Lecture 19

Radiative transitions



Radiative transitions: background

@ Previously, we have formulated a quantum theory of atoms (matter)
coupling to a classical time-independent electromagnetic field, cf.
Zeeman and Stark effects.

@ To develop a fully quantum theory of light-matter systems, we have
to address both the quantum theory of the electromagnetic field
and formulate a theory of the coupling of light to matter.

@ In the following we will address each of these components in turn,
starting with light-matter coupling.

@ Our motivation for developing such a consistent theory is that it:

(a) provides a platform to study radiative tranistions in atoms
(which will address)

(b) forms the basis of quantum optics (which will not address —
but which is well-represented in subsequent courses).



Radiative transitions: outline

Coupling of matter to electromagnetic field
@ Spontaneous emission, absorption and stimulated emission

Einstein's A and B coefficients

Selection rules

Theory of the laser and coherent states



Coupling of matter to the electromagnetic field

@ For a single-electron atom in a time-dependent external EM field,
the Hamiltonian takes the form,

A~

Puiom = - (b -+ eA(r, )" — e(r,£) + V(1)

(with a straightforward generalization to multi-electron atoms).

@ Previously, we have seen that it is profitable to expand Hamiltonian
)

in A, Hotom = Ho + l’:/para + Hyin. . where Ho = 2pfm + V(r) — eo(t)

= e R
Hpara(t) = EA(t) P

the paramagnetic term describes coupling of the atom to the EM
field, and Hai. = (eA)?/2m represents diamagnetic term.

@ Since we will be interested in absorption and emission of single
photons, influence of diamagnetic term is (as usual) negligible.



Coupling of matter to the electromagnetic field

@ When quantized, EM field is described by the photon Hamiltonian,

A 1
Hraa :kézhwk (al)\akz\‘{'a) y Wk:C|k|

where ai)\/akA create/annihilate photons with polarization .

@ These operators obey (bosonic) commutation relations,

[aKkx, aiw] = O,k 0N\ [akr, awn] = [alm al,/\,] =0
and act on photon number states, |ngy) = ﬁ(aﬁ/\)"k*m), as

a] M) = v mo — 1), al\ M) = Vi + 1o + 1)

@ With these definitions, the vector potential is given by

. B . .
A(r) = {é e’ + e al ek
n=> V 2egev [B2@ae™ + &nan

kA=1,2




Heisenberg representation

~ 1
Aroa = huwi (ai)\ak)\ + 5)

kA

@ To determine radiative transition rates, we will exploit Fermi’s
Golden rule. To prepare for this, it is convenient to transfer
time-dependence to operators (Heisenberg representation).

@ As with any operator, the field operators obey equations of motion,
. I r . .
Ay = ﬁ[/‘/, ak) = lwk[ai,\ak,\,ak,\] = —iWkakA

e, () = A (0)e ™, al, (1) = a,(0)e™** and

~ [ h . el " Cers
A(r,t) = Z TR, {ek/\ak)\e (kr—wit) 4 ekkaixe (k-r kt)]
kA




Coupling of matter to the electromagnetic field

@ Putting together all of these components, the total Hamiltonian is
then given by H = Huyom + Hpara + Hyaq where (with ¢ = 0)

a2
~ p n 1
Hatom = om + V(I’)7 Hyaa = }k)\ hawy <3lAak)\ + 2) and
’:/para(t) = %A(ﬂ t) . ﬁ with

—w —i(k-r—w
Z V 260ka ek,\ak,\e g akAe ! kt)}

@ In the following, we will apply this Hamiltonian to the problem of
radiative transitions in single electron atoms.




Spontaneous emission

E»
@ Consider probability for an atom, initially in b
state |i) to make transition to |f) with A hv

emission of a photon of wavevector k and

polarization A\ — spontaneous emission. E,

@ If radiation field initially prepared in vacuum state, |Q2), then final
state involves one photon, alt)\|Q>.
@ Therefore, making use of Fermi’s Golden rule, with the perturbation

P € a A / h A i(k-r— A% —i(kr— € .
Hpa.ra(t) = EA(r’ t)-p= Z ol {ekxak/\e’( r—wit) + ekAai)\e i(ker—wit) | | Ep
kA

transition probability given by,

2T ~ .
Fioe(t) = 25 (] @ (kA Fparai) @ 1) [26(wie — w)

27 e h



Spontaneous emission
2
(15 5o e "85 Bl
m\ 2eqwi V kP

6(Ei — Er — hw)
@ To determine transition rate, we must analyse matrix elements of
the form (fle='*"&;, - pli). For typical state, (&}, - p) ~ p ~ Zmca.

21
Rearsy — T

@ But what about exponential factor? With r ~ h/p ~ h/mZca, and

2
wk = c|k| ~ £- (for electronic transitions), we have
2m
weh R
kore XL P L 7,
cp mc

i.e. for Za <« 1, we can expand exponential as power series in k - r
with lowest terms dominant.

@ Taking zeroth order term, and using p = ’%"[I:I(),r] (cf. Ehrenfest)
Er— E

Al - iop . . . .
(Fl€r - Bli) = méyy - (£|[Ho, r][i) = im & - (f[rlD)




Spontaneous emission: electric dipole approximation

A hy

(fléwr - Bli) = —imuwic(f|éyy - rli)

E;

@ This result, which emerges from leading approximation in Zq, is
known as electric dipole approximation: Effectively, we have set

A

Floara = %A(r, t)-p~ eE(r,t)-r= —E(r,t)-d

translating to the potential energy of a dipole, with moment
d = —er, in an oscillating electric field.



Stimulated absorption and emission

@ Consider now absorption of a photon. If we
assume that, in the initial state, there are ny) S _~~hv

photons in mode (kA) then, after the

transition, there will be ney — 1 photons. E

@ Then, if initial state of the atom is |i) and final state is |f},

(fl® <("k,>\ - 1)|’£/para|i> ® [nKx)

e h .
= {f — 1= a ikr o
(fl @ ((mex — 1) o\ 260wkvek>\3k/\e p

@ Then, using the relation axy|mx) = /x| (mkx — 1)),

~ . e ROk ikra Al
(f] @ ((mex — 1)[Hparali) @ [mo) = <f\;\/ T V KT8 - BIi)

i) @ [ma)




Stimulated absorption and emission

@ Consider now absorption of a photon. If we
assume that, in the initial state, there are ny) S A~ hy

photons in mode (kA) then, after the
transition, there will be ng) — 1 photons.

@ As a result, using Fermi’s Golden rule,
21 ~ . 5
Fie(t) = §|<f| @ (M — 1)[Hparali) @ | ) [“0(ws — w)

we obtain the transition amplitude,

e hnk)\ v A .
<f|5\/ —Qeowkve,k & - PIi)

@ In particular, we find that the absorption rate increases linearly

with photon number, ny).

2

21

Fiekn = 5 S(Er — E — hwy)




Stimulated absorption and emission

AP hy
. . _ L _ Ey
@ Similarly, if we consider emission process in
which there are already nxy photons in initial s hy
state,
E

@ using the relation ai/\\nk,\> = /mx + 1|(mkx + 1)), we have revised
transition rate,

2

21 e h(nk)\ ol 1) —ik-ra 'NE
Mt = — |(f]y [ BOQE D) ik, pliy| 8(E — B — Fuw
A=~ ( |m oV e ""& - pli)| O(Es k)

@ Enhancement of transition rate by photon occupancy known as
stimulated emission.




Radiative transitions: summary

A~ hy _~_hv hv
Eq E, .

@ Altogether, in dipole approximation (f|&xy - p|i) ~ —imwk(f|€nx - r|i)

. o WK era A2 nkx 0(Esf — E; — hwg)  absorption
Fimtir = eov|<f|e"A dlil { (mex +1) 8(E — B — hwy)  emission

where d = —er is electric dipole operator.

@ If there are no photons present initially, ¢ xx reduces to result for
spontaneous emission.

@ The coincidence of nyy-independent coefficients for absorption and
emission coincide is known as detailed balance.



Absorption and stimulated emission

. o MWK o ALy (2 nkx 0(Es — E — hwg) absorption
Fiotion = eoV|<f|ek>‘ dlil { (mex +1) 6(E — Ef — hwy)  emission

@ Integrated transition rate associated with a small solid angle d€2 in
the direction k given by
k2 dk

dRi_¢ ) = Mioekn = dQ2 V/ = Tintka
2 P

@ If we assume that the photon number, ny), is isotropic, independent
of angle 2, using the dispersion relation wx = ck, we obtain

dRi*)f’)\ o K 2dw W <f| d| >‘2 nA(w) (5(Ef — Ei — hw)
aQ (27)3 € kA (na(w) + 1) 0(E; — Er — hw)
dRi_sy = W N a2 [ om(w)
dQ  8m2ehcd (£ - di)] m(w) +1

where hw = |E; — Ej|.

e " "



Einstein’s A and B coefficients

In fact, frequency dependence of spontaneous emission rate can be
inferred using ingenious argument due to Einstein who showed that
stimulated and spontaneous transitions must be related.

@ Consider ensemble of atoms exposed to black-body radiation at
temperature T. Let us consider transitions between states |1);) and
[i), with Ex — Ej = hw.

@ If number of atoms in two states given by n; and ny, transition rates
per atom given by:

absorption j — k Bj_,u(w)
stimulated emission k — j B, ju(w)
spontaneous emission k — j A j(w)

where u(w) denotes energy density of radiation.

@ A and B are known as Einstein’s A and B coefficients, and, as we
have seen, are properties of atomic states.



Einstein’s A and B coefficients

absorption j— k Bj_xu(w)
stimulated emission k — j B ju(w)
spontaneous emission k — j A j(w)

@ In thermodynamic equilibrium the rates must balance, so that
i [Ak—j(w) + Bioju(w)] = njBjku(w)
@ At the same time, relative populations of two states given by
Boltzmann factor,
e J'/kBT

nj
—_—=— =
ne e Ex/keT

hw/kg T

Thus we have:

Aij(w) = [Bike™ /T — By ;] u(w)




Einstein’s A and B coefficients

Ar—j(w) = [Bfﬁkem/ ol — Bk—’f} u(w)

@ For black-body, energy density u(w) set by Planck formula,

ot hw? 1
u(w) = 203 n(w) = 7203 ehw/keT 1

fw? 1
7203 ehw/kaT _ 1

Acoj(w) = | Bjye™/ kT — Bkw‘]

@ Since Ai_,;j is intrinsic (independent of temperature), T must
cancel on right hand side, i.e.

7714)3
Bk_,j = Bj_)k and Ak_)j(w) = Bk_)jm

@ So, A and B coefficients are related, and if we can calculate B
coefficient for stimulated emission from Fermi's Golden rule, we can
infer A, and vice versa.



Selection rules: parity

Mg ~ (@ - d[i)[2 mex 0(Er — Ei — hwy)  absorption
SR A (mex + 1) 6(E — Ef — hwy)  emission

@ Formulae for rates ;¢ k» show that radiative transitions will not
occur between states |i) and |f) unless at least one component of
the dipole matrix element (f|d|i) is non-zero.

@ If matrix elements are zero for certain pairs, they are disallowed (at
least in the electric dipole approximation) leading to selection rules.

@ Since dipole operator d = —er changes sign under parity (r— —r),
matrix element (f|d|i) will vanish if |f) and |i) have same parity.

© The parity of the wavefunction must change in an electric dipole
transition.




Selection rules: spin

nkx O0(Er — E; — hwg)  absorption
mox + 1) 0(E; — Er — hwy)  emission

W X B
Moo = 2o - AP {

@ Separating wavefunction into spatial and spin components,
If) = |é¢) ® |x¢), since dipole operator acts only on spatial part,

(81dli) = — ) / or 67 (1) erdi(r)

i.e. spin term, (x¢|xi), vanishes unless |x;) and |xr) are identical,

As =0, Amg =0

@ The spin state is not altered in an electric dipole transition. J




Selection rules: orbital angular momentum

nkx O0(Es — E — hwg)  absorption

T
Fioier > 60V|<f|ek)‘ dfi}| { (mex +1) 0(E — Ef — hwy)  emission

@ From the operator identity, [Z,-, rj] = ihejjcry, it follows that
[[,,z21=0, [L,,x+iy]==+(x+iy)h
@ We therefore obtain,
(W, m'[L,,z]|t,m) = (m — m)R(¢', m'|z|¢, m) = 0
e Similarly, since (¢/, m'|[L, x + iy]|¢, m) = +h{¢', m'|x % iy|¢, m),
(m' —mFx 1), m'|x+iy|¢,m) =0

© Therefore, to get non-zero component of dipole matrix element,
require Amy =0, £1.




Selection rules: orbital angular momentum

@ Using operator identity [L2, [L2, r]] = 2h2(rL2 + Lr), we have

(@, m'[[L2, (L2, )16, m) = [€'(¢' + 1) — €€ + 1), m[r |, m)
=200/ (¢' + 1)+ £(L + 1)), m'|¥|£, m)

ie. (L+0)L+0+2)[( —£6)? 1), m'|r|¢,m) = 0. Since
£,¢' > 0, dipole matrix element non-vanishing only if ¢/ = ¢ + 1.

© To effect an electric dipole transition, we must have Af = +1. J

@ One may summarize the selection rules for ¢ and my is by saying
that the photon carries off (or brings in, in an absorption transition)
one unit of angular momentum.

@ N.B. it is possible, though much less likely in the case of an atom,
for EM field to interact with magnetic dipole or electric quadrupole
moment with different selection rules.



Selection rules: polarization

' _ WK a2 Mg\ 6(Ef —E — ﬁwk) absorption
Fiekn = 60V|<f|ek>‘ dfi)| { (nk,/\ +1) 6(E; — Er — hwy) emission

@ For transitions with Am, = 0, the dipole matrix element (f|d|i) ~ &,
— and there is no component of polarization along z-direction.

@ Similarly, for electric dipole transitions with m" = m £ 1,
(0, m'|x Fiy|l,m) =0={¢',m'|z|¢, m), and (f|d|i) ~ (1,7F/,0).

(a) If the wavevector of photon lies along z, the emitted light is
circularly polarized with a polarization which depends on helicity.

(b) If the wavevector lies in xy place, the emitted light is linearly
polarized, while in general it is elliptically polarized.



Selection rules: LS coupling

@ In the presence of spin-orbit coupling, stationary states labelled by
quantum numbers J, my, ¢, s where J =L +S.

@ The selection rules in this case can be inferred by looking for the
conditions for non-zero matrix elements (J', my, ¢’ s'|r|J, my, 0, s).

@ By expanding states |J, my, ¢, s) in basis states |¢, my) @ |s, ms), one

may uncover the following set of selection rules:

@ For dipole transitions to take place, we require that

Am; =0,=£1
Aj=0,£1 not 0—0

@ N.B. These conclusions are consistent with photon carrying on unit
of angular momentum.



Radiative transitions: recap

@ When coupled to a quantized electromagnetic field, the total
Hamiltonian for atomic system given by H = Hatom + Hpara + Hrad
where

~ p2 o 1
Hatom = p_ + V(r)7 Hrad = %\:hwk (ai)\ak)\ + §>

denotes the Hamiltonian of the isolated atomic and radiation field,
and

I:/para(t) = A(ra t) . ﬁ

denotes the coupling with

A h a i(k-r—w Ak —i(k-r—w
Ar,t) = Z \/ Y [ekkak,\e (er—wnt) 4 gr al ek "t)}
5




Radiative transitions: recap

@ The transition rate between an initial and final state of the atom and
electromagnetic field can be estimated using Fermi's Golden rule

27T ~ .
Mg = §|<f|"’para|l>|25(w - w)

where hwiys = E; — E;.

@ Crucially, since the photon creation/annihilation operators obey the
relations, ai/\|nk,\> =/ + 1|(mex + 1)) and
akx| M) = /mx|(nkx — 1)) the transition rate depends on the
photon number, nyj.

@ When Za <« 1, the effective range of the interaction of the atom
with the field is small (i.e. kr ~ Za) and we can effect the dipole
approximation,

(fle™™ @i - Bli) = T (Flér - dfi),  d=—er




Radiative transitions: recap

AN hy
E .

e A hy

E, E,

@ In the electric dipole approximation, the transition rate is given by

. o WK era A2 nkx O0(Esr — E; — hwg)  absorption
Fimotir = eov|<f|e"A dlil { (mex +1) 8(E — B — hwy)  emission

where d = —er is electric dipole operator.

@ The coincidence of ngx-independent coefficients for absorption and
emission coincide is known as detailed balance.

@ From these results, we turn now to consider the principle of the
operation of an atomic laser.



Theory of laser

@ Principle of stimulated emission _
) . ) fully reflective mirror \asmg medium pa
provides basis of laser operation: S ot 000, 5 s 00l
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@ In atomic laser, the gain medium
provided by a gas of atoms
confined to a cavity and bound by
highly reflective mirrors.




Theory of laser: rate equations

A n abs.
rkA~|<f|ek>\~d|l>|2{ (MJA) emiss.

E»

E;

< _~~hv

@ Consider gas of atoms in a cavity subject to an EM field of intensity
I o< n(w) and angular frequency w tuned to energy difference
between two discrete energy levels of the atoms, i.e. hw = E, — E;.

@ Taking into account stimulated absorption, atoms are transferred

from level 1 to level 2 at a rate

F12 = WN1 n(w)

where N; atoms in level 1 and W includes matrix elements.

@ From spontaneous and stimulated emission processes, the rate of

transfer of atoms from level 2 to level 1 is given by

I'21 = WNQ(n(w) + 1)



Theory of laser: photon equations

A & n abs.
Cix ~ |(Fléxy - d]i)]? { (mex + IB emiss.

E,

E;

S _~_~hv

@ Since transfer of particles from level 2 to 1 leads to creation of
photons in cavity while from 1 to 2 they involve absorption, the rate
of change of photon number is given by 1 = W(Ny(n+ 1) — Nyn).

@ However, to make use of cavity as a photon source, we have to
allow photons to leak from the cavity through imperfect mirrors.
Taking into account this and other loss processes, we have

h=DWn+ NoW — =
Tph

where D = N, — Ny denotes population imbalance and 1/, is the

total loss rate.



Theory of laser: matter equations

E3—g short-lived
state
Pumping Rapid decay
b (optical)
& dl; Ny abs.
I ~ |({f|e -d|i z N Mitzstable
i ~ [ (£]@cx - di)] (M +1) emiss. et
mlight
Ground

Eq =
i state

@ Without further external processes, photons would escape from
cavity and the system would relax into ground state — To create a
steady-state photon population, energy must be pumped into the
system in the form of excitations.

@ Achieved by transferring atoms between 1 and 2 via level 3 by
non-resonant optical pump. If lifetime of 3 is short, occupancy is
effectively zero, rate of transfer of particles from 2 to 1,

N2 ~ —W21N2 —+ W12N1 — (N2 — Nl)Wn ~ _Nl

where we have dropped small contribution from spontaneous
emission, and wys, wr1 denote net non-resonant transition rates.



Theory of laser: stationary equations

E3—F
state

Pumping Rapid decay
(optical)
Metastable
state

Laser

N2 ~ —wo1 No + wia Ny — (N2 — Nl)Wn ~ 7/\./1
A e

E Ground
1—
state

@ Without cavity photons (n = 0), since N; + N, ~ N, in steady state,
pO — N(O) . N(O) _ NW12 — W21
2 ! wip + W
denotes unsaturated inversion.

@ Restoring the cavity photons, we have

. . . DO _p
D:N2—N1:T—2DWH

where 1/T = wyy + wyy represents typical relaxation rate.



Theory of laser: stationary equations

E3—x short-lived
state

Pumping Rapid decay

(optical)

n=DWn— —, =————2DWh ste
Tph T AU Laser
light
£, — Ground

state

@ In steady-state operation, n = D = 0, population imbalance

D)

D=Ny— Ny = ——
2 T T 2T Wn

@ From this result, we find the steady state photon number

_ DOW —1/7,,
a 2TW/Tph

@ This result shows that the system will only start lasing when the
unsaturated inversion exceeds a threshold, D > 1/Tph W.



Theory of laser: coherence

@ Although the analysis above addressed the threshold conditions for
the laser, it does not provide any insight into the coherence
properties of the radiation field.

@ In fact, one may show that the radiation field generated by the laser
cavity forms a coherent or Glauber state.

@ The proof of this statement and the coherence properties that
follow would take us on a considerable detour — see Part 1l
quantum optics.

@ However, we can gain some insight into the properties and physical
manifestations of coherent states by looking at a toy example; but
first we must define what we mean by a coherent state.



Coherent states

@ A coherent state is defined as an eigenstate of the annihilation
operator,

als) = IB)

Since a is not Hermitian, § can take complex eigenvalues.

@ The eigenstates are constructed from the harmonic oscillator ground
state the by action of the unitary operator,

8) = 0(B)l0), DB =€~ UN@)U(B) =1

@ The proof follows from the identity (problem set I),

al(B) = U(B)(a+pB), ie al(p)0) =pBU(B)0)

i.e. Uis a translation operator, UT(3)al(8) = a+ .



Coherent states

18) = U(B)0),  U(B) = e —#"2

@ Since U(3) = &' "2 = o=18I°/2eB2" ¢=8"2 and =5"2|0) = |0), we
can write

|18) = e~18F/2¢84" o)

@ With |n) = -L(a)"|0), we can write

Vn!
8) = Ze-f”/z\%w

showing that the probability of observing n excitations

2 2n
Pa = I{alg)2 = 797 L

is a Poisson distribution with average occupation, {3|afa|3) = |3|>.



Driven quantum harmonic oscillator

But how can we prepare a system in a i (
coherent state?

@ Consider a single two-level atom resonantly coupled to a single
cavity mode — the quantum Hamiltonian of the coupled system,

1

N 1
H= Ehwaz + hw (aTa + ) +hg(o_a+o.al)

2

@ When excitations of two level system are driven by an external
pump, it can behave as a classical dipole source for the cavity mode
leading to the driven harmonic oscillator Hamiltonian,

H e~ Arag + V(t) = hw (aTa—l— ;) +ih (f(t)al — £*(t)a)

where f(t) = fye~ /vt



Driven quantum harmonic oscillator

f(t) = foe—iwt

@ If photon system is prepared in ground state, |0), the perturbation
drives the system into a coherent state.

@ To understand how, let us turn to the intergction representation,
ihO: (1)1 = Vili(t))1 where [¢(t))1 = et/ |yp(t))s. With

. T o o
elwta aae lwta'a _ e tha’

Vi(t) = ePot/min (F(t)al — F*(t)a) e ot/" = in (foal - f7'a)

@ Since Vj(t) is time-independent, the time-evolution operator,
defined by the equation ih0; Ur(t) = ViUi(t), is given simply by

Ui(t) = e [(ha' — f72)t]




Driven quantum harmonic oscillator

U(t) = exp [(ha' — f72)t]

@ Therefore, if the system was prepared in the ground state |0) at
t = 0, at later times,

() = expl(fal — fa)t]|0) = e~ 10 /2eh"¢ o)
@ Reexpressed in the Schrodinger representation,
|'¢(t)>S _ e_iplot/h|’¢(t)>1 _ e_‘ﬂ)|2t2/2efbe*iwra’rt|0>
@ A classical oscillatory force drives a system prepared in the vacuum

state into a coherent state with an excitation number which climbs
as |fo|2t2.



Synopsis: Lectures 16-19

@ Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic
chain; quantization of atomic chain; phonons. Classical theory of
the EM field; waveguide; quantization of the EM field and photons.

@® Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden
approximation; harmonic perturbations and Fermi's Golden rule.

@ Radiative transitions:

Light-matter interaction; spontaneous emission; absorption and
stimulated emission; Einstein's A and B coefficents; dipole
approximation; selection rules; tlasers.



Synopsis: Lectures 20-24

@ Scattering theory

Elastic scattering; cross section; method of particle waves; Born
approximation; scattering of identical particles.

@ Relativistic quantum mechanics:

Klein-Gordon equation; Dirac equation; relativistic covariance and
spin; free relativistic particles and the Klein paradox; antiparticles;
coupling to EM field: minimal coupling and the connection to
non-relativistic quantum mechanics; ffield quantization.



