
Lecture 19

Radiative transitions



Radiative transitions: background

Previously, we have formulated a quantum theory of atoms (matter)
coupling to a classical time-independent electromagnetic field, cf.
Zeeman and Stark effects.

To develop a fully quantum theory of light-matter systems, we have
to address both the quantum theory of the electromagnetic field
and formulate a theory of the coupling of light to matter.

In the following we will address each of these components in turn,
starting with light-matter coupling.

Our motivation for developing such a consistent theory is that it:

(a) provides a platform to study radiative tranistions in atoms
(which will address)

(b) forms the basis of quantum optics (which will not address –
but which is well-represented in subsequent courses).
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Radiative transitions: outline

Coupling of matter to electromagnetic field

Spontaneous emission, absorption and stimulated emission

Einstein’s A and B coefficients

Selection rules

Theory of the laser and coherent states



Coupling of matter to the electromagnetic field

For a single-electron atom in a time-dependent external EM field,
the Hamiltonian takes the form,

Ĥatom =
1

2m
(p̂ + eA(r, t))2 − eφ(r, t) + V (r)

(with a straightforward generalization to multi-electron atoms).

Previously, we have seen that it is profitable to expand Hamiltonian

in Â, Ĥatom = Ĥ0 + Ĥpara + Ĥdia., where Ĥ0 =
p̂2

2m
+ V (r)− eφ(t)

Ĥpara(t) =
e

m
A(t) · p̂

the paramagnetic term describes coupling of the atom to the EM
field, and Ĥdia = (eA)2/2m represents diamagnetic term.

Since we will be interested in absorption and emission of single
photons, influence of diamagnetic term is (as usual) negligible.
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Coupling of matter to the electromagnetic field

When quantized, EM field is described by the photon Hamiltonian,

Ĥrad =
∑

k,λ=1,2

~ωk

(
a†kλakλ +

1

2

)
, ωk = c |k|

where a†kλ/akλ create/annihilate photons with polarization λ.

These operators obey (bosonic) commutation relations,

[akλ, a
†
k′λ′ ] = δk,k′δλ,λ′ , [akλ, ak′λ′ ] = [a†kλ, a

†
k′λ′ ] = 0

and act on photon number states, |nkλ〉 = 1√
nkλ!

(a†kλ)nkλ |Ω〉, as

akλ|nkλ〉 =
√

nkλ|nkλ − 1〉, a†kλ|nkλ〉 =
√

nkλ + 1|nkλ + 1〉

With these definitions, the vector potential is given by

Â(r) =
∑

kλ=1,2

√
~

2ε0ωkV

[
êkλakλe

ik·r + ê∗kλa
†
kλe
−ik·r

]
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Heisenberg representation

Ĥrad =
∑
kλ

~ωk

(
a†kλakλ +

1

2

)

To determine radiative transition rates, we will exploit Fermi’s
Golden rule. To prepare for this, it is convenient to transfer
time-dependence to operators (Heisenberg representation).

As with any operator, the field operators obey equations of motion,

ȧkλ =
i

~
[Ĥ, akλ] = iωk[a†kλakλ, akλ] = −iωkakλ

i.e. akλ(t) = akλ(0)e−iωkt , a†kλ(t) = a†kλ(0)e iωkt and

Â(r, t) =
∑
kλ

√
~

2ε0ωkV

[
êkλakλe

i(k·r−ωkt) + ê∗kλa
†
kλe
−i(k·r−ωkt)

]
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Coupling of matter to the electromagnetic field

Putting together all of these components, the total Hamiltonian is
then given by Ĥ = Ĥatom + Ĥpara + Ĥrad where (with φ = 0)

Ĥatom =
p̂2

2m
+ V (r), Ĥrad =

∑
kλ

~ωk

(
a†kλakλ +

1

2

)
and

Ĥpara(t) =
e

m
Â(r, t) · p̂ with

Â(r, t) =
∑
kλ

√
~

2ε0ωkV

[
êkλakλe

i(k·r−ωkt) + ê∗kλa
†
kλe
−i(k·r−ωkt)

]
In the following, we will apply this Hamiltonian to the problem of
radiative transitions in single electron atoms.



Spontaneous emission

Consider probability for an atom, initially in
state |i〉 to make transition to |f〉 with
emission of a photon of wavevector k and
polarization λ – spontaneous emission.

If radiation field initially prepared in vacuum state, |Ω〉, then final

state involves one photon, a†kλ|Ω〉.

Therefore, making use of Fermi’s Golden rule, with the perturbation

Ĥpara(t) =
e

m
Â(r, t) · p̂

transition probability given by,

Γi→f(t) =
2π

~2
|〈f| ⊗ 〈kλ|Ĥpara|i〉 ⊗ |Ω〉|2δ(ωif − ω)
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|〈f| ⊗ 〈kλ|Ĥpara|i〉 ⊗ |Ω〉|2δ(ωif − ω)



Spontaneous emission

Consider probability for an atom, initially in
state |i〉 to make transition to |f〉 with
emission of a photon of wavevector k and
polarization λ – spontaneous emission.

If radiation field initially prepared in vacuum state, |Ω〉, then final

state involves one photon, a†kλ|Ω〉.
Therefore, making use of Fermi’s Golden rule, with the perturbation
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Spontaneous emission

Γi→f,kλ =
2π

~

∣∣∣∣∣〈f| em
√

~
2ε0ωkV

e−ik·rê∗kλ · p̂|i〉

∣∣∣∣∣
2

δ(Ei − Ef − ~ωk)

To determine transition rate, we must analyse matrix elements of
the form 〈f|e−ik·rê∗kλ · p̂|i〉. For typical state, 〈ê∗kλ · p̂〉 ∼ p ∼ Zmcα.

But what about exponential factor? With r ∼ ~/p ' ~/mZcα, and

ωk = c |k| ∼ p2

2m (for electronic transitions), we have

k · r ' ωk

c

~
p
' ~p

mc
' Zα

i.e. for Zα� 1, we can expand exponential as power series in k · r
with lowest terms dominant.

Taking zeroth order term, and using p̂ = im
~ [Ĥ0, r] (cf. Ehrenfest)

〈f|ê∗kλ · p̂|i〉 = mê∗kλ · 〈f|
i

~
[Ĥ0, r]|i〉 = im

Ef − Ei

~
ê∗kλ · 〈f|r|i〉
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But what about exponential factor? With r ∼ ~/p ' ~/mZcα, and

ωk = c |k| ∼ p2

2m (for electronic transitions), we have

k · r ' ωk

c

~
p
' ~p

mc
' Zα

i.e. for Zα� 1, we can expand exponential as power series in k · r
with lowest terms dominant.

Taking zeroth order term, and using p̂ = im
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ê∗kλ · 〈f|r|i〉



Spontaneous emission

Γi→f,kλ =
2π

~

∣∣∣∣∣〈f| em
√

~
2ε0ωkV
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Spontaneous emission: electric dipole approximation

〈f|ê∗kλ · p̂|i〉 = −imωk〈f|ê∗kλ · r|i〉

This result, which emerges from leading approximation in Zα, is
known as electric dipole approximation: Effectively, we have set

Ĥpara =
e

m
Â(r, t) · p̂ ' eÊ(r, t) · r = −Ê(r, t) · d̂

translating to the potential energy of a dipole, with moment
d̂ = −er, in an oscillating electric field.



Stimulated absorption and emission

Consider now absorption of a photon. If we
assume that, in the initial state, there are nkλ

photons in mode (kλ) then, after the
transition, there will be nkλ − 1 photons.

Then, if initial state of the atom is |i〉 and final state is |f〉,

〈f| ⊗ 〈(nk,λ − 1)|Ĥpara|i〉 ⊗ |nkλ〉

= 〈f| ⊗ 〈(nk,λ − 1)| e
m

√
~

2ε0ωkV
êkλakλe

ik·r · p̂|i〉 ⊗ |nkλ〉

Then, using the relation akλ|nkλ〉 =
√

nkλ|(nkλ − 1)〉,

〈f| ⊗ 〈(nk,λ − 1)|Ĥpara|i〉 ⊗ |nkλ〉 = 〈f| e
m

√
~nkλ

2ε0ωkV
e ik·rêkλ · p̂|i〉
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Stimulated absorption and emission

Consider now absorption of a photon. If we
assume that, in the initial state, there are nkλ

photons in mode (kλ) then, after the
transition, there will be nkλ − 1 photons.

As a result, using Fermi’s Golden rule,

Γi→f(t) =
2π

~2
|〈f| ⊗ 〈(nkλ − 1)|Ĥpara|i〉 ⊗ |nkλ〉|2δ(ωfi − ω)

we obtain the transition amplitude,

Γi→f,kλ =
2π

~

∣∣∣∣∣〈f| em
√

~nkλ

2ε0ωkV
e ik·rêkλ · p̂|i〉

∣∣∣∣∣
2

δ(Ef − Ei − ~ωk)

In particular, we find that the absorption rate increases linearly
with photon number, nkλ.



Stimulated absorption and emission

Similarly, if we consider emission process in
which there are already nkλ photons in initial
state,

using the relation a†kλ|nkλ〉 =
√

nkλ + 1|(nkλ + 1)〉, we have revised
transition rate,

Γi→f,kλ =
2π

~

∣∣∣∣∣∣〈f| em
√

~(nkλ + 1)

2ε0ωkV
e−ik·rêkλ · p̂|i〉

∣∣∣∣∣∣
2

δ(Ef − Ei − ~ωk)

Enhancement of transition rate by photon occupancy known as
stimulated emission.



Radiative transitions: summary

Altogether, in dipole approximation 〈f|êkλ · p̂|i〉 ' −imωk〈f|êkλ · r|i〉

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

where d̂ = −er is electric dipole operator.

If there are no photons present initially, Γi→f,kλ reduces to result for
spontaneous emission.

The coincidence of nkλ-independent coefficients for absorption and
emission coincide is known as detailed balance.



Absorption and stimulated emission

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

Integrated transition rate associated with a small solid angle dΩ in
the direction k given by

dRi→f,λ =
∑

k∈dΩ

Γi→f,kλ = dΩ V

∫
k2dk

(2π)3
Γi→f,kλ

If we assume that the photon number, nkλ is isotropic, independent
of angle Ω, using the dispersion relation ωk = ck , we obtain

dRi→f,λ

dΩ
=

V

c3

∫
ω2dω

(2π)3

πω

ε0V
〈f|êkλ · d̂|i〉|2

{
nλ(ω) δ(Ef − Ei − ~ω)
(nλ(ω) + 1) δ(Ei − Ef − ~ω)

where ~ω = |Ef − Ei|.

From this expression, we can obtain the power loss as Pλ = ~ωRλ.
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〈f|êkλ · d̂|i〉|2

{
nλ(ω) δ(Ef − Ei − ~ω)
(nλ(ω) + 1) δ(Ei − Ef − ~ω)

where ~ω = |Ef − Ei|.

From this expression, we can obtain the power loss as Pλ = ~ωRλ.



Absorption and stimulated emission

Γi→f,kλ '
πωk

ε0V
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ω3

8π2ε0~c3
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{
nλ(ω)
nλ(ω) + 1

where ~ω = |Ef − Ei|.
From this expression, we can obtain the power loss as Pλ = ~ωRλ.



Einstein’s A and B coefficients

In fact, frequency dependence of spontaneous emission rate can be
inferred using ingenious argument due to Einstein who showed that
stimulated and spontaneous transitions must be related.

Consider ensemble of atoms exposed to black-body radiation at
temperature T . Let us consider transitions between states |ψj〉 and
|ψk〉, with Ek − Ej = ~ω.

If number of atoms in two states given by nj and nk , transition rates
per atom given by:

absorption j → k Bj→ku(ω)
stimulated emission k → j Bk→ju(ω)

spontaneous emission k → j Ak→j(ω)

where u(ω) denotes energy density of radiation.

A and B are known as Einstein’s A and B coefficients, and, as we
have seen, are properties of atomic states.
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Einstein’s A and B coefficients

absorption j → k Bj→ku(ω)
stimulated emission k → j Bk→ju(ω)

spontaneous emission k → j Ak→j(ω)

In thermodynamic equilibrium the rates must balance, so that

nk [Ak→j(ω) + Bk→ju(ω)] = njBj→ku(ω)

At the same time, relative populations of two states given by
Boltzmann factor,

nj

nk
=

e−Ej/kBT

e−Ek/kBT
= e~ω/kBT

Thus we have:

Ak→j(ω) =
[
Bj→ke

~ω/kBT − Bk→j

]
u(ω)
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Einstein’s A and B coefficients

Ak→j(ω) =
[
Bj→ke

~ω/kBT − Bk→j

]
u(ω)

For black-body, energy density u(ω) set by Planck formula,

u(ω) =
~ω3

π2c3
n̄(ω) =

~ω3

π2c3

1

e~ω/kBT − 1

Since Ak→j is intrinsic (independent of temperature), T must
cancel on right hand side, i.e.

Bk→j = Bj→k and Ak→j(ω) = Bk→j
~ω3

π2c3

So, A and B coefficients are related, and if we can calculate B
coefficient for stimulated emission from Fermi’s Golden rule, we can
infer A, and vice versa.
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Selection rules:

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

Formulae for rates Γi→f,kλ show that radiative transitions will not
occur between states |i〉 and |f〉 unless at least one component of
the dipole matrix element 〈f|d̂|i〉 is non-zero.

If matrix elements are zero for certain pairs, they are disallowed (at
least in the electric dipole approximation) leading to selection rules.

Since dipole operator d̂ = −er changes sign under parity (r→ −r),
matrix element 〈f|d̂|i〉 will vanish if |f〉 and |i〉 have same parity.

1 The parity of the wavefunction must change in an electric dipole
transition.



Selection rules: parity

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

Formulae for rates Γi→f,kλ show that radiative transitions will not
occur between states |i〉 and |f〉 unless at least one component of
the dipole matrix element 〈f|d̂|i〉 is non-zero.

If matrix elements are zero for certain pairs, they are disallowed (at
least in the electric dipole approximation) leading to selection rules.

Since dipole operator d̂ = −er changes sign under parity (r→ −r),
matrix element 〈f|d̂|i〉 will vanish if |f〉 and |i〉 have same parity.

1 The parity of the wavefunction must change in an electric dipole
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Selection rules: spin

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

Separating wavefunction into spatial and spin components,
|f〉 = |φf〉 ⊗ |χf〉, since dipole operator acts only on spatial part,

〈f|d̂|i〉 = −〈χf |χi〉
∫

d3r φ∗f (r) erφi(r)

i.e. spin term, 〈χf |χi〉, vanishes unless |χi〉 and |χf〉 are identical,

∆s = 0, ∆ms = 0

2 The spin state is not altered in an electric dipole transition.



Selection rules: orbital angular momentum

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

From the operator identity, [L̂i , rj ] = i~εijk rk , it follows that

[L̂z , z ] = 0, [L̂z , x ± iy ] = ±(x ± iy)~

We therefore obtain,

〈`′,m′|[L̂z , z ]|`,m〉 = (m′ −m)~〈`′,m′|z |`,m〉 = 0

Similarly, since 〈`′,m′|[L̂z , x ± iy ]|`,m〉 = ±~〈`′,m′|x ± iy |`,m〉,

(m′ −m ∓ 1)〈`′,m′|x ± iy |`,m〉 = 0

3 Therefore, to get non-zero component of dipole matrix element,
require ∆m` = 0,±1.
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ε0V
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Selection rules: orbital angular momentum

Using operator identity [L̂2, [L̂2, r]] = 2~2(rL̂2 + L̂2r), we have

〈`′,m′|[L̂2, [L̂2, r]]|`,m〉 = [`′(`′ + 1)− `(`+ 1)]2〈`′,m′|r|`,m〉
= 2[`′(`′ + 1) + `(`+ 1)]〈`′,m′|r|`,m〉

i.e. (`+ `′)(`+ `′ + 2)[(`′ − `)2 − 1]〈`′,m′|r|`,m〉 = 0. Since
`, `′ ≥ 0, dipole matrix element non-vanishing only if `′ = `± 1.

4 To effect an electric dipole transition, we must have ∆` = ±1.

One may summarize the selection rules for ` and m` is by saying
that the photon carries off (or brings in, in an absorption transition)
one unit of angular momentum.

N.B. it is possible, though much less likely in the case of an atom,
for EM field to interact with magnetic dipole or electric quadrupole
moment with different selection rules.
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Selection rules: polarization

Γi→f,k,λ =
πωk

ε0V
|〈f|êkλ · d|i〉|2

{
nk,λ δ(Ef − Ei − ~ωk) absorption

(nk,λ + 1) δ(Ei − Ef − ~ωk) emission

For transitions with ∆m` = 0, the dipole matrix element 〈f|d|i〉 ∼ êz

– and there is no component of polarization along z-direction.

Similarly, for electric dipole transitions with m′ = m ± 1,
〈`′,m′|x ∓ iy |`,m〉 = 0 = 〈`′,m′|z |`,m〉, and 〈f|d|i〉 ∼ (1,∓i , 0).

(a) If the wavevector of photon lies along z , the emitted light is
circularly polarized with a polarization which depends on helicity.

(b) If the wavevector lies in xy place, the emitted light is linearly
polarized, while in general it is elliptically polarized.
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Selection rules: LS coupling

In the presence of spin-orbit coupling, stationary states labelled by
quantum numbers J,mJ , `, s where Ĵ = L̂ + Ŝ.

The selection rules in this case can be inferred by looking for the
conditions for non-zero matrix elements 〈J ′,mJ′ , `

′, s ′|r|J,mJ , `, s〉.

By expanding states |J,mJ , `, s〉 in basis states |`,m`〉 ⊗ |s,ms〉, one
may uncover the following set of selection rules:

5 For dipole transitions to take place, we require that

∆mj = 0,±1

∆j = 0,±1 not 0→ 0

N.B. These conclusions are consistent with photon carrying on unit
of angular momentum.
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Radiative transitions: recap

When coupled to a quantized electromagnetic field, the total
Hamiltonian for atomic system given by Ĥ = Ĥatom + Ĥpara + Ĥrad

where

Ĥatom =
p̂2

2m
+ V (r), Ĥrad =

∑
kλ

~ωk

(
a†kλakλ +

1

2

)
denotes the Hamiltonian of the isolated atomic and radiation field,
and

Ĥpara(t) =
e

m
Â(r, t) · p̂

denotes the coupling with

Â(r, t) =
∑
kλ

√
~

2ε0ωkV

[
êkλakλe

i(k·r−ωkt) + ê∗kλa
†
kλe
−i(k·r−ωkt)

]



Radiative transitions: recap

The transition rate between an initial and final state of the atom and
electromagnetic field can be estimated using Fermi’s Golden rule

Γi→f =
2π

~2
|〈f|Ĥpara|i〉|2δ(ωif − ω)

where ~ωif = Ei − Ef .

Crucially, since the photon creation/annihilation operators obey the

relations, a†kλ|nkλ〉 =
√

nkλ + 1|(nkλ + 1)〉 and
akλ|nkλ〉 =

√
nkλ|(nkλ − 1)〉 the transition rate depends on the

photon number, nkλ.

When Zα� 1, the effective range of the interaction of the atom
with the field is small (i.e. kr ∼ Zα) and we can effect the dipole
approximation,

〈f|e−ik·rêkλ · p̂|i〉 '
imωk

e
〈f|êkλ · d|i〉, d = −er



Radiative transitions: recap

In the electric dipole approximation, the transition rate is given by

Γi→f,kλ '
πωk

ε0V
|〈f|êkλ · d̂|i〉|2

{
nkλ δ(Ef − Ei − ~ωk) absorption

(nkλ + 1) δ(Ei − Ef − ~ωk) emission

where d̂ = −er is electric dipole operator.

The coincidence of nkλ-independent coefficients for absorption and
emission coincide is known as detailed balance.

From these results, we turn now to consider the principle of the
operation of an atomic laser.



Theory of laser

Principle of stimulated emission
provides basis of laser operation:
light amplification by stimulated
emission of radiation.

However, laser not only amplifies
light, but provides source of

monochromatic (single mode),

coherent (spatial/temporal),

directional and

intense radiation.

In atomic laser, the gain medium
provided by a gas of atoms
confined to a cavity and bound by
highly reflective mirrors.



Theory of laser: rate equations

Γkλ ∼ |〈f|êkλ · d̂|i〉|2
{

nkλ abs.
(nkλ + 1) emiss.

Consider gas of atoms in a cavity subject to an EM field of intensity
I ∝ n(ω) and angular frequency ω tuned to energy difference
between two discrete energy levels of the atoms, i.e. ~ω = E2 − E1.

Taking into account stimulated absorption, atoms are transferred
from level 1 to level 2 at a rate

Γ12 = WN1n(ω)

where N1 atoms in level 1 and W includes matrix elements.

From spontaneous and stimulated emission processes, the rate of
transfer of atoms from level 2 to level 1 is given by

Γ21 = WN2(n(ω) + 1)



Theory of laser: photon equations

Γkλ ∼ |〈f|êkλ · d̂|i〉|2
{

nkλ abs.
(nkλ + 1) emiss.

Since transfer of particles from level 2 to 1 leads to creation of
photons in cavity while from 1 to 2 they involve absorption, the rate
of change of photon number is given by ṅ = W (N2(n + 1)− N1n).

However, to make use of cavity as a photon source, we have to
allow photons to leak from the cavity through imperfect mirrors.
Taking into account this and other loss processes, we have

ṅ = DWn + N2W −
n

τph

where D = N2 − N1 denotes population imbalance and 1/τph is the
total loss rate.



Theory of laser: matter equations

Γkλ ∼ |〈f|êkλ · d̂|i〉|2
{

nkλ abs.
(nkλ + 1) emiss.

Without further external processes, photons would escape from
cavity and the system would relax into ground state – To create a
steady-state photon population, energy must be pumped into the
system in the form of excitations.

Achieved by transferring atoms between 1 and 2 via level 3 by
non-resonant optical pump. If lifetime of 3 is short, occupancy is
effectively zero, rate of transfer of particles from 2 to 1,

Ṅ2 ' −w21N2 + w12N1 − (N2 − N1)Wn ' −Ṅ1

where we have dropped small contribution from spontaneous
emission, and w12,w21 denote net non-resonant transition rates.



Theory of laser: stationary equations

Ṅ2 ' −w21N2 + w12N1 − (N2 − N1)Wn ' −Ṅ1

Without cavity photons (n = 0), since N1 + N2 ' N, in steady state,

D(0) = N
(0)
2 − N

(0)
1 = N

w12 − w21

w12 + w21

denotes unsaturated inversion.

Restoring the cavity photons, we have

Ḋ = Ṅ2 − Ṅ1 =
D(0) − D

T
− 2DWn

where 1/T = w12 + w21 represents typical relaxation rate.



Theory of laser: stationary equations

ṅ = DWn − n

τph
, Ḋ =

D(0) − D

T
− 2DWn

In steady-state operation, ṅ = Ḋ = 0, population imbalance

D ≡ N2 − N1 =
D(0)

1 + 2TWn

From this result, we find the steady state photon number

n =
D(0)W − 1/τph

2TW /τph

This result shows that the system will only start lasing when the
unsaturated inversion exceeds a threshold, D(0) > 1/τphW .



Theory of laser: coherence

Although the analysis above addressed the threshold conditions for
the laser, it does not provide any insight into the coherence
properties of the radiation field.

In fact, one may show that the radiation field generated by the laser
cavity forms a coherent or Glauber state.

The proof of this statement and the coherence properties that
follow would take us on a considerable detour – see Part III
quantum optics.

However, we can gain some insight into the properties and physical
manifestations of coherent states by looking at a toy example; but
first we must define what we mean by a coherent state.



Coherent states

A coherent state is defined as an eigenstate of the annihilation
operator,

a|β〉 = β|β〉

Since a is not Hermitian, β can take complex eigenvalues.

The eigenstates are constructed from the harmonic oscillator ground
state the by action of the unitary operator,

|β〉 = Û(β)|0〉, Û(β) = eβa†−β∗a, Û†(β)Û(β) = I

The proof follows from the identity (problem set I),

aÛ(β) = Û(β)(a + β), i.e. aÛ(β)|0〉 = βÛ(β)|0〉

i.e. Û is a translation operator, Û†(β)aÛ(β) = a + β.
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Coherent states

|β〉 = Û(β)|0〉, Û(β) = eβa†−β∗a

Since Û(β) = eβa†−β∗a = e−|β|
2/2eβa†e−β

∗a and e−β
∗a|0〉 = |0〉, we

can write

|β〉 = e−|β|
2/2eβa† |0〉

With |n〉 = 1√
n!

(a†)n|0〉, we can write

|β〉 =
∑

n

e−|β|
2/2 β

n

√
n!
|n〉

showing that the probability of observing n excitations

Pn = |〈n|β〉|2 = e−|β|
2 |β|2n

n!

is a Poisson distribution with average occupation, 〈β|a†a|β〉 = |β|2.
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Driven quantum harmonic oscillator

But how can we prepare a system in a
coherent state?

Consider a single two-level atom resonantly coupled to a single
cavity mode – the quantum Hamiltonian of the coupled system,

Ĥ =
1

2
~ωσz + ~ω

(
a†a +

1

2

)
+ ~g(σ−a + σ+a†)

When excitations of two level system are driven by an external
pump, it can behave as a classical dipole source for the cavity mode
leading to the driven harmonic oscillator Hamiltonian,

Ĥ ' Ĥrad + V (t) = ~ω
(

a†a +
1

2

)
+ i~

(
f (t)a† − f ∗(t)a

)
where f (t) = f0e

−iωt



Driven quantum harmonic oscillator

Ĥ = ~ω
(

a†a +
1

2

)
+ i~

(
f (t)a† − f ∗(t)a

)
f (t) = f0e

−iωt

If photon system is prepared in ground state, |0〉, the perturbation
drives the system into a coherent state.

To understand how, let us turn to the interaction representation,

i~∂t |ψ(t)〉I = VI|ψ(t)〉I where |ψ(t)〉I = e i Ĥ0t/~|ψ(t)〉S. With

e iωta†aae−iωta†a = e−iωta,

VI(t) = e i Ĥ0t/~i~
(
f (t)a† − f ∗(t)a

)
e−i Ĥ0t/~ = i~

(
f0a
† − f ∗0 a

)
Since VI(t) is time-independent, the time-evolution operator,
defined by the equation i~∂tUI(t) = VIUI(t), is given simply by

UI(t) = exp
[
(f0a

† − f ∗0 a)t
]
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Driven quantum harmonic oscillator

UI(t) = exp
[
(f0a

† − f ∗0 a)t
]

Therefore, if the system was prepared in the ground state |0〉 at
t = 0, at later times,

|ψ(t)〉I = exp[(f0a
† − f ∗0 a)t]|0〉 = e−|f0|2t2/2ef0a

†t |0〉

Reexpressed in the Schrödinger representation,

|ψ(t)〉S = e−i Ĥ0t/~|ψ(t)〉I = e−|f0|2t2/2ef0e
−iωta†t |0〉

A classical oscillatory force drives a system prepared in the vacuum
state into a coherent state with an excitation number which climbs
as |f0|2t2.
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Synopsis: Lectures 16-19

12 Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic
chain; quantization of atomic chain; phonons. Classical theory of
the EM field; waveguide; quantization of the EM field and photons.

13 Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden
approximation; harmonic perturbations and Fermi’s Golden rule.

14 Radiative transitions:

Light-matter interaction; spontaneous emission; absorption and
stimulated emission; Einstein’s A and B coefficents; dipole
approximation; selection rules; †lasers.



Synopsis: Lectures 20-24

15 Scattering theory

Elastic scattering; cross section; method of particle waves; Born
approximation; scattering of identical particles.

16 Relativistic quantum mechanics:

Klein-Gordon equation; Dirac equation; relativistic covariance and
spin; free relativistic particles and the Klein paradox; antiparticles;
coupling to EM field: minimal coupling and the connection to
non-relativistic quantum mechanics; †field quantization.


