial cross-section

4 1
— 011 =
RGBS Zg:(”

Oy

takes maximum value if there is an energy at which cot 0, vanishes.

@ If this occurs as a result of (k) increasing rapidly through odd

multiple of /2, cross-section exhibits a narrow peak as a function
of energy — a resonance.

@ Near the resonance,

Er — E
(E)/2

cot dp(k) =

where EgR is resonance energy.



Resonances

A

D
B I

M-5- M Ma——

a
max
2

Y

@ If ['(E) varies slowly in energy, partial cross-section in vicinity of
resonance given by Breit-Wigner formula,

[°(Er)/4
(E — ER)2 + F2(ER)/4

7i(E) = 13(20+ 1)

@ Physically, at E = Egr, the amplitude of the wavefunction within the
potential region is high and the probability of finding the scattered
particle inside the well is correspondingly high.

@ The parameter [ = h/7 represents typical lifetime, 7, of metastable
bound state formed by particle in potential.



Application: Feshbach resonance phenomena

Scattering length a

Energy
@ Ultracold atomic gases provide arena in
which resonant scattering phenomena
) a>0 a<0
exploited — far from resonance, neutral
alkali atoms interact through short-ranged
van der Waals interaction. E stoms | :
a=0 By Magnetic field

@ However, effective strength of interaction
can be tuned by allowing particles to form ’\

virtual bound state — a resonance. YL B—

@ By adjusting separation between entrance
channel states and bound state through 3000

external magnetic field, system can be S 2000}

tuned through resonance. -z.a 1000}

@ Ot

@ This allows effective interaction to be € _so00l
. . . e

tuned from repulsive to attractive simply § -2000}
. . o

by changing external field. 3000 b




Scattering theory: summary

scattering
center

dQ

@ The quantum scattering of particles from a localized target is fully
characterised by differential cross section,

do
— —|f 2
e =If ()l

ikr

where 1(r) = e’*" + f(0, $)<— denotes scattering wavefunction.

@ The scattering amplitude, f(6), which depends on the energy
E = E,, can be separated into a set of partial wave amplitudes,

F(6) =) (20 + 1)fy(k)Py(cosb)
(=0
where fy(k) = eize sin 0y defined by scattering phase shifts dy(k).



Scattering theory: summary

@ The partial amplitudes/phase shifts fully characterise scattering,

AT —

Oror = 75 ) (20+ 1) sin® 6,(k)
¢=0

@ The individual scattering phase shifts can then be obtained from the
solutions to the radial scattering equation,

(e +1)

r2

[63 + %8, - — U(r) + k2] Re(r) =0

@ Although this methodology is “straightforward”, when the energy of

incident particles is high (or the potential weak), many partial waves
contribute.

@ In this case, it is convenient to switch to a different formalism, the
Born approximation.



Lecture 21

Scattering theory:
Born perturbation series expansion



@ Previously, we have seen that the properties of a scattering system,

h2 k2

2 v v = L vt

2m

are encoded in the scattering amplitude, (6, ¢), where

/kr

() = ™"+ £(0, ¢)

@ For an isotropic scattering potential V/(r), the scattering amplitudes,
f(6), can be obtained as an expansion in harmonics, Py(cos®).



@ Previously, we have seen that the properties of a scattering system,

h2 k2

2 v v = L vt

2m

are encoded in the scattering amplitude, (6, ¢), where

/kr

U(r) = €7+ (60, 6)=

@ For an isotropic scattering potential V/(r), the scattering amplitudes,
f(6), can be obtained as an expansion in harmonics, Py(cos®).

@ At low energies, k — 0, this partial wave expansion is dominated
by small Z.

@ At higher energies, when many partial waves contribute, expansion
is inconvenient — helpful to develop a different methodology, the
Born series expansion



Lippmann-Schwinger equation

@ Returning to Schrodinger equation for scattering wavefunction,
(V24 k%) () = U(r)e(r)

2
with V(r) = %nsr) general solution can be written as

6D =60 + [ Galrr U)ol )

where (V2 4 k?) ¢(r) = 0 and (V? + k2) Go(r,r') = 6%(r — r').



Lippmann-Schwinger equation

@ Returning to Schrodinger equation for scattering wavefunction,
(V24 k%) () = U(r)e(r)

2
with V(r) = %nsr) general solution can be written as

6D =60 + [ Galrr U)ol )

where (V2 4 k?) ¢(r) = 0 and (V? + k2) Go(r,r') = 6%(r — r').

@ Formally, these equations have the solution

1 eil<|r—r’|

D (r) = e, Go(r,¢') = —

A1 |r —r/|




Lippmann-Schwinger equation

@ Together, leads to Lippmann-Schwinger equation:




Lippmann-Schwinger equation

@ Together, leads to Lippmann-Schwinger equation:

¢k(r) = e d3

@ In far-field, [r —¢/|~r—&, -v + .-+,

eil<|r—r’| olkr

r —r'| - C

—ik’-r

where k/ = ké,.

2;3,
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Lippmann-Schwinger equation

@ Together, leads to Lippmann-Schwinger equation:

@ In far-field, [r —¢/|~r—&, -v + .-+,

ik|lr—r’ ikr
ekl e o— ikt

s

r—v'|  r

where k/ = ké,.

o i Pi(r) = €T+ F(0,¢) =" where, with ¢y = e,

F(8,6) = ——— / &r' e T U Y(r) = — o (e |l




Lippmann-Schwinger equation

1 o
F(0.6) =~ [ & e UE () = — (6w Ul

@ The corresponding differential cross-section:

do m?
“—Z —|f(0.0)|? = Tiw |°
1q = (0, 9)] (277)2h4| Kok |
: . : : _ RAU(r)
where, in terms of the original scattering potential, V(r) = =5,

Tk = (P |V ]k)

denotes the transition matrix element.



Born approximation

(1) = o(r) + / Golr. VYUK Yp(r) 3 (%)

@ At zeroth order in V/(r), scattering wavefunction translates to
unperturbed incident plane wave, zpl((o)(r) = ¢ (r) = e’k
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@ At zeroth order in V/(r), scattering wavefunction translates to
unperturbed incident plane wave, zpl((o)(r) = ¢ (r) = e’k

@ In this approximation, (*) leads to expansion first order in U,

D () = di(r) + / A3 Go(r, ) U()O (+')



Born approximation

(1) = o(r) + / Golr. VYUK Yp(r) 3 (%)

@ At zeroth order in V/(r), scattering wavefunction translates to
unperturbed incident plane wave, zpl((o)(r) = ¢p(r) = e,

@ In this approximation, (*) leads to expansion first order in U,
) =) + [ & Go(e YU
@ and then to second order in U,

¢|((2)(") = ¢x(r) + / d*r’ Go(r, r’)U(r’)wl((l)(r’)

and so on.



Born approximation

() = o(r) + / Golr. VYUK YO(r )3 (%)

@ At zeroth order in V/(r), scattering wavefunction translates to
unperturbed incident plane wave, @bl((o)(r) = ¢ (r) = kT,

@ In this approximation, (*) leads to expansion first order in U,
) = () + [ P Golr U (r)

@ i.e. expressed in coordinate-independent basis,

i) = |d) + GoUlgw) + GoUGoUlgw) + -+ = > (Gol)"|¢hx)
n=0




Born approximation

) = |éw) + GoUlgw) + GoUGoUlg) +--- = D (GoU)"|¢hx)
n=0

® Then, making use of the identity (6, ) = — 2= (¢ |U|tbx),
scattering amplitude expressed as Born series expansion

1

— — —
kin k‘in kiﬂ

- ~

NG T e

—_— —_
g JI’fw[}ut\ kow}

@ Physically, incoming particle undergoes a sequence of multiple
scattering events from the potential.




Born approximation
1

f=—

7T<q5k/|U—|— UGoU + UGyUGyU +

| o)
@ Leading term in Born series known as first Born approximation,
e |
= ;A
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Born approximation

f=—

1
1= (9| U+ UGoU + UGoUGoU + -~ [)

@ Leading term in Born series known as first Born approximation

L . 7 ”% T
fom = = 2 (| Ul H| g

@ Setting A = k — k’, where A denotes momentum transfer, Born
scattering amplitude for a central potential

1 : oC in( A
fBorn(A) = - / d*re®U(r) = _/o rdr sm(A ") U(r)

where, noting that |

A = 2ksin(8/2).



Example: Coulomb scattering

@ Due to long range nature of the Coulomb scattering potential, the
boundary condition on the scattering wavefunction does not apply.

@ We can, however, address the problem by working with the screened

(Yukawa) potential, U(r) = Uy e """ and taking @ — c0. For this
potential, one may show that (exercise)

> sin(Ar) _ Uo
f orn — —U d /e —
B 0/0 A © a2 + A2

Therefore, for a« — 0o, we obtain

do 5
7 = |F(6) =

Us
16k* sin* 6 /2

which is just the Rutherford formula.



From Born approximation to Fermi’s Golden rule

@ Previously, in the leading approximation, we found that the
transition rate between states and i and f induced by harmonic
perturbation Ve'“! is given by Fermi's Golden rule,

i = (VI 0o — (E: — E1)

@ In a three-dimensional scattering problem, we should consider the
initial state as a plane wave state of wavevector k and the final
state as the continuum of states with wavevectors k/ with w = 0.



From Born approximation to Fermi’s Golden rule

@ Previously, in the leading approximation, we found that the
transition rate between states and i and f induced by harmonic
perturbation Ve'“! is given by Fermi's Golden rule,

i = (VI 0o — (E: — E1)

@ In a three-dimensional scattering problem, we should consider the
initial state as a plane wave state of wavevector k and the final
state as the continuum of states with wavevectors k/ with w = 0.

@ In this case, the total transition (or scattering) rate into a fixed solid
angle, d{Q, in direction (6, ¢) given by

2T 27
New = 3 S [KVIK)PS(E — Ew) = Tk VIk)Pg(Ex)

k' €dS2
where g(Ex) = >, 0(Ex — Ewr) = 92 is density of states at energy
E h° k>
k= 2m -




From Born approximation to Fermi’s Golden rule

21
M = (K| VIk)[*g ()

@ With

dn dk k2d< 1

g\Ex) = Gk dE = @n/L) kim

and incident flux j = hk/m, the differential cross section,

do . 1 Fk_>k/ . 1 |< 2mV
dQ - L3 jI B (47T)2

)°

@ At first order, Born approximation and Golden rule coincide.



Scattering by identical particles

@ So far, we have assumed that incident particles and target are
distinguishable. When scattering involves identical particles, we
have to consider quantum statistics:

path of first particle______

T path of second particle

@ Consider scattering of two identical particles. In centre of mass
frame, if an outgoing particle is detected at angle 6 to incoming, it
could have been (a) deflected through 8, or (b) through m — 6.

@ Classically, we could tell whether (a) or (b) by monitoring particles
during collision — however, in quantum scattering, we cannot track.




Scattering by identical particles

@ Therefore, in centre of mass frame, we must write scattering
wavefunction in appropriately symmetrized /antisymmetrized form —
for bosons,

ikr

W(r) = e 4+ &% 4 (F(8) + f(r — 0))=

r

@ The differential cross section is then given by

do _

= 1F(0) + F(m —0)

as opposed to |f(0)|? + |f(7m — 0)|? as it would be for distinguishable
particles.



Scattering by an atomic lattice

@ As a final application of Born approximation, 23,

: : : \,BL} N “1};
consider scattering from crystal lattice: At low ~J~ 559 fJJ q
energy, scattering amplitude of particles is again @5 T#i 2
independent of angle (s-wave). J:j,j/‘j

@ In this case, the solution of the Schrodinger equation by a single
atom / located at a point R; has the asymptotic form,

(I‘) /k(r R)+f



Scattering by an atomic lattice

@ As a final application of Born approximation,
consider scattering from crystal lattice: At low
energy, scattering amplitude of particles is again
independent of angle (s-wave).

@ In this case, the solution of the Schrodinger equation by a single

atom / located at a point R; has the asymptotic form,

@ Since klr — R;| ~ kr — kK’ - R;, with k' = ké, we have

ikr

b(r) = e~ kR | gikr | fe—i(k’—k)-R,-e_

r

@ From this result, we infer effective scattering amplitude,

f(0) = fexp[—iA-R], A=k —k
L




Scattering by an atomic lattice

@ If we consider scattering from a crystal lattice, we must sum over all
atoms leading to the total differential scattering cross-section,

2
do

22 =If(6) =

fZexp [—iA - Rj]

@ For periodic cubic crystal of dimension L¢,
sum translates to Bragg condition,

do

3
i |f|2(2”) @) (k' — k — 2rn/L)

where integers n known as Miller indices of
Bragg planes.




Scattering theory: summary
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@ The quantum scattering of particles from a localized target is fully
characterised by differential cross section,

do
— —|f 2
e =lf()l

ikr

where 1(r) = e’*" + f(0, $)<— denotes scattering wavefunction.
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scattering
center

dQ

@ The quantum scattering of particles from a localized target is fully
characterised by differential cross section,

do
— —|f 2
e =If ()l

ikr

where 1(r) = e’*" + f(0, $)<— denotes scattering wavefunction.

@ The scattering amplitude, f(6), which depends on the energy
E = E,, can be separated into a set of partial wave amplitudes,

F(6) =) (20 + 1)fy(k)Py(cos8)
(=0
where fy(k) = eize sin 0y defined by scattering phase shifts dy(k).



Scattering theory: summary

@ The partial amplitudes/phase shifts fully characterise scattering,

AT —

Oror = 75 ) (20+ 1) sin® 6,(k)
¢=0

@ The individual scattering phase shifts can then be obtained from the
solutions to the radial scattering equation,

(e +1)

r2

[63 + %8, - — U(r) + k2] Re(r) =0

@ Although this methodology is “straightforward”, when the energy of

incident particles is high (or the potential weak), many partial waves
contribute.

@ In this case, it is convenient to switch to a different formalism, the
Born approximation.



Scattering theory: summary

@ Formally, the solution of the scattering wavefunction can be
presented as the integral (Lippmann-Schwinger) equation,

e 1
Yi(r) = ™ —E/d:”r’

eik|r—r’|

U(r' ) (r)

r—r

@ This expression allows the scattering amplitude to be developed as a
power series in the interaction, U(r).

@ In the leading approximation, this leads to the Born approximation

for the scattering amplitude,

1

fBorn(A) — _E

d3reiA'rU(r)

where A =k — k' and A = 2ksin(6/2).



