Lecture 2

Quantum mechanics in one dimension

Quantum mechanics in one dimension

• Schrödinger equation for **non-relativistic quantum particle**:

$$i\hbar\partial_t\Psi(\mathbf{r},t)=\hat{H}\Psi(\mathbf{r},t)$$

where
$$\hat{H} = -\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r})$$
 denotes quantum Hamiltonian.

- To acquire intuition into general properties, we will review some simple and familiar(?) applications to one-dimensional systems.
- Divide consideration between potentials, V(x), which leave particle free (i.e. unbound), and those that bind particle.

Quantum mechanics in 1d: Outline

Unbound states

- Free particle
- Potential step
- Potential barrier
- Rectangular potential well
- 2 Bound states
 - Rectangular potential well (continued)
 - δ -function potential
- Beyond local potentials
 - Kronig-Penney model of a crystal
 - Anderson localization

Unbound particles: free particle

• For V = 0 Schrödinger equation describes travelling waves.

$$\Psi(x,t) = A e^{i(kx-\omega t)}, \qquad E(k) = \hbar\omega(k) = \frac{\hbar^2 k^2}{2m}$$

where $k = \frac{2\pi}{\lambda}$ with λ the wavelength; momentum $p = \hbar k = \frac{h}{\lambda}$.

• Spectrum is continuous, semi-infinite and, apart from k = 0, has two-fold degeneracy (right and left moving particles).

Unbound particles: free particle

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

$$i\hbar\partial_t\Psi(x,t)=-rac{\hbar^2\partial_x^2}{2m}\Psi(x,t)$$

$$\Psi(x,t) = A e^{i(kx-\omega t)}$$

- For infinite system, it makes no sense to fix wave function amplitude, *A*, by normalization of total probability.
- Instead, fix particle flux: $j = -\frac{\hbar}{2m} (i\Psi^* \partial_x \Psi + \text{c.c.})$ $j = |A|^2 \frac{\hbar k}{m} = |A|^2 \frac{p}{m}$
- Note that definition of j follows from continuity relation,

$$\partial_t |\Psi|^2 = -\nabla \cdot \mathbf{j}$$

Preparing a wave packet

• To prepare a **localized** wave packet, we can superpose components of different wave number (cf. Fourier expansion),

$$\psi(x) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(k) \, e^{ikx} dk$$

where Fourier elements set by

$$\psi(k) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x) e^{-ikx} dx$$

• Normalization of $\psi(k)$ follows from that of $\psi(x)$:

$$\int_{-\infty}^{\infty} \psi^*(k)\psi(k)dk = \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx = 1$$

• Both $|\psi(x)|^2 dx$ and $|\psi(k)|^2 dk$ represent probabilities densities.

Preparing a wave packet: example

< □ > < □ > < 三 > < 三 > < 三 > の < ⊙

The Fourier transform of a normalized Gaussian wave packet,

$$\psi(x) = \left(\frac{1}{2\pi\alpha}\right)^{1/4} e^{ik_0x} e^{-\frac{x^2}{4\alpha}}$$

(moving at velocity $v = \hbar k_0/m$) is also a Gaussian,

$$\psi(k) = \left(\frac{2\alpha}{\pi}\right)^{1/4} e^{-\alpha(k-k_0)^2},$$

 Although we can localize a wave packet to a region of space, this has been at the expense of having some width in k.

Preparing a wave packet: example

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

- E

590

• For the Gaussian wave packet,

$$\Delta x = \left\langle \left[x - \langle x \rangle \right]^2 \right\rangle^{1/2} \equiv \left[\langle x^2 \rangle - \langle x \rangle^2 \rangle \right]^{1/2} = \sqrt{\alpha}, \qquad \Delta k = \frac{1}{\sqrt{4\alpha}}$$

i.e. $\Delta x \,\Delta k = \frac{1}{2}$, constant.

 In fact, as we will see in the next lecture, the Gaussian wavepacket has minimum uncertainty,

$$\Delta p \, \Delta x = \frac{\hbar}{2}$$

• Stationary form of Schrödinger equation, $\Psi(x, t) = e^{-iEt/\hbar}\psi(x)$:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + V(x)\right]\psi(x) = E\psi(x)$$

• As a linear second order differential equation, we must specify boundary conditions on both ψ and its derivative, $\partial_x \psi$.

• As
$$|\psi(x)|^2$$
 represents a probablility density,
it must be everywhere finite $\Rightarrow \psi(x)$ is also finite.

• Stationary form of Schrödinger equation, $\Psi(x, t) = e^{-iEt/\hbar}\psi(x)$:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + V(x)\right]\psi(x) = E\psi(x)$$

Since ψ(x) is finite, and E and V(x) are presumed finite,
 so ∂²_xψ(x) must be finite.

• \Rightarrow both $\psi(x)$ and $\partial_x \psi(x)$ are continuous functions of x (even if potential V(x) is discontinuous).

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + V(x)\right]\psi(x) = E\psi(x)$$

- Consider beam of particles (energy E) moving from left to right incident on potential step of height V_0 at position x = 0.
- If beam has unit amplitude, reflected and transmitted (complex) amplitudes set by r and t,

$$\psi_{<}(x) = e^{ik_{<}x} + r e^{-ik_{<}x}$$
 $x < 0$
 $\psi_{>}(x) = t e^{ik_{>}x}$ $x > 0$

where $\hbar k_{<} = \sqrt{2mE}$ and $\hbar k_{>} = \sqrt{2m(E - V_0)}$.

• Applying continuity conditions on ψ and $\partial_x \psi$ at x= 0,

$$\begin{array}{ll} (a) & 1+r=t\\ (b) & ik_{<}(1-r)=ik_{>}t \end{array} \Rightarrow r=\frac{k_{<}-k_{>}}{k_{<}+k_{>}}, \qquad t=\frac{2k_{<}}{k_{<}+k_{>}}$$

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + V(x)\right]\psi(x) = E\psi(x)$$

- Consider beam of particles (energy E) moving from left to right incident on potential step of height V_0 at position x = 0.
- If beam has unit amplitude, reflected and transmitted (complex) amplitudes set by r and t,

$$\psi_{<}(x) = e^{ik_{<}x} + r e^{-ik_{<}x}$$
 $x < 0$
 $\psi_{>}(x) = t e^{ik_{>}x}$ $x > 0$

where $\hbar k_{<} = \sqrt{2mE}$ and $\hbar k_{>} = \sqrt{2m(E - V_0)}$.

• Applying continuity conditions on ψ and $\partial_x \psi$ at x = 0,

(a)
$$1+r = t$$

(b) $ik_{<}(1-r) = ik_{>}t$ $\Rightarrow r = \frac{k_{<} - k_{>}}{k_{<} + k_{>}}, t = \frac{2k_{<}}{k_{<} + k_{>}}$

• For $E > V_0$, both $\hbar k_<$ and $\hbar k_> = \sqrt{2m(E - V_0)}$ are real, and

$$j_{\mathrm{i}} = rac{\hbar k_{<}}{m}, \qquad j_{\mathrm{r}} = |r|^2 rac{\hbar k_{<}}{m}, \qquad j_{\mathrm{t}} = |t|^2 rac{\hbar k_{>}}{m}$$

• Defining reflectivity, R, and transmittivity, T,

 $R = \frac{\text{reflected flux}}{\text{incident flux}}, \qquad T = \frac{\text{transmitted flux}}{\text{incident flux}}$ $R = |r|^2 = \left(\frac{k_{<} - k_{>}}{k_{<} + k_{>}}\right)^2, \quad T = |t|^2 \frac{k_{>}}{k_{<}} = \frac{4k_{<}k_{>}}{(k_{<} + k_{>})^2}, \quad R + T = 1$

• For $E < V_0$, $\hbar k_> = \sqrt{2m(E - V_0)}$ becomes pure imaginary, wavefunction, $\psi_>(x) \simeq te^{-|k_>|x}$, decays evanescently, and

$$j_{\mathrm{i}}=rac{\hbar k_{<}}{m}, \qquad j_{\mathrm{r}}=|r|^{2}rac{\hbar k_{<}}{m}, \qquad j_{\mathrm{t}}=0$$

• Beam is completely reflected from barrier,

$$R = |r|^2 = \left| \frac{k_{<} - k_{>}}{k_{<} + k_{>}} \right|^2 = 1, \quad T = 0, \quad R + T = 1$$

▲□▶▲□▶▲□▶▲□▶ ▲□ シ へ ()

- Transmission across a potential barrier prototype for generic **quantum scattering** problem dealt with later in the course.
- Problem provides platform to explore a phenomenon peculiar to quantum mechanics – quantum tunneling.

• Wavefunction parameterization:

$$egin{aligned} \psi_1(x) &= e^{ik_1x} + r\,e^{-ik_1x} & x \leq 0 \ \psi_2(x) &= A\,e^{ik_2x} + B\,e^{-ik_2x} & 0 \leq x \leq a \ \psi_3(x) &= t\,e^{ik_1x} & a \leq x \end{aligned}$$

where $\hbar k_1 = \sqrt{2mE}$ and $\hbar k_2 = \sqrt{2m(E - V_0)}$.

• Continuity conditions on ψ and $\partial_{\mathsf{x}}\psi$ at $\mathsf{x}=\mathsf{0}$ and $\mathsf{x}=\mathsf{a}$

$$\begin{cases} 1+r=A+B\\ Ae^{ik_2a}+Be^{-ik_2a}=te^{ik_1a} \end{cases},$$

 $k_1(1 - r) = k_2(A - B)$ $k_2(Ae^{ik_2a} - Be^{-ik_2a}) = k_1te^{ik_1a}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

• Wavefunction parameterization:

$$egin{aligned} \psi_1(x) &= e^{ik_1x} + r\,e^{-ik_1x} & x \leq 0 \ \psi_2(x) &= A\,e^{ik_2x} + B\,e^{-ik_2x} & 0 \leq x \leq a \ \psi_3(x) &= t\,e^{ik_1x} & a \leq x \end{aligned}$$

where $\hbar k_1 = \sqrt{2mE}$ and $\hbar k_2 = \sqrt{2m(E - V_0)}$.

• Continuity conditions on ψ and $\partial_x \psi$ at x = 0 and x = a,

$$\begin{cases} 1+r = A+B \\ Ae^{ik_2a} + Be^{-ik_2a} = te^{ik_1a} \end{cases}, \qquad \begin{cases} k_1(1-r) = k_2(A-B) \\ k_2(Ae^{ik_2a} - Be^{-ik_2a}) = k_1te^{ik_1a} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ の Q ()

• Solving for transmission amplitude,

$$t = \frac{2k_1k_2e^{-ik_1a}}{2k_1k_2\cos(k_2a) - i(k_1^2 + k_2^2)\sin(k_2a)}$$

which translates to a transmissivity of

$$T = |t|^{2} = \frac{1}{1 + \frac{1}{4} \left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right)^{2} \sin^{2}(k_{2}a)}$$

and reflectivity, R = 1 - T (particle conservation).

$$T = |t|^{2} = \frac{1}{1 + \frac{1}{4} \left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right)^{2} \sin^{2}(k_{2}a)}$$

• For $E > V_0 > 0$, T shows oscillatory behaviour with T reaching unity when $k_2 a \equiv \frac{a}{\hbar} \sqrt{2m(E - V_0)} = n\pi$ with n integer.

 At k₂a = nπ, fulfil resonance condition: interference eliminates altogether the reflected component of wave.

• For $V_0 > E > 0$, $k_2 = i\kappa_2$ turns pure imaginary, and wavefunction decays within, but penetrates, barrier region – quantum tunneling.

Unbound particles: tunneling

- Although tunneling is a robust, if uniquely quantum, phenomenon, it is often difficult to discriminate from thermal activation.
- Experimental realization provided by Scanning Tunneling Microscope (STM)

- ▲ ロ ▶ ▲ 昼 ▶ ▲ 目 ▶ ● 目 ● のへで

Unbound particles: tunneling

- Although tunneling is a robust, if uniquely quantum, phenomenon, it is often difficult to discriminate from thermal activation.
- Experimental realization provided by Scanning Tunneling Microscope (STM)

e.g. Friedel charge density oscillations from impurities on a surface.

$$T = |t|^{2} = \frac{1}{1 + \frac{1}{4} \left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right)^{2} \sin^{2}(k_{2}a)} \times \frac{\pi}{\sqrt{2}}$$

- For scattering from potential well ($V_0 < 0$), while E > 0, result still applies continuum of unbound states with resonance behaviour.
- However, now we can find **bound states** of the potential well with E < 0.
- But, before exploring these bound states, let us consider the general scattering problem in one-dimension.

- Consider **localized** potential, V(x), subject to beam of quantum particles incident from left and right.
- Outside potential, wavefunction is plane wave with $\hbar k = \sqrt{2mE}$.
- Relation between the incoming and outgoing components of plane wave specified by scattering matrix (or S-matrix)

$$\left(\begin{array}{c} C\\ B\end{array}\right) = \left(\begin{array}{c} S_{11} & S_{12}\\ S_{21} & S_{22}\end{array}\right) \left(\begin{array}{c} A\\ D\end{array}\right) \implies \Psi_{\rm out} = S\Psi_{\rm in}$$

• With $j_{\text{left}} = \frac{\hbar k}{m} (|A|^2 - |B|^2)$ and $j_{\text{right}} = \frac{\hbar k}{m} (|C|^2 - |D|^2)$, particle conservation demands that $j_{\text{left}} = j_{\text{right}}$, i.e.

$$|A|^2 + |D|^2 = |B|^2 + |C|^2$$
 or $\Psi_{\rm in}^{\dagger} \Psi_{\rm in} = \Psi_{\rm out}^{\dagger} \Psi_{\rm out}$

• Then, since $\Psi_{out} = S\Psi_{in}$

$$\Psi_{\mathrm{in}}^{\dagger}\Psi_{\mathrm{in}} \stackrel{!}{=} \Psi_{\mathrm{out}}^{\dagger}\Psi_{\mathrm{out}} = \Psi_{\mathrm{in}}^{\dagger}\underbrace{\mathcal{S}^{\dagger}\mathcal{S}}_{=}\Psi_{\mathrm{in}}$$
$$\stackrel{!}{=} \mathbb{I}$$

and it follows that S-matrix is **unitary**:

590

• With $j_{\text{left}} = \frac{\hbar k}{m} (|A|^2 - |B|^2)$ and $j_{\text{right}} = \frac{\hbar k}{m} (|C|^2 - |D|^2)$, particle conservation demands that $j_{\text{left}} = j_{\text{right}}$, i.e.

$$|A|^2 + |D|^2 = |B|^2 + |C|^2$$
 or $\Psi_{in}^{\dagger}\Psi_{in} = \Psi_{out}^{\dagger}\Psi_{out}$

• Then, since
$$\Psi_{
m out} = S \Psi_{
m in}$$
,

$$\Psi_{\mathrm{in}}^{\dagger}\Psi_{\mathrm{in}} \stackrel{!}{=} \Psi_{\mathrm{out}}^{\dagger}\Psi_{\mathrm{out}} = \Psi_{\mathrm{in}}^{\dagger}\underbrace{\mathcal{S}^{\dagger}\mathcal{S}}_{=}\Psi_{\mathrm{in}}$$
$$\stackrel{!}{=} \mathbb{I}$$

and it follows that S-matrix is **unitary**: $S^{\dagger}S = \mathbb{I}$

• For matrices that are unitary, eigenvalues have unit magnitude. Proof: For eigenvector $|v\rangle$, such that $S|v\rangle = \lambda |v\rangle$,

$$\langle \mathbf{v}|S^{\dagger}S|\mathbf{v}\rangle = |\lambda|^{2}\langle \mathbf{v}|\mathbf{v}\rangle = \langle \mathbf{v}|\mathbf{v}\rangle$$

i.e. $|\lambda|^2 = 1$, and $\lambda = e^{i\theta}$.

• S-matrix characterised by two scattering phase shifts, $e^{2i\delta_1}$ and $e^{2i\delta_2}$, (generally functions of k).

- In three dimensions, plane wave can be decomposed into superposition of incoming and outgoing spherical waves:
- If $V(\mathbf{r})$ short-ranged, scattering wavefunction takes *asymptotic* form,

$$e^{i\mathbf{k}\cdot\mathbf{r}} = \frac{i}{2k} \sum_{\ell=0}^{\infty} i^{\ell} (2\ell+1) \left[\frac{e^{-i(kr-\ell\pi/2)}}{r} - S_{\ell}(k) \frac{e^{i(kr-\ell\pi/2)}}{r} \right] P_{\ell}(\cos\theta)$$

where $|S_{\ell}(k)| = 1$ (i.e. $S_{\ell}(k) = e^{2i\delta_{\ell}(k)}$ with $\delta_{\ell}(k)$ the phase shifts).

- In three dimensions, plane wave can be decomposed into superposition of incoming and outgoing spherical waves:
- If $V(\mathbf{r})$ short-ranged, scattering wavefunction takes *asymptotic* form,

$$e^{i\mathbf{k}\cdot\mathbf{r}} = \frac{i}{2k} \sum_{\ell=0}^{\infty} i^{\ell} (2\ell+1) \left[\frac{e^{-i(kr-\ell\pi/2)}}{r} - \frac{S_{\ell}(k)}{r} \frac{e^{i(kr-\ell\pi/2)}}{r} \right] P_{\ell}(\cos\theta)$$

where $|S_{\ell}(k)| = 1$ (i.e. $S_{\ell}(k) = e^{2i\delta_{\ell}(k)}$ with $\delta_{\ell}(k)$ the phase shifts).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

• For a symmetric potential, V(x) = V(-x), S-matrix has the form

$$S = \left(\begin{array}{cc} t & r \\ r & t \end{array}\right)$$

where r and t are complex reflection and transmission amplitudes.

• From the unitarity condition, it follows that

$$S^{\dagger}S = \mathbb{I} = \left(egin{array}{ccc} |t|^2 + |r|^2 & rt^* + r^*t \ rt^* + r^*t & |t|^2 + |r|^2 \end{array}
ight)$$

i.e. $rt^* + r^*t = 0$ and $|r|^2 + |t|^2 = 1$ (or $r^2 = -\frac{t}{t^*}(1 - |t|^2))$.

• For application to a δ -function potential, see problem set I.

Quantum mechanics in 1d: bound states

- Rectangular potential well (continued)
- **2** δ -function potential

- For a potential well, we seek bound state solutions with energies lying in the range $-V_0 < E < 0$.
- Symmetry of potential \Rightarrow states separate into those symmetric and those antisymmetric under parity transformation, $x \rightarrow -x$.
- Outside well, (bound state) solutions have form

 $\psi_1(x) = Ce^{\kappa x}$ for x > a, $\hbar \kappa = \sqrt{-2mE} > 0$

In central well region, general solution of the form

 $\psi_2(x) = A\cos(kx) \text{ or } B\sin(kx), \qquad \hbar k = \sqrt{2m(E+V_0)} > 0$

- For a potential well, we seek bound state solutions with energies lying in the range $-V_0 < E < 0$.
- Symmetry of potential \Rightarrow states separate into those symmetric and those antisymmetric under parity transformation, $x \rightarrow -x$.
- Outside well, (bound state) solutions have form

$$\psi_1(x) = Ce^{\kappa x}$$
 for $x > a$, $\hbar \kappa = \sqrt{-2mE} > 0$

• In central well region, general solution of the form

$$\psi_2(x) = A\cos(kx) \text{ or } B\sin(kx), \qquad \hbar k = \sqrt{2m(E+V_0)} > 0$$

• Applied to even states, $\psi_1(x) = Ce^{-\kappa x}, \ \psi_2(x) = A\cos(kx),$ continuity of ψ and $\partial_x \psi$ implies

$$Ce^{-\kappa a} = A\cos(ka)$$

 $-\kappa Ce^{-\kappa a} = -Ak\sin(ka)$

(similarly odd).

• Quantization condition:

$$\kappa a = \begin{cases} ka \tan(ka) & \text{even} \\ -ka \cot(ka) & \text{odd} \end{cases}$$
$$\kappa a = \left(\frac{2ma^2 V_0}{\hbar^2} - (ka)^2\right)^{1/2}$$

• \Rightarrow at least one bound state $\mathfrak{I}_{\mathfrak{S}}$

• Applied to even states, $\psi_1(x) = Ce^{-\kappa x}, \ \psi_2(x) = A\cos(kx),$ continuity of ψ and $\partial_x \psi$ implies

$$Ce^{-\kappa a} = A\cos(ka)$$

 $-\kappa Ce^{-\kappa a} = -Ak\sin(ka)$

(similarly odd).

• Quantization condition:

$$\kappa a = \begin{cases} ka \tan(ka) & \text{even} \\ -ka \cot(ka) & \text{odd} \end{cases}$$
$$\kappa a = \left(\frac{2ma^2 V_0}{\hbar^2} - (ka)^2\right)^{1/2}$$

• \Rightarrow at least one bound state.

- Uncertainty relation, ΔpΔx > h, shows that confinement by potential well is balance between narrowing spatial extent of ψ while keeping momenta low enough not to allow escape.
- In fact, one may show (exercise!) that, in one dimension, arbitrarily weak binding always leads to development of at least one bound state.
- In higher dimension, potential has to reach critical strength to bind a particle.

Bound particles: δ -function potential

• For δ -function potential $V(x) = -aV_0\delta(x)$,

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} - aV_0\delta(x)\right]\psi(x) = E\psi(x)$$

- (Once again) symmetry of potential shows that stationary solutions of Schrödinger equation are eigenstates of parity, $x \rightarrow -x$.
- States with odd parity have $\psi(0) = 0$, i.e. insensitive to potential.

Bound particles: δ -function potential

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} - aV_0\delta(x)\right]\psi(x) = E\psi(x)$$

• Bound state with even parity of the form,

$$\psi(x) = A \begin{cases} e^{\kappa x} & x < 0\\ e^{-\kappa x} & x > 0 \end{cases}, \qquad \hbar \kappa = \sqrt{-2mE}$$

• Integrating Schrödinger equation across infinitesimal interval,

$$\begin{aligned} \partial_x \psi|_{+\epsilon} - \partial_x \psi|_{-\epsilon} &= -\frac{2maV_0}{\hbar^2} \psi(0) \end{aligned}$$
find $\kappa = \frac{maV_0}{\hbar^2}$, leading to bound state energy $E = -\frac{ma^2V_0^2}{2\hbar^2}$

Quantum mechanics in 1d: beyond local potentials

Kronig-Penney model of a crystal

2 Anderson localization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

 Kronig-Penney model provides caricature of (one-dimensional) crystal lattice potential,

$$V(x) = aV_0\sum_{n=-\infty}^\infty \delta(x-na)$$

- Since potential is repulsive, all states have energy E > 0.
- Symmetry: translation by lattice spacing *a*, V(x + a) = V(x).
- Probability density must exhibit same translational symmetry, $|\psi(x+a)|^2 = |\psi(x)|^2$, i.e. $\psi(x+a) = e^{i\phi}\psi(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

590

 Kronig-Penney model provides caricature of (one-dimensional) crystal lattice potential,

$$V(x) = aV_0\sum_{n=-\infty}^\infty \delta(x-na)$$

- Since potential is repulsive, all states have energy E > 0.
- Symmetry: translation by lattice spacing a, V(x + a) = V(x).
- Probability density must exhibit same translational symmetry, $|\psi(x+a)|^2 = |\psi(x)|^2$, i.e. $\psi(x+a) = e^{i\phi}\psi(x)$.

• In region (n-1)a < x < na, general solution of Schrödinger equation is plane wave like,

$$\psi_n(x) = A_n \sin[k(x - na)] + B_n \cos[k(x - na)]$$

with $\hbar k = \sqrt{2mE}$

 Imposing boundary conditions on ψ_n(x) and ∂_xψ_n(x) and requiring ψ(x + a) = e^{iφ}ψ(x), we can derive a constraint on allowed k values (and therefore E) similar to quantized energies for bound states.

 $\psi_n(x) = A_n \sin[k(x - na)] + B_n \cos[k(x - na)]$

• Continuity of wavefunction, $\psi_n(na) = \psi_{n+1}(na)$, translates to

$$B_{n+1}\cos(ka) = B_n + A_{n+1}\sin(ka) \qquad (1)$$

• Discontinuity in first derivative,

$$\partial_x \psi_{n+1}|_{x=na} - \partial_x \psi_n|_{na} = \frac{2maV_0}{\hbar^2} \psi_n(na)$$

leads to the condition,

$$k \left[A_{n+1} \cos(ka) + B_{n+1} \sin(ka) - A_n \right] = \frac{2maV_0}{\hbar^2} B_n \qquad (2)$$

590

• Rearranging equations (1) and (2), and using the relations $A_{n+1} = e^{i\phi}A_n$ and $B_{n+1} = e^{i\phi}B_n$, we obtain

$$\cos\phi = \cos(ka) + \frac{maV_0}{\hbar^2 k}\sin(ka)$$

- Since $\cos \phi$ can only take on values between -1 and 1, there are allowed "bands" of k with $E = \frac{\hbar^2 k^2}{2m}$ and gaps between those bands.
- Appearance of energy bands separated by energy gaps is hallmark of periodic lattice potential system ⇒ metals and band insulators

• Rearranging equations (1) and (2), and using the relations $A_{n+1} = e^{i\phi}A_n$ and $B_{n+1} = e^{i\phi}B_n$, we obtain

$$\cos\phi = \cos(ka) + \frac{maV_0}{\hbar^2 k}\sin(ka)$$

- Since $\cos \phi$ can only take on values between -1 and 1, there are allowed "bands" of k with $E = \frac{\hbar^2 k^2}{2m}$ and gaps between those bands.
- Appearance of energy bands separated by energy gaps is hallmark of periodic lattice potential system ⇒ metals and band insulators

Example: Naturally occuring photonic crystals

- "Band gap" phenomena apply to any wave-like motion in a periodic system including light traversing dielectric media,
- e.g. photonic crystal structures in beetles and butterflies!

• Band-gaps lead to perfect reflection of certain frequencies.

Anderson localization

- We have seen that even a weak potential can lead to the formation of a bound state.
- However, for such a confining potential, we expect high energy states to remain unbound.
- Curiously, and counter-intuitively, in 1d a weak extended disorder potential always leads to the exponential localization of all quantum states, no matter how high the energy!
- First theoretical insight into the mechanism of localization was achieved by Neville Mott!

Summary: Quantum mechanics in 1d

- In one-dimensional quantum mechanics, an arbitrarily weak binding potential leads to the development of at least one bound state.
- For quantum particles incident on a spatially localized potential barrier, the scattering properties are defined by a unitary S-matrix, $\psi_{out} = S\psi_{in}$.
- The scattering properties are characterised by eigenvalues of the S-matrix, $e^{2i\delta_i}$.
- For potentials in which $E < V_{max}$, particle transfer across the barrier is mediated by **tunneling**.
- For an extended periodic potential (e.g. Kronig-Penney model), the spectrum of allow energies show "band gaps" where propagating solutions don't exist.
- For an extended random potential (however weak), all states are localized, however high is the energy!

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

Summary: Quantum mechanics in 1d

- In one-dimensional quantum mechanics, an arbitrarily weak binding potential leads to the development of at least one bound state.
- For quantum particles incident on a spatially localized potential barrier, the scattering properties are defined by a unitary S-matrix, $\psi_{out} = S\psi_{in}$.
- The scattering properties are characterised by eigenvalues of the S-matrix, $e^{2i\delta_i}$.
- For potentials in which $E < V_{max}$, particle transfer across the barrier is mediated by tunneling.
- For an extended periodic potential (e.g. Kronig-Penney model), the spectrum of allow energies show "band gaps" where propagating solutions don't exist.
- For an extended random potential (however weak), all states are localized, however high is the energy!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

Summary: Quantum mechanics in 1d

- In one-dimensional quantum mechanics, an arbitrarily weak binding potential leads to the development of at least one bound state.
- For quantum particles incident on a spatially localized potential barrier, the scattering properties are defined by a unitary S-matrix, $\psi_{out} = S\psi_{in}$.
- The scattering properties are characterised by eigenvalues of the S-matrix, $e^{2i\delta_i}$.
- For potentials in which $E < V_{max}$, particle transfer across the barrier is mediated by tunneling.
- For an extended periodic potential (e.g. Kronig-Penney model), the spectrum of allow energies show "band gaps" where propagating solutions don't exist.
- For an extended random potential (however weak), all states are localized, however high is the energy!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで