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Quantum mechanics in one dimension



Quantum mechanics in one dimension

Schrödinger equation for non-relativistic quantum particle:

i!∂tΨ(r, t) = ĤΨ(r, t)

where Ĥ = −!2∇2

2m
+ V (r) denotes quantum Hamiltonian.

To acquire intuition into general properties, we will review some
simple and familiar(?) applications to one-dimensional systems.

Divide consideration between potentials, V (x), which leave particle
free (i.e. unbound), and those that bind particle.



Quantum mechanics in 1d: Outline

1 Unbound states

Free particle
Potential step
Potential barrier
Rectangular potential well

2 Bound states

Rectangular potential well (continued)
δ-function potential

3 Beyond local potentials

Kronig-Penney model of a crystal
Anderson localization



Unbound particles: free particle

i!∂tΨ(x , t) = −!2∂2
x

2m
Ψ(x , t)

For V = 0 Schrödinger equation describes travelling waves.

Ψ(x , t) = A e i(kx−ωt), E (k) = !ω(k) =
!2k2

2m

where k = 2π
λ with λ the wavelength; momentum p = !k = h

λ .

Spectrum is continuous, semi-infinite and, apart from k = 0, has
two-fold degeneracy (right and left moving particles).



Unbound particles: free particle

i!∂tΨ(x , t) = −!2∂2
x

2m
Ψ(x , t) Ψ(x , t) = A e i(kx−ωt)

For infinite system, it makes no sense to fix wave function
amplitude, A, by normalization of total probability.

Instead, fix particle flux: j = − !
2m

(iΨ∗∂xΨ + c.c.)

j = |A|2 !k

m
= |A|2 p

m

Note that definition of j follows from continuity relation,

∂t |Ψ|2 = −∇ · j



Preparing a wave packet

To prepare a localized wave packet, we can superpose components
of different wave number (cf. Fourier expansion),

ψ(x) =
1√
2π

∫ ∞

−∞
ψ(k) e ikxdk

where Fourier elements set by

ψ(k) =
1√
2π

∫ ∞

−∞
ψ(x) e−ikxdx .

Normalization of ψ(k) follows from that of ψ(x):

∫ ∞

−∞
ψ∗(k)ψ(k)dk =

∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1

Both |ψ(x)|2dx and |ψ(k)|2dk represent probabilities densities.



Preparing a wave packet: example

The Fourier transform of a normalized Gaussian wave packet,

ψ(x) =

(
1

2πα

)1/4

e ik0xe−
x2

4α .

(moving at velocity v = !k0/m) is also a Gaussian,

ψ(k) =

(
2α

π

)1/4

e−α(k−k0)
2

,

Although we can localize a wave packet to a region of space, this
has been at the expense of having some width in k.



Preparing a wave packet: example

For the Gaussian wave packet,

∆x =
〈
[x − 〈x〉]2

〉1/2
≡

[
〈x2〉 − 〈x〉2〉

]1/2
=
√

α, ∆k =
1√
4α

i.e. ∆x ∆k =
1

2
, constant.

In fact, as we will see in the next lecture, the Gaussian wavepacket
has minimum uncertainty,

∆p ∆x =
!
2



Unbound particles: potential step

Stationary form of Schrödinger equation, Ψ(x , t) = e−iEt/!ψ(x):

[
−!2∂2

x

2m
+ V (x)

]
ψ(x) = Eψ(x)

As a linear second order differential equation, we must specify
boundary conditions on both ψ and its derivative, ∂xψ.

As |ψ(x)|2 represents a probablility density,
it must be everywhere finite ⇒ ψ(x) is also finite.



Unbound particles: potential step

Stationary form of Schrödinger equation, Ψ(x , t) = e−iEt/!ψ(x):

[
−!2∂2

x

2m
+ V (x)

]
ψ(x) = Eψ(x)

Since ψ(x) is finite, and E and V (x) are presumed finite,
so ∂2

xψ(x) must be finite.

⇒ both ψ(x) and ∂xψ(x) are continuous functions of x
(even if potential V (x) is discontinous).



Unbound particles: potential step

[
−!2∂2

x

2m
+ V (x)

]
ψ(x) = Eψ(x)

Consider beam of particles (energy E ) moving from left to right
incident on potential step of height V0 at position x = 0.

If beam has unit amplitude, reflected and transmitted (complex)
amplitudes set by r and t,

ψ<(x) = e ik<x + r e−ik<x x < 0
ψ>(x) = t e ik>x x > 0

where !k< =
√

2mE and !k> =
√

2m(E − V0).

Applying continuity conditions on ψ and ∂xψ at x = 0,

(a) 1 + r = t
(b) ik<(1− r) = ik>t

⇒ r =
k< − k>

k< + k>
, t =

2k<

k< + k>
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Unbound particles: potential step

For E > V0, both !k< and !k> =
√

2m(E − V0) are real, and

ji =
!k<

m
, jr = |r |2 !k<

m
, jt = |t|2 !k>

m

Defining reflectivity, R, and transmittivity, T ,

R =
reflected flux
incident flux

, T =
transmitted flux

incident flux

R = |r |2 =

(
k< − k>

k< + k>

)2

, T = |t|2 k>

k<
=

4k<k>

(k< + k>)2
, R + T = 1



Unbound particles: potential step

For E < V0, !k> =
√

2m(E − V0) becomes pure imaginary,
wavefunction, ψ>(x) ( te−|k>|x , decays evanescently, and

ji =
!k<

m
, jr = |r |2 !k<

m
, jt = 0

Beam is completely reflected from barrier,

R = |r |2 =

∣∣∣∣
k< − k>

k< + k>

∣∣∣∣
2

= 1, T = 0, R + T = 1



Unbound particles: potential barrier

Transmission across a potential barrier – prototype for generic
quantum scattering problem dealt with later in the course.

Problem provides platform to explore a phenomenon peculiar to
quantum mechanics – quantum tunneling.



Unbound particles: potential barrier

Wavefunction parameterization:

ψ1(x) = e ik1x + r e−ik1x x ≤ 0
ψ2(x) = A e ik2x + B e−ik2x 0 ≤ x ≤ a
ψ3(x) = t e ik1x a ≤ x

where !k1 =
√

2mE and !k2 =
√

2m(E − V0).

Continuity conditions on ψ and ∂xψ at x = 0 and x = a,

{
1 + r = A + B
Ae ik2a + Be−ik2a = te ik1a ,

{
k1(1− r) = k2(A− B)
k2(Ae ik2a − Be−ik2a) = k1te ik1a
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Unbound particles: potential barrier

Solving for transmission amplitude,

t =
2k1k2e−ik1a

2k1k2 cos(k2a)− i(k2
1 + k2

2 ) sin(k2a)

which translates to a transmissivity of

T = |t|2 =
1

1 + 1
4

(
k1
k2
− k2

k1

)2
sin2(k2a)

and reflectivity, R = 1− T (particle conservation).



Unbound particles: potential barrier

T = |t|2 =
1

1 + 1
4

(
k1
k2
− k2

k1

)2
sin2(k2a)

For E > V0 > 0, T shows oscillatory behaviour with T reaching
unity when k2a ≡ a

!
√

2m(E − V0) = nπ with n integer.

At k2a = nπ, fulfil resonance condition: interference eliminates
altogether the reflected component of wave.



Unbound particles: potential barrier

T = |t|2 =
1

1 + 1
4

(
k1
k2
− k2

k1

)2
sin2(k2a)

For V0 > E > 0, k2 = iκ2 turns pure imaginary, and wavefunction
decays within, but penetrates, barrier region – quantum tunneling.

For κ2a * 1 (weak tunneling), T ( 16k2
1κ2

2

(k2
1 + κ2

2)
2
e−2κ2a.



Unbound particles: tunneling

Although tunneling is a robust, if uniquely quantum, phenomenon,
it is often difficult to discriminate from thermal activation.

Experimental realization provided by Scanning Tunneling
Microscope (STM)



Unbound particles: tunneling

Although tunneling is a robust, if uniquely quantum, phenomenon,
it is often difficult to discriminate from thermal activation.

Experimental realization provided by Scanning Tunneling
Microscope (STM)

e.g. Friedel charge density oscillations from impurities on a surface.



Unbound particles: potential well

T = |t|2 =
1

1 + 1
4

(
k1
k2
− k2

k1

)2
sin2(k2a)

For scattering from potential well (V0 < 0), while E > 0, result still
applies – continuum of unbound states with resonance behaviour.

However, now we can find bound states of the potential well with
E < 0.

But, before exploring these bound states, let us consider the general
scattering problem in one-dimension.



Quantum mechanical scattering in one-dimension

V(x)
Aeikx

Be−ikx Ceikx

De−ikx

Consider localized potential, V (x), subject to beam of quantum
particles incident from left and right.

Outside potential, wavefunction is plane wave with !k =
√

2mE .

Relation between the incoming and outgoing components of plane
wave specified by scattering matrix (or S-matrix)

(
C
B

)
=

(
S11 S12

S21 S22

) (
A
D

)
=⇒ Ψout = SΨin



Quantum mechanical scattering in one-dimension

V(x)
Aeikx

Be−ikx Ceikx

De−ikx

With jleft = !k
m (|A|2 − |B|2) and jright = !k

m (|C |2 − |D|2), particle
conservation demands that jleft = jright, i.e.

|A|2 + |D|2 = |B|2 + |C |2 or Ψ†
inΨin = Ψ†

outΨout

Then, since Ψout = SΨin,

Ψ†
inΨin

!
= Ψ†

outΨout = Ψ†
in S†S︸︷︷︸

!
= I

Ψin

and it follows that S-matrix is unitary: S†S = I
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Quantum mechanical scattering in one-dimension

V(x)
Aeikx

Be−ikx Ceikx

De−ikx

For matrices that are unitary, eigenvalues have unit magnitude.

Proof: For eigenvector |v〉, such that S |v〉 = λ|v〉,

〈v |S†S |v〉 = |λ|2〈v |v〉 = 〈v |v〉

i.e. |λ|2 = 1, and λ = e iθ.

S-matrix characterised by two scattering phase shifts,
e2iδ1 and e2iδ2 , (generally functions of k).



Quantum mechanical scattering in three-dimensions

In three dimensions, plane wave can be decomposed into
superposition of incoming and outgoing spherical waves:

If V (r) short-ranged, scattering wavefunction takes asymptotic form,

e ik·r =
i

2k

∞∑

(=0

i((2) + 1)

[
e−i(kr−(π/2)

r
− S((k)

e i(kr−(π/2)

r

]
P((cos θ)

where |S((k)| = 1 (i.e. S((k) = e2iδ"(k) with δ((k) the phase shifts).
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Quantum mechanical scattering in one-dimension

V(x)
Aeikx

Be−ikx Ceikx

De−ikx

For a symmetric potential, V (x) = V (−x), S-matrix has the form

S =

(
t r
r t

)

where r and t are complex reflection and transmission amplitudes.

From the unitarity condition, it follows that

S†S = I =

(
|t|2 + |r |2 rt∗ + r∗t
rt∗ + r∗t |t|2 + |r |2

)

i.e. rt∗ + r∗t = 0 and |r |2 + |t|2 = 1 (or r2 = − t
t∗ (1− |t|2)).

For application to a δ-function potential, see problem set I.



Quantum mechanics in 1d: bound states

1 Rectangular potential well (continued)

2 δ-function potential



Bound particles: potential well

For a potential well, we seek bound state solutions with energies
lying in the range −V0 < E < 0.

Symmetry of potential ⇒ states separate into those symmetric and
those antisymmetric under parity transformation, x → −x .

Outside well, (bound state) solutions have form

ψ1(x) = Ceκx for x > a, !κ =
√
−2mE > 0

In central well region, general solution of the form

ψ2(x) = A cos(kx) or B sin(kx), !k =
√

2m(E + V0) > 0
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Bound particles: potential well

Applied to even states,
ψ1(x) = Ce−κx , ψ2(x) = A cos(kx),
continuity of ψ and ∂xψ implies

Ce−κa = A cos(ka)

−κCe−κa = −Ak sin(ka)

(similarly odd).

Quantization condition:

κa =

{
ka tan(ka) even
−ka cot(ka) odd

κa =

(
2ma2V0

!2
− (ka)2

)1/2

⇒ at least one bound state.
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Bound particles: potential well

Uncertainty relation, ∆p∆x > h, shows that confinement by
potential well is balance between narrowing spatial extent of ψ while
keeping momenta low enough not to allow escape.

In fact, one may show (exercise!) that, in one dimension, arbitrarily
weak binding always leads to development of at least one
bound state.

In higher dimension, potential has to reach critical strength to bind
a particle.



Bound particles: δ-function potential

For δ-function potential V (x) = −aV0δ(x),

[
−!2∂2

x

2m
− aV0δ(x)

]
ψ(x) = Eψ(x)

(Once again) symmetry of potential shows that stationary solutions
of Schrödinger equation are eigenstates of parity, x → −x .

States with odd parity have ψ(0) = 0, i.e. insensitive to potential.



Bound particles: δ-function potential

[
−!2∂2

x

2m
− aV0δ(x)

]
ψ(x) = Eψ(x)

Bound state with even parity of the form,

ψ(x) = A

{
eκx x < 0
e−κx x > 0

, !κ =
√
−2mE

Integrating Schrödinger equation across infinitesimal interval,

∂xψ|+ε − ∂xψ|−ε = −2maV0

!2
ψ(0)

find κ =
maV0

!2
, leading to bound state energy E = −ma2V 2

0

2!2



Quantum mechanics in 1d: beyond local potentials

1 Kronig-Penney model of a crystal

2 Anderson localization



Kronig-Penney model of a crystal

Kronig-Penney model provides caricature of (one-dimensional)
crystal lattice potential,

V (x) = aV0

∞∑

n=−∞
δ(x − na)

Since potential is repulsive, all states have energy E > 0.

Symmetry: translation by lattice spacing a, V (x + a) = V (x).

Probability density must exhibit same translational symmetry,
|ψ(x + a)|2 = |ψ(x)|2, i.e. ψ(x + a) = e iφψ(x).
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Kronig-Penney model of a crystal

In region (n − 1)a < x < na, general solution of Schrödinger
equation is plane wave like,

ψn(x) = An sin[k(x − na)] + Bn cos[k(x − na)]

with !k =
√

2mE

Imposing boundary conditions on ψn(x) and ∂xψn(x) and requiring
ψ(x + a) = e iφψ(x), we can derive a constraint on allowed k values
(and therefore E ) similar to quantized energies for bound states.



Kronig-Penney model of a crystal

ψn(x) = An sin[k(x − na)] + Bn cos[k(x − na)]

Continuity of wavefunction, ψn(na) = ψn+1(na), translates to

Bn+1 cos(ka) = Bn + An+1 sin(ka) (1)

Discontinuity in first derivative,

∂xψn+1|x=na − ∂xψn|na =
2maV0

!2
ψn(na)

leads to the condition,

k [An+1 cos(ka) + Bn+1 sin(ka)− An] =
2maV0

!2
Bn (2)



Kronig-Penney model of a crystal

Rearranging equations (1) and (2), and using the relations
An+1 = e iφAn and Bn+1 = e iφBn, we obtain

cos φ = cos(ka) +
maV0

!2k
sin(ka)

Since cos φ can only take on values between −1 and 1, there are
allowed “bands” of k with E = !2k2

2m and gaps between those bands.

Appearance of energy bands separated by energy gaps is hallmark of
periodic lattice potential system ⇒ metals and band insulators
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Example: Naturally occuring photonic crystals

“Band gap” phenomena apply to any wave-like motion in a periodic
system including light traversing dielectric media,

e.g. photonic crystal structures in beetles and butterflies!

Band-gaps lead to perfect reflection of certain frequencies.



Anderson localization

We have seen that even a weak potential can lead to the formation
of a bound state.

However, for such a confining potential, we expect high energy
states to remain unbound.

Curiously, and counter-intuitively, in 1d a weak extended disorder
potential always leads to the exponential localization of all
quantum states, no matter how high the energy!

First theoretical insight into the mechanism of localization was
achieved by Neville Mott!



Summary: Quantum mechanics in 1d

In one-dimensional quantum mechanics, an arbitrarily weak
binding potential leads to the development of at least one
bound state.

For quantum particles incident on a spatially localized potential
barrier, the scattering properties are defined by a unitary S-matrix,
ψout = Sψin .

The scattering properties are characterised by eigenvalues of the
S-matrix, e2iδi .

For potentials in which E < Vmax, particle transfer across the
barrier is mediated by tunneling.

For an extended periodic potential (e.g. Kronig-Penney model), the
spectrum of allow energies show “band gaps” where propagating
solutions don’t exist.

For an extended random potential (however weak), all states are
localized, however high is the energy!
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