L ecture 2

Quantum mechanics in one dimension



Quantum mechanics in one dimension

@ Schrodinger equation for non-relativistic quantum particle:

ihO:V(r, t) = HW(r, t)

h?V?

2m

where H = —

+ V/(r) denotes quantum Hamiltonian.

@ To acquire intuition into general properties, we will review some
simple and familiar(?) applications to one-dimensional systems.

@ Divide consideration between potentials, V/(x), which leave particle
free (i.e. unbound), and those that bind particle.



Quantum mechanics in 1d: QOutline

Q@ Unbound states

e Free particle

e Potential step

e Potential barrier

e Rectangular potential well

@ Bound states

o Rectangular potential well (continued)
e O-function potential

© Beyond local potentials

e Kronig-Penney model of a crystal
e Anderson localization



Unbound particles: free particle
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@ For V = 0 Schrodinger equation describes travelling waves.

, h? k?
W(x,t) = Aell—wt) E(k) = hw(k) = -

where k = 2T with X the wavelength; momentum p = ik = £.

@ Spectrum is continuous, semi-infinite and, apart from k = 0, has
two-fold degeneracy (right and left moving particles).



Unbound particles: free particle

h2 02 .
iho:V(x,t) = — 2mX\IJ(x, t) V(x,t) = A pl(kx—wt)

@ For infinite system, it makes no sense to fix wave function
amplitude, A, by normalization of total probability.

h
@ Instead, fix particle flux: j = 5 (IV*O V¥ + c.c.)
m

hk
j= 1A = AP
m m

@ Note that definition of j follows from continuity relation,

O|V]" = -V}
I 4 @




Preparing a wave packet

@ To prepare a localized wave packet, we can superpose components
of different wave number (cf. Fourier expansion),

$(x) = / (k) e dk

NoT:

where Fourier elements set by

0= = [ vee e

@ Normalization of (k) follows from that of (x):

/ T (k) (k)dk = / T (x)dx = 1

@ Both |)(x)|?dx and |¢)(k)|>dk represent probabilities densities.



Preparing a wave packet: example
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@ The Fourier transform of a normalized Gaussian wave packet,

1 \VA ,
Y(x) = (—) e'koXe™1a

2T
(moving at velocity v = hky/m) is also a Gaussian,

1/4
w(k) _ (2_04) e—a(k—ko)z |

s

@ Although we can localize a wave packet to a region of space, this
has been at the expense of having some width in k.



Preparing a wave packet: example
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@ For the Gaussian wave packet,

Ax = ([x - <><>]2>1/2 = ) - Y = va,  Ak= ——

1
@ i.e. AxAk = 5 constant.

@ In fact, as we will see in the next lecture, the Gaussian wavepacket
has minimum uncertainty,

h
ApAx = —
pAx =3




Unbound particles: potential step

Vix)

@ Stationary form of Schrodinger equation, W(x, t) = e~ Et/Pqp(x):

[ h202

2m
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@ As a linear second order differential equation, we must specify
boundary conditions on both ¢ and its derivative, 0, .

@ As |1)(x)|? represents a probablility density,
it must be everywhere finite = (x) is also finite.



Unbound particles: potential step

Vix)

@ Stationary form of Schrddinger equation, W(x, t) = e~ Et/My(x):

D V)| 0 = Evt)

@ Since ¥(x) is finite, and E and V/(x) are presumed finite,
so 021)(x) must be finite.

@ = both ¢(x) and 0,v(x) are continuous functions of x
(even if potential V/(x) is discontinous).



Unbound particles: potential step

2m

[_ mo V(X)] ¥(x) = Eib(x)

@ Consider beam of particles (energy E) moving from left to right
incident on potential step of height V4 at position x = 0.

@ If beam has unit amplitude, reflected and transmitted (complex)
amplitudes set by r and t,

Yo (x) = eh<X 4 re7k<x x <0
P (x) = tek>> x>0

where hk. = vV2mE and hks. = \/2m(E — V).




Unbound particles: potential step

2m

[_ mo V(X)] ¥(x) = Eib(x)

@ Consider beam of particles (energy E) moving from left to right
incident on potential step of height V4 at position x = 0.

@ If beam has unit amplitude, reflected and transmitted (complex)
amplitudes set by r and t,

Po(x) = e*<X +re7tk<x  x <0
P (x) = tek>> x>0
where hk. = v2mE and hks = \/2m(E — V).
@ Applying continuity conditions on % and 0,1 at x = 0,
(a) l+r=t ke — ks 2k

. . = = t =
(b) ike(1—r) = ikst T ket ks ke + ko



Unbound particles: potential step

Vix)

@ For E > Vp, both hk. and hks = \/2m(E — V) are real, and

N - S
@ Defining reflectivity, R, and transmittivity, T,
_ reflected flux _ transmitted flux
incident flux’ incident flux
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R:\r|2: k< k> , T:’t|2—>: <>27 R—I—T:]_
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Unbound particles: potential step

L0

R g

06|

(aT

2r

0.5 10 1.5 200 2.5 30

@ For E < Vp, hks = /2m(E — Vj) becomes pure imaginary,
wavefunction, s (x) ~ te~lk>1¥ decays evanescently, and
. hkc . 2 k<

Ji = ’ Jr = ‘rl )
m m

Jt =0

@ Beam is completely reflected from barrier,

2

ke — k
= 2| =1, T=0, R+T=1

R =|r|? =
I Tk




Unbound particles: potential barrier

) |

@ Transmission across a potential barrier — prototype for generic
guantum scattering problem dealt with later in the course.

@ Problem provides platform to explore a phenomenon peculiar to
quantum mechanics — quantum tunneling.



Unbound particles: potential barrier

Vi

@ Wavefunction parameterization:

wl(X) — eiklx _|_ r e—iklx X S 0
Po(x) = Ae*X L Be™X (< x<a
P3(x) = t ek~ a<x

where hk; = v2mE and hk, = \/2m(E — V).



Unbound particles: potential barrier

Vi

@ Wavefunction parameterization:

wl(X) — eiklx _|_ r e—iklx X S 0
Pa(x) = AekeX - Be™ kX (< x<a
3(x) = tekx a<x

where hk; = v2mE and hk, = \/2m(E — V).

@ Continuity conditions on % and 04 at x = 0 and x = a,

l1+r=A+B ki(1—r) = ko(A — B)
Aeik2a e Be_ik2a — teikla ) kz(Aeikga . Be‘ik?a) — klteikla



Unbound particles: potential barrier

@ Solving for transmission amplitude,

2k1k26_ikla

t =
2ky ko cos(kpa) — i(kZ + k3) sin(koa)

which translates to a transmissivity of

1

T — |t|2 — 5
1+ 2 (% — ’;—i) sin’(kpa)

and reflectivity, R =1 — T (particle conservation).



Unbound particles: potential barrier

1
T =|t|* =

2
14 % (’;—; — %) sin’(kpa)

@ For E > V[ > 0, T shows oscillatory behaviour with T reaching
unity when kya = 2,/2m(E — Vp) = n with n integer.
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@ At krya = nm, fulfil resonance condition: interference eliminates
altogether the reflected component of wave.




Unbound particles: potential barrier

1
T =|t|* =

2
14 % (’;—; — %) sin’(kpa)

@ For Vy > E > 0, ky = iky turns pure imaginary, and wavefunction
decays within, but penetrates, barrier region — quantum tunneling.
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Unbound particles: tunneling

@ Although tunneling is a robust, if uniquely quantum, phenomenon,
it is often difficult to discriminate from thermal activation.

@ Experimental realization provided by Scanning Tunneling
Microscope (STM)

a) macroscopic scale; b) atomic scale:

t
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Unbound particles: tunneling

@ Although tunneling is a robust, if uniquely quantum, phenomenon,
it is often difficult to discriminate from thermal activation.

@ Experimental realization provided by Scanning Tunneling
Microscope (STM)

e.g. Friedel charge density oscillations from impurities on a surface.



Unbound particles: potential well

(X0A

@ For scattering from potential well (Vo < 0), while E > 0, result still
applies — continuum of unbound states with resonance behaviour.

@ However, now we can find bound states of the potential well with
E <0.

@ But, before exploring these bound states, let us consider the general
scattering problem in one-dimension.



Quantum mechanical scattering in one-dimension

Be—ikx Oeikzx
- e
V(x)
Ae?ﬁk:ﬂ De—ikaz
- > -

@ Consider localized potential, V/(x), subject to beam of quantum
particles incident from left and right.

@ QOutside potential, wavefunction is plane wave with hk = v2mE.

@ Relation between the incoming and outgoing components of plane
wave specified by scattering matrix (or S-matrix)

C\_ [ Su Sw A _ Sy
(5)-(5 32)(5) = wu-sw




Quantum mechanical scattering in one-dimension

Be—ikx Ceika:
-
V(x)
Aeikx De—z’kx
- > -

@ With jiet = ZX(|A]2 — |BJ?) and jiight = 2£(|C|> — | D|?), particle
conservation demands that jiegt = jright, I-€.

AP+ |D2= B2+ |C? or Wl w,=wl v,

out



Quantum mechanical scattering in one-dimension

Be—z’kx Ceika:
-
V(x)
Aeikx De—z’kx
- > -

@ With jiet = ZX(|A]2 — |BJ?) and jiight = 2£(|C|> — | D|?), particle
conservation demands that jiegt = jright, I-€.

AP+ |D2= B2+ |C? or Wl w,=wl v,

out

@ Then, since ¥V = SV,

viw, =wl v =wl stsw,
<~

out

!
=1

and it follows that S-matrix is unitary: |STS =1




Quantum mechanical scattering in one-dimension

Be—ikx Cez’kx
V(x)
Aeikx De—z’kx

@ For matrices that are unitary, eigenvalues have unit magnitude.

Proof: For eigenvector |v), such that S|v) = A|v),
(v|STS|v) = [AP{v|v) = (v|v)

i.e. [\2=1, and A = e,

@ S-matrix characterised by two scattering phase shifts,
e?%1 and e?%2, (generally functions of k).



Quantum mechanical scattering in three-dimensions

@ In three dimensions, plane wave can be decomposed into
superposition of incoming and outgoing spherical waves:

. 00 —i(kr—£m/2) i(kr—{m /2)
ik-r ! 24 € — € F
e 2k;0/(€—|— )[ p »(cos )

r



Quantum mechanical scattering in three-dimensions

@ In three dimensions, plane wave can be decomposed into
superposition of incoming and outgoing spherical waves:

@ If V(r) short-ranged, scattering wavefunction takes asymptotic form,

—i(kr—£m /2) oi(kr—tm/2)

ek — S Z i“(2¢ + 1) [e — Sy(k) p Py(cos 6)

where |S;(k)| =1 (i.e. S;(k) = e?9¢(k) with §,(k) the phase shifts).



Quantum mechanical scattering in one-dimension

Be—ikx

Aeikx

4>

V(x)

Ceikl‘

De™

ikx

@ For a symmetric potential, V(x) = V(—x), S-matrix has the form

where r and t are complex reflection and transmission amplitudes.

@ From the unitarity condition, it follows that

2 2 * *
A i e Ve L A S
55_]1_( rt* +rt |t + |r]?

e rt* +r*t=0and |r]*+ [t]* =1 (or r* = — L (1 —|t]*)).

@ For application to a d-function potential, see problem set I.



Quantum mechanics in 1d: bound states

© Rectangular potential well (continued)

@ J-function potential



Bound particles: potential well

Vix}
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@ For a potential well, we seek bound state solutions with energies
lying in the range —Vp < E < 0.

@ Symmetry of potential = states separate into those symmetric and
those antisymmetric under parity transformation, x — —x.



Bound particles: potential well

Vix}

@ For a potential well, we seek bound state solutions with energies
lying in the range —Vp < E < 0.

@ Symmetry of potential = states separate into those symmetric and
those antisymmetric under parity transformation, x — —x.

@ Outside well, (bound state) solutions have form
P1(x) = Ce™ for x > a, ht =V —-2mE > 0
@ In central well region, general solution of the form

Ya(x) = Acos(kx) or Bsin(kx), hk = ~/2m(E + V) > 0




Bound particles: potential well

@ Applied to even states, Vix)
P1(x) = Ce™™, 1ho(x) = Acos(kx),
continuity of ¢ and Oy implies

Ce™ " = Acos(ka)
—kCe "7 = —Aksin(ka) P

(similarly odd).



Bound particles: potential well

{HR

Ln

@ Applied to even states,
P1(x) = Ce ™, a(x) = Acos(kx),
continuity of ¢ and Oy implies

Ce "? = Acos(ka)
—kCe " = —Aksin(ka)

(similarly odd).

tanika) ~Cota)

&

ka

Vix)

a1
o=

@ Quantization condition:

katan(ka)  even
—kacot(ka) odd

1/2
2m32 Vo _ (ka)2)

h2

@ — at least-one bound state.




Bound particles: potential well

Vix}

-3 f a

@ Uncertainty relation, ApAx > h, shows that confinement by
potential well is balance between narrowing spatial extent of v while
keeping momenta low enough not to allow escape.

@ In fact, one may show (exercise!) that, in one dimension, arbitrarily
weak binding always leads to development of at least one
bound state.

@ In higher dimension, potential has to reach critical strength to bind
a particle.



Bound particles: J-function potential

Vix)

@ For d-function potential V(x) = —aV(d(x),

h2 0>
- 2m

— aVpd(x)| ¥(x) = Ey(x)

@ (Once again) symmetry of potential shows that stationary solutions
of Schrodinger equation are eigenstates of parity, x — —x.

@ States with odd parity have ¥(0) = 0, i.e. insensitive to potential.



Bound particles: J-function potential

¥o

D28~ avhi)| () = B

@ Bound state with even parity of the form,

b(x) = A{ e x<0 = VomE

e x>0

@ Integrating Schrodinger equation across infinitesimal interval,

2ma Vo

Ol — O] = (0)

Vo 22
m;z leading to bound state energy E = m;hzo

find Kk =




Quantum mechanics in 1d: beyond local potentials

Q Kronig-Penney model of a crystal

@ Anderson localization



Kronig-Penney model of a crystal

Vix}

@ Kronig-Penney model provides caricature of (one-dimensional)
crystal lattice potential,

@)

V(x)=aVe >  6&(x— na)

n=—oo

@ Since potential is repulsive, all states have energy E > 0.



Kronig-Penney model of a crystal

Vix}

@ Kronig-Penney model provides caricature of (one-dimensional)
crystal lattice potential,

@)

V(x)=aVe >  6&(x— na)

n=—00
@ Since potential is repulsive, all states have energy E > 0.

@ Symmetry: translation by lattice spacing a, V(x + a) = V/(x).
@ Probability density must exhibit same translational symmetry,

P(x+a)|? = [(x)? ie. P(x+a) = eP(x).
B @4



Kronig-Penney model of a crystal

Vix)

n-13a na in=1k

@ In region (n — 1)a < x < na, general solution of Schrodinger
equation is plane wave like,

Yn(x) = Apsin[k(x — na)] + B, cos[k(x — na)]

with hk = v2mE

@ Imposing boundary conditions on v,(x) and 0x1,(x) and requiring
YP(x + a) = e'®1)(x), we can derive a constraint on allowed k values
(and therefore E) similar to quantized energies for bound states.



Kronig-Penney model of a crystal

Vix)

Yn(x) = Apsin[k(x — na)] + B, cos[k(x — na)]

@ Continuity of wavefunction, ¥,(na) = v,.1(na), translates to

B11cos(ka) = B, + An11sin(ka) (1)

@ Discontinuity in first derivative,

2maV)
72

aan-|-1‘x:na - 8x77bn|na — 1bn(na)

leads to the condition,

2maV)
;2

K [An—|—1 cos(ka) + Bhi1 sin(ka) — A,,] —

B,  (2)



Kronig-Penney model of a crystal

Vix}

@ Rearranging equations (1) and (2), and using the relations
Api1 = €A, and B,.1 = e'?B,,, we obtain

ma Vo

cos ¢ = cos(ka) + ~n

sin(ka)




Kronig-Penney model of a crystal

VAN

@ Rearranging equations (1) and (2), and using the relations
Ani1 = e'?A. and Bn,i1 = e'? B, we obtain

ma V)
h2 k

cos ¢ = cos(ka) + sin(ka)

@ Since cos ¢ can only take on values between —1 and 1, there are

allowed “bands” of k with E = h;f and gaps between those bands.

@ Appearance of energy bands separated by energy gaps is hallmark of
periodic lattice potential system = metals and band insulators



Example: Naturally occuring photonic crystals

@ "Band gap” phenomena apply to any wave-like motion in a periodic
system including light traversing dielectric media,

e.g. photonic crystal structures in beetles and butterflies!

@ Band-gaps lead to perfect reflection of certain frequencies.



Anderson localization

@ We have seen that even a weak potential can lead to the formation
of a bound state.

@ However, for such a confining potential, we expect high energy
states to remain unbound.

@ Curiously, and counter-intuitively, in 1d a weak extended disorder
potential always leads to the exponential localization of all
quantum states, no matter how high the energy!

@ First theoretical insight into the mechanism of localization was
achieved by Neville Mott!



Summary: Quantum mechanics in 1d

@ In one-dimensional quantum mechanics, an arbitrarily weak
binding potential leads to the development of at least one
bound state.



Summary: Quantum mechanics in 1d

@ In one-dimensional quantum mechanics, an arbitrarily weak
binding potential leads to the development of at least one
bound state.

@ For quantum particles incident on a spatially localized potential
barrier, the scattering properties are defined by a unitary S-matrix,

wout — 5win -

@ The scattering properties are characterised by eigenvalues of the

S-matrix, e/

@ For potentials in which E < V,,.«, particle transfer across the
barrier is mediated by tunneling.



Summary: Quantum mechanics in 1d

@ In one-dimensional quantum mechanics, an arbitrarily weak
binding potential leads to the development of at least one
bound state.

@ For quantum particles incident on a spatially localized potential
barrier, the scattering properties are defined by a unitary S-matrix,

wout — 5win -

@ The scattering properties are characterised by eigenvalues of the

S-matrix, e/

@ For potentials in which E < V,,.«, particle transfer across the
barrier is mediated by tunneling.

@ For an extended periodic potential (e.g. Kronig-Penney model), the
spectrum of allow energies show “band gaps” where propagating
solutions don’t exist.

@ For an extended random potential (however weak), all states are
localized, however high is the energy!



