Lecture 19

Radiative transitions
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Radiative transitions: background

@ Previously, we have formulated a quantum theory of atoms (matter)
coupling to a classical time-independent electromagnetic field, cf.
Zeeman and Stark effects.

@ To develop a fully quantum theory of light-matter systems, we have
to address both the quantum theory of the electromagnetic field
and formulate a theory of the coupling of light to matter.

@ In the following we will address each of these components in turn,
starting with light-matter coupling.

@ Our motivation for developing such a consistent theory is that it:

(a) provides a platform to study radiative tranistions in atoms
(which will address)

(b) forms the basis of quantum optics (which will not address —
but which is well-represented in subsequent courses).



Radiative transitions: outline

Coupling of matter to electromagnetic field
@ Spontaneous emission, absorption and stimulated emission

Einstein's A and B coefficients

Selection rules

Theory of the laser and coherent states



Coupling of matter to the electromagnetic field

@ For a single-electron atom in a time-dependent external EM field,
the Hamiltonian takes the form,

B — % (B + eA(r, 1)) — ed(r, t) + V(1)

(with a straightforward generalization to multi-electron atoms).



Coupling of matter to the electromagnetic field

@ For a single-electron atom in a time-dependent external EM field,
the Hamiltonian takes the form,

A~

B — % (B + eA(r, 1)) — ed(r, t) + V(1)

(with a straightforward generalization to multi-electron atoms).
@ Previously, we have seen that it is profitable to expand Hamiltonian

a2
in A, Facom = Fo + Foara + Flia., where fo = 2p V() — e(t)

m

A e n
Flara(t) = SA(2) - B

the paramagnetic term describes coupling of the atom to the EM
field, and Hyi, = (eA)?/2m represents diamagnetic term.

@ Since we will be interested in absorption and emission of single
photons, influence of diamagnetic term is (as usual) negligible.
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Coupling of matter to the electromagnetic field

@ When quantized, EM field is described by the photon Hamiltonian,

r 1
Hrad :k;2Mk (al,\akx+§) ; wk = clk|

where al, /ai, create/annihilate photons with polarization \.

@ These operators obey (bosonic) commutation relations,

[aicns arn] = Skaedans [ans aon] = [aly, an] = 0
and act on photon number states, |nk\) = ﬁ(a&/\)"k*m), as
ax|mo) = vV mo — 1), al\[mo) = Vi + 1 mey + 1)

@ With these definitions, the vector potential is given by

. 7 . .
A(r) = {é aoe®r + e al ek
n= > V 2egev [B2@ae™ + &nan

kA=1,2




Heisenberg representation
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@ To determine radiative transition rates, we will exploit Fermi’s
Golden rule. To prepare for this, it is convenient to transfer
time-dependence to operators (Heisenberg representation).



Heisenberg representation

A 1
Hiaq = Z Ty (ai)\ak)\ + E)

kA

@ To determine radiative transition rates, we will exploit Fermi’s
Golden rule. To prepare for this, it is convenient to transfer
time-dependence to operators (Heisenberg representation).

@ As with any operator, the field operators obey equations of motion,
. iir . .
Ak = ﬁ[H, an] = lwk[al,\akmak,\] = —IWkakr

e a(t) = a(0)e ", 31]:,\(t) = ai,\(o)eiwkt and

A h Ay i(k-r— Ak —i(k-r—
A(r,t) = ZMZGCMV |:ek/\ak)\e(k @) 4 g, af e iler wkt)]
kA




Coupling of matter to the electromagnetic field

@ Putting together all of these components, the total Hamiltonian is

then given by H = Huyom + Hpara + Hyaq where (with ¢ = 0)

~2
; p
Hatom = > + V(r), Huaa= %:hwk (ak/\ak,\ + 2) and
I:Ipara(t) %A(I’, t) P with

h i(k-r—wi i
= E \/ Boa e Krent) gk of e_’(k"_“"‘t)}
o 2eoka |: kA kA + kA kA

@ In the following, we will apply this Hamiltonian to the problem of
radiative transitions in single electron atoms.
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A hy
E,
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Spontaneous emission

@ Consider probability for an atom, initially in
state |i) to make transition to |f) with
emission of a photon of wavevector k and
polarization A — spontaneous emission.

A~ hy
E
@ |If radiation field initially prepared in vacuum state, |Q2), then final

state involves one photon, ai/\|§2).
@ Therefore, making use of Fermi’s Golden rule, with the perturbation
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transition probability given by,

/[ h er ol
<f\ ® <Q|ak/\— mekxabe “ropli) ® Q)

2
O(E — E¢ — hwi)

Fiofky =




Spontaneous emission

@ Consider probability for an atom, initially in
state |i) to make transition to |f) with
emission of a photon of wavevector k and
polarization A — spontaneous emission.

A hy
E
@ |If radiation field initially prepared in vacuum state, |Q2), then final

state involves one photon, ai/\|§2).
@ Therefore, making use of Fermi’s Golden rule, with the perturbation

» [ R A i(k-r— ax ot —i(ker— €.
Hpara:% 260ka |:ek)\ak)\el( r “’kt)-l-Eﬁ)\ak/\e i(k-r wkt)] . Ep

transition probability given by,

e h ]
fl— ax —ikor aps
( |m\/—2eowkvek’\e pli)

2

2

Fiekr = 5 §(E — Er — hwy)




Spontaneous emission
2
(150 ey, - Bl
m 260ka kP

d(E — Ef — huwy)
@ To determine transition rate, we must analyse matrix elements of
the form (fle=’*"&;, - pli). For typical state, (&, - p) ~ p ~ Zmca.
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Spontaneous emission

2
O(E — E¢ — huw)

ity = — e "'y - pli)

@ To determine transition rate, we must analyse matrix elements of
the form (fle~’*"é&;, - pli). For typical state, (&, - p) ~ p ~ Zmca.
@ But what about exponential factor? With r ~ h/p ~ h/mZca, and
2
wk = c|k| ~ £- (for electronic transitions), we have

2m

weh hp

k-r~ ~Za

cp mc
i.e. for Za < 1, we can expand exponential as power series in k - r
with lowest terms dominant.

@ Taking zeroth order term, and using p = %’"[I:Io,r] (cf. Ehrenfest)

(fléxx - Bli) = —imwic(f|éy - r[i)




Spontaneous emission: electric dipole approximation

Ax Al . o . Ay
(flexy - pli) = —imwi(f|é, - rli)

E;

@ This result, which emerges from leading approximation in Zq, is
known as electric dipole approximation: Effectively, we have set

Floara = %A(r, t)-p~ eE(r,t) - r= —E(r,t) - d

translating to the potential energy of a dipole, with moment
d = —er, in an oscillating electric field.




Stimulated absorption and emission

@ Consider now absorption of a photon. If we
assume that, in the initial state, there are ny, “_~_hv
photons in mode (kA) then, after the

transition, there will be ngy — 1 photons. E
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Stimulated absorption and emission
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assume that, in the initial state, there are ny, “_~_hv
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Stimulated absorption and emission

@ Consider now absorption of a photon. If we
assume that, in the initial state, there are ny, S _~_hv

photons in mode (kA) then, after the

transition, there will be ngy — 1 photons. E

@ As a result, using Fermi's Golden rule,
27 ~ . 9
Fiet(t) = 23 [ @ (Mo = 1) Aparall) @ [mn)["0(wr — w)

we obtain the transition amplitude,

e | Py s oAl
f . A 1K-r .
< |m 2eokae & - BI)

@ In particular, we find that the absorption rate increases linearly
with photon number, ).

2

21

Moty = - O(E — Ei — hwy)




Stimulated absorption and emission

@ Similarly, if we consider emission process in
which there are already ny, photons in initial ANy
state,
E

@ using the relation al)\\nv) = vy + 1|(mn + 1)), we have revised
transition rate,

2

2w e h(nk)\ 4F 1) —ik-ra Al
PN = — f—q/— rer . 0(E — E; — hw
£,kA 7 ( |m SV € & - Bli)| O(E k)

@ Enhancement of transition rate by photon occupancy known as
stimulated emission.




Radiative transitions: summary

A~ hy S _~_hv hy
E, E; E,

@ Altogether, in dipole approximation (f|&x - p|i) ~ —imwi(f|€nx - r|i)

r. - M|<f|é -ali)? ne 6(Er — B — hwy)  absorption
AT gy (mn +1) 6(E — Ef — hwy)  emission

where d = —er is electric dipole operator.

@ If there are no photons present initially, ¢ xx reduces to result for
spontaneous emission.

@ The coincidence of nyy-independent coefficients for absorption and
emission coincide is known as detailed balance.



Absorption and stimulated emission

nkx O0(Esr — B — hwg)  absorption

q ~ M e o dli) |2
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@ Integrated transition rate associated with a small solid angle d€2 in
the direction k given by
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Absorption and stimulated emission

nkx O0(Esr — B — hwg)  absorption

q ~ M e o dli) |2
Fimtior = eoV|<f|ek>‘ dil { (mx +1) 6(E — Ef — hwy) emission

@ Integrated transition rate associated with a small solid angle d€2 in
the direction k given by

k2dk
dRi_¢ ) = Motk = dQ V/ = listkr
2 P

@ If we assume that the photon number, ny), is isotropic, independent
of angle Q, using the dispersion relation wx = ck, we obtain

dRi_,f,)\ _ K w2do.) 7T7w< |é a|1>‘2 n)\(w) 6(Ef — Ei — hw)
dQ 3 ) @r)B eV T (na(w) + 1) 0(E; — Er — hw)

where hiw = |E; — E|.




Absorption and stimulated emission

r. N MKf'é a|>|2 mex 0(Ef — E; — hwy)  absorption
L0 28 = eV k- Gt (mex + 1) 6(E — Ef — hwg)  emission

@ Integrated transition rate associated with a small solid angle dQ in
the direction k given by
k2 dk
dR ¢\ = Mt =dQV | —=T
£,0 Z £,kA / (27)3 £,k
kedQ

@ If we assume that the photon number, ng) is isotropic, independent
of angle Q, using the dispersion relation wx = ck, we obtain

dR_ty = W N a2 | m(w)
dQ  8m2eohc3 [(fl&w - i) m(w) +1

where hw = |E; — Ej|.

@ From this expression, we can obtain the power loss as Py = AwR).




Einstein’s A and B coefficients

In fact, frequency dependence of spontaneous emission rate can be
inferred using ingenious argument due to Einstein who showed that
stimulated and spontaneous transitions must be related.

@ Consider ensemble of atoms exposed to black-body radiation at
temperature T. Let us consider transitions between states |1/;) and
|¢k>, with Ex — EJ = hw.



Einstein’s A and B coefficients

In fact, frequency dependence of spontaneous emission rate can be
inferred using ingenious argument due to Einstein who showed that
stimulated and spontaneous transitions must be related.

@ Consider ensemble of atoms exposed to black-body radiation at
temperature T. Let us consider transitions between states |1/;) and
|¢k>, with Ex — EJ = hw.

@ If number of atoms in two states given by n; and ny, transition rates
per atom given by:

absorption j — k Bj_,u(w)
stimulated emission k — j  Bi_,ju(w)
spontaneous emission k — j Ai_j(w)

where u(w) denotes energy density of radiation.

@ A and B are known as Einstein’s A and B coefficients, and, as we
have seen, are properties of atomic states.



Einstein’s A and B coefficients

absorption j — k Bj_u(w)
stimulated emission k — j B ju(w)
spontaneous emission k —j  Axj(w

@ In thermodynamic equilibrium the rates must balance, so that

i [Ak—j(w) + Biwju(w)] = njBj—ku(w)



Einstein’s A and B coefficients

absorption j — k Bj_u(w)
stimulated emission k — j B ju(w)
spontaneous emission k — j A j(w)

@ In thermodynamic equilibrium the rates must balance, so that
i [Ak—j(w) + Bi—ju(w)] = njBj—ku(w)

@ At the same time, relative populations of two states given by
Boltzmann factor,
eij/kBT

n;
e S
Ny e~ Ex/ks

hw/ks T

Thus we have:

Ar—j(w) = [Bjekeh“’/ s T _ Bk—u} u(w)




Einstein’s A and B coefficients

Ak_)j(w) = |:Bj_>kehu/kBT = Bk_)j} u(w)

@ For black-body, energy density u(w) set by Planck formula,

hw? hw? 1

uw) = 203 n(w) = 7203 ehw/kaT — 1
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@ For black-body, energy density u(w) set by Planck formula,

fw?® 1
7203 ehw/kaT _ 1

Ak%j(w) = {Bjakehw/kBT — Bkaj]



Einstein’s A and B coefficients
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@ For black-body, energy density u(w) set by Planck formula,

hw’ 1
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@ Since Ax_,; is intrinsic (independent of temperature), T must
cancel on right hand side, i.e.
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Einstein’s A and B coefficients

Aij(@) = [Bimke™/*T — Bi_j] u(w)

@ For black-body, energy density u(w) set by Planck formula,

fw?® 1
1203 ehw/keT _ 1

Ak%](w) = {Bjakehw/kBT - Bk;"’il

@ Since Ax_,; is intrinsic (independent of temperature), T must
cancel on right hand side, i.e.

7”_11,(}3
Bkﬂj = bj-k and Ak*)j(w) = Bk*}j7T2_C3

@ So, A and B coefficients are related, and if we can calculate B
coefficient for stimulated emission from Fermi's Golden rule, we can
infer A, and vice versa.



Selection rules:

Cif i =~ Tk (fl& - d[i)]? nkx 0(Ef — Ei — hwy)  absorption
T eV (mex + 1) 8(E — Er — hwy)  emission

@ Formulae for rates ;¢ kx show that radiative transitions will not
occur between states |i) and |f) unless at least one component of
the dipole matrix element (f|d|i) is non-zero.

@ If matrix elements are zero for certain pairs, they are disallowed (at
least in the electric dipole approximation) leading to selection rules.



Selection rules: parity

Cif i =~ Tk (fl& - d[i)]? nkx 0(Ef — Ei — hwy)  absorption
T eV (mex + 1) 8(E — Er — hwy)  emission

@ Formulae for rates ;¢ kx show that radiative transitions will not
occur between states |i) and |f) unless at least one component of
the dipole matrix element (f|d|i) is non-zero.

@ If matrix elements are zero for certain pairs, they are disallowed (at
least in the electric dipole approximation) leading to selection rules.

@ Since dipole operator d=—er changes sign under parity (r — —r),
matrix element (f|d|i) will vanish if |f) and |i) have same parity.

© The parity of the wavefunction must change in an electric dipole
transition.




Selection rules: spin

r. L MWk (£l a|1)|2 mx 0(Er — E; — hwy)  absorption
it eV kA (mex + 1) 6(E — Ef — hwg)  emission

@ Separating wavefunction into spatial and spin components,
If) = |é¢) ® |x¢), since dipole operator acts only on spatial part,

(E1dliy = — (xelx) / oPr 67 (1) erdi(r)

i.e. spin term, (x¢|xi), vanishes unless |x;) and |x¢) are identical,

As=0, Am;=0

@ The spin state is not altered in an electric dipole transition. J




Selection rules: orbital angular momentum

r. N %KfIA a|>|2 nkx O0(Er — E; — hwy)  absorption
0.2 = eV €k - it (mex + 1) 6(E — Ef — hwg)  emission

@ From the operator identity, [Z,-, rj] = ihejjry, it follows that

[L,2]=0,  [Lo,x*iy]=+(x+iy)h



Selection rules: orbital angular momentum

r. N %Kﬂé a|>|2 nkx O0(Er — E; — hwy)  absorption
0.2 = eV ke - Gt (mex + 1) 6(E — Ef — hwg)  emission

@ From the operator identity, [Z,-, rj] = ihejjry, it follows that
[L,2]=0,  [Lo,x*iy]=+(x+iy)h
@ We therefore obtain,

0, m'\[L,, 2]|¢, m) = (m" — m)B(¢', m'|z|¢, m) = 0



Selection rules: orbital angular momentum

r. %Kﬂe d| )2 nkx O0(Er — E; — hwy)  absorption
e E . kA (mx +1) 6(E — Er — hwk)  emission

@ From the operator identity, [Z,-, rj] = ihejjry, it follows that
[i,,2] =0, (L., x+iy] = £(x + iy)h
@ We therefore obtain,
0, m'\[L,, 2]|¢, m) = (m" — m)B(¢', m'|z|¢, m) = 0
@ Similarly, since (¢, m’|[L,x % iy]|¢, m) = £h{¢', m'|x £ iy|¢, m),
(m" = mF1){',m|xtiy|ll,m)=0

© Therefore, to get non-zero component of dipole matrix element,
require Amy = 0, +£1.




Selection rules: orbital angular momentum

@ Using operator identity [L2, [L2, r]] = 2h2(rL2 + Lr), we have

(€ m'|[C2, 122, A11€, m) = [€'(¢" + 1) = £+ 1), m|e[¢, m)
=2[0(0 + 1)+ L+ 1), m|r|€, m)

ie. (C+0)L+0+2)[( — €)= 1), m'|r|¢, m) = 0. Since
£,¢' > 0, dipole matrix element non-vanishing only if ¢/ = ¢ + 1.

© To effect an electric dipole transition, we must have Af = +1. J

@ One may summarize the selection rules for ¢ and my is by saying
that the photon carries off (or brings in, in an absorption transition)
one unit of angular momentum.



Selection rules: orbital angular momentum

@ Using operator identity [L2, [L2, r]] = 2h2(rL2 + Lr), we have

(€ m'|[C2, 122, A11€, m) = [€'(¢" + 1) = £+ 1), m|e[¢, m)
=2[0(0 + 1)+ L+ 1), m|r|€, m)

ie. (C+0)L+0+2)[( — €)= 1), m'|r|¢, m) = 0. Since
£,¢' > 0, dipole matrix element non-vanishing only if ¢/ = ¢ + 1.

© To effect an electric dipole transition, we must have Af = +1. J

@ One may summarize the selection rules for ¢ and my is by saying
that the photon carries off (or brings in, in an absorption transition)
one unit of angular momentum.

@ N.B. it is possible, though much less likely in the case of an atom,
for EM field to interact with magnetic dipole or electric quadrupole
moment with different selection rules.



Selection rules: polarization
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(Ei — Ef — hwy) emission

@ For transitions with Amy = 0, the dipole matrix element {f|d|i) ~ &,
— and there is no component of polarization along z-direction.



Selection rules: polarization

N

Ul JTHP i O(Er — B — hwi) absorption
Mot = el -dipp { (0o SO ) absorp

(Ei — Ef — hwy) emission

@ For transitions with Amy = 0, the dipole matrix element {f|d|i) ~ &,
— and there is no component of polarization along z-direction.

@ Similarly, for electric dipole transitions with m" = m+1,
(0, m'|x Fiy|l,m) =0= (¢, m|z|¢,m), and (f|d|i) ~ (1,7F/,0).

(a) If the wavevector of photon lies along z, the emitted light is
circularly polarized with a polarization which depends on helicity.

(b) If the wavevector lies in xy place, the emitted light is linearly
polarized, while in general it is elliptically polarized.



Selection rules: LS coupling

@ In the presence of spin-orbit coupling, stationary states labelled by
quantum numbers J, my, ¢, s where J =L +S.

@ The selection rules in this case can be inferred by looking for the
conditions for non-zero matrix elements (J', my, €', s'|r|J, my, £, s).



Selection rules: LS coupling

@ In the presence of spin-orbit coupling, stationary states labelled by
quantum numbers J, my, ¢, s where J =L +S.

@ The selection rules in this case can be inferred by looking for the
conditions for non-zero matrix elements (J', my, €', s'|r|J, my, £, s).

@ By expanding states |J, my, £, s) in basis states |{, my) ® |s, ms), one

may uncover the following set of selection rules:

@ For dipole transitions to take place, we require that

Am; =0,=£1
Aj=0,£1 not 0—0

@ N.B. These conclusions are consistent with photon carrying on unit
of angular momentum.



Radiative transitions: recap

@ When coupled to a quantized electromagnetic field, the total
Hamiltonian for atomic system given by H = Hatom + Hpara + Hrad
where

a2
A E ) 1
Hatom = % + V(r)7 Hrad = gh{’uk (aikak)\ + 5)

denotes the Hamiltonian of the isolated atomic and radiation field,
and

Hyara(t) = —A(r, t) - p

e
m

denotes the coupling with

A / h A i(kr—w AK —i(k-r—w
A(rv t) = Z Deown V [ekAak,\e (ker—wict) + ekAa,T(Ae (kr kt)]
kX




Radiative transitions: recap

@ The transition rate between an initial and final state of the atom and
electromagnetic field can be estimated using Fermi's Golden rule

27 ~ .
Mie= §|<f|Hpara|l>|25(wif - w)

where hwis = E; — E;.

@ Crucially, since the photon creation/annihilation operators obey the
relations, al/\|nkA> = v/mx + 1| (mey + 1)) and
akx| M) = /M| (M — 1)) the transition rate depends on the
photon number, nyj.

@ When Za < 1, the effective range of the interaction of the atom
with the field is small (i.e. kr ~ Za) and we can effect the dipole
approximation,

(fle~™ 8 - Bli) = T (Flér - dfi),  d=—er




Radiative transitions: recap

- _~_hv
E; E,

@ In the electric dipole approximation, the transition rate is given by

r. ~ T @y - dfi) 2 mex 0(Er — B — hwy)  absorption
AT gy (mx +1) 6(6 — Ef — hwy) emission

where d = —er is electric dipole operator.

@ The coincidence of ngx-independent coefficients for absorption and
emission coincide is known as detailed balance.

@ From these results, we turn now to consider the principle of the
operation of an atomic laser.



Theory of laser

@ Principle of stimulated emission
provides basis of laser operation:
light amplification by stimulated
emission of radiation.

@ However, laser not only amplifies
light, but provides source of
monochromatic (single mode),
coherent (spatial/temporal),
directional and
intense radiation.

@ In atomic laser, the gain medium
provided by a gas of atoms

confined to a cavity and bound by

highly reflective mirrors.

fully reflective mirror lasing medium partly reflective mirror
i

mo e L)

2. Population inversion. excited atom @

waﬂénuse?h:&mn [} 09. '.o‘ lﬁl
®en stimulated
- .0 slﬁnu!al‘!d mizsion ® 0% Jl emission

3. Sporlldnecu: emission, start of stimulated emission. aomo




Theory of laser: rate equations

ru~|<f|ék»&|i>|2{ :

Mk
nex + 1)

abs.
emiss.

E-‘

E;

e oW hv

@ Consider gas of atoms in a cavity subject to an EM field of intensity
I o< n(w) and angular frequency w tuned to energy difference
between two discrete energy levels of the atoms, i.e. w = E, — E;.

@ Taking into account stimulated absorption, atoms are transferred

from level 1 to level 2 at a rate
F12 = WNln(w)

where N; atoms in level 1 and W includes matrix elements.

@ From spontaneous and stimulated emission processes, the rate of

transfer of atoms from level 2 to level 1 is given by

F21 = WNz(n(w) + 1)



Theory of laser: photon equations

R . n abs.
Ma ~ | (f|€kx ~d|1>|2 { (mix + IB emiss.

E-‘

E;

e oW hv

@ Since transfer of particles from level 2 to 1 leads to creation of
photons in cavity while from 1 to 2 they involve absorption, the rate
of change of photon number is given by 1 = W(Ny(n+ 1) — Nyn).

@ However, to make use of cavity as a photon source, we have to
allow photons to leak from the cavity through imperfect mirrors.
Taking into account this and other loss processes, we have

i = DWn+ NoW —
Tph

where D = N, — Nj denotes population imbalance and 1/7,, is the

total loss rate.



Theory of laser: matter equations

A s n
rkA - |<f|ek>\ d|1>|2 { (nk)\ + '](-A)

abs.
emiss.

E3=3

Pumping
(optical)

Eq—t

Short-lived
state

Rapid decay

Metastable
state

Ao Laser
light

Ground
state

@ Without further external processes, photons would escape from
cavity and the system would relax into ground state — To create a
steady-state photon population, energy must be pumped into the
system in the form of excitations.

@ Achieved by transferring atoms between 1 and 2 via level 3 by
non-resonant optical pump. If lifetime of 3 is short, occupancy is
effectively zero, rate of transfer of particles from 2 to 1,

N2 ~ —wo1 No + wia Ny — (N2 — Nl)Wn ~ 7/\./1

where we have dropped small contribution from spontaneous
emission, and wip, wp; denote net non-resonant transition rates.



Theory of laser: stationary equations

E3—F Short-lived
state
Pumping Rapid decay
(optical)
! y Metastable
Ny ~ —wor Ny + wioNy — (Np — Ny )W ~ — Ny Meta,
Laser
light
Ground

Ey—
L state

@ Without cavity photons (n = 0), since Ny + Ny ~ N, in steady state,

0 0 Wiz — W21

DO = N — NO =y 2

wi2 + Wap
denotes unsaturated inversion.

@ Restoring the cavity photons, we have

. . . DO® _p
D:N2—N1:T—2DWn

where 1/T = wyy + wyy represents typical relaxation rate.



Theory of laser: stationary equations

E3—F

Pumping
(optical)

Short-lived
state

Rapid decay

n= DWhn — = D=—  _2DWnh g&azttzstable
Tph T Ao Laser
light
Eq—t Ground

state

@ In steady-state operation, n = D=0, population imbalance

D)

D=Ny— Ny = ——
2 T T 2T Wn

@ From this result, we find the steady state photon number

. DOW —1/1,
a 2TW/Tph

@ This result shows that the system will only start lasing when the
unsaturated inversion exceeds a threshold, D(® > 1/7'ph W.



Theory of laser: coherence

@ Although the analysis above addressed the threshold conditions for
the laser, it does not provide any insight into the coherence
properties of the radiation field.

@ In fact, one may show that the radiation field generated by the laser
cavity forms a coherent or Glauber state.

@ The proof of this statement and the coherence properties that
follow would take us on a considerable detour — see Part 1l
quantum optics.

@ However, we can gain some insight into the properties and physical
manifestations of coherent states by looking at a toy example; but
first we must define what we mean by a coherent state.



Coherent states

@ A coherent state is defined as an eigenstate of the annihilation
operator,

als) = 16)

Since a is not Hermitian, 3 can take complex eigenvalues.



Coherent states

@ A coherent state is defined as an eigenstate of the annihilation
operator,

als) = 16)

Since a is not Hermitian, 3 can take complex eigenvalues.

@ The eigenstates are constructed from the harmonic oscillator ground
state the by action of the unitary operator,

18) = 0(B)0),  U(B)=e*7"2  UN(B)0(B) =1

@ The proof follows from the identity (problem set I),
aU(p) = U(B)(a+p), e al(p)o)=p0(B)0)
i.e. Uis a translation operator, UT(8)al(3) = a+ 3.



Coherent states

18) = U(B)|0),  D(B) = e —H"a

@ Since U(3) = &' =2 = e=18I°/2eBa" ¢=0"2 and =572|0) = |0), we
can write

18) = e~ 101/2¢5%" gy




Coherent states

18) = U(B)|0),  D(B) = e —H"a

@ Since U(3) = &' =2 = e=18I°/2eBa" ¢=0"2 and =572|0) = |0), we
can write

|18) = e~18F/2¢84" o)

@ With |n) = in(aT)”|0>, we can write

18) = Ze-“”f}w

nl
n

showing that the probability of observing n excitations

_ip 181"
P, = [(n|B)]> = e~ 1A T

is a Poisson distribution with average occupation, (3|afa|3) = |3|>.



Driven quantum harmonic oscillator

But how can we prepare a system in a i (
coherent state? } \

@ Consider a single two-level atom resonantly coupled to a single
cavity mode — the quantum Hamiltonian of the coupled system,

A 1 1
H= Ehwaz + hw (aTa + 2) + hg(o_a+oya)

@ When excitations of two level system are driven by an external
pump, it can behave as a classical dipole source for the cavity mode
leading to the driven harmonic oscillator Hamiltonian,

H e~ Arag + V(t) = hw (aTa+ ;) +ih (f(t)a' — £*(t)a)

where f(t) = fye~ /vt



Driven quantum harmonic oscillator

~

H = hw (aTa + ;) +ih (f(t)a' — £*(t)a)

f(t) = foe vt
@ If photon system is prepared in ground state, |0), the perturbation
drives the system into a coherent state.

@ To understand how, let us turn to the intergction representation,
ihd:[P(t))1 = Vil (t))1 where [¢(t))1 = eot/P[y(t))s. With

eiwta aaefiwta a_ efiwta

Vi(t) = €t/ in (F(t)al — £*(t)a) e ot/" = in (fa! — f;a)



Driven quantum harmonic oscillator

~

H = hw (aTa + ;) +ih (f(t)a' — £*(t)a)

f(t) = foe vt
@ If photon system is prepared in ground state, |0), the perturbation
drives the system into a coherent state.

@ To understand how, let us turn to the intergction representation,
ihd:[P(t))1 = Vil (t))1 where [¢(t))1 = eot/P[y(t))s. With

eiwta aaefiwta a_ efiwta

Vi(t) = €t/ in (F(t)al — £*(t)a) e ot/" = in (fa! — f;a)

@ Since Vj(t) is time-independent, the time-evolution operator,
defined by the equation k0 Ui(t) = ViUi(t), is given simply by

Ui(t) = e [(ha' — f72)t]




Driven quantum harmonic oscillator

U(t) = exp [(ha' — f72)t]

@ Therefore, if the system was prepared in the ground state |0) at
t = 0, at later times,

()1 = exp|(foa — £a)t][0) = 710" /2¢ha"r )
@ Reexpressed in the Schrodinger representation,

W(t))s = e Fot/ By () = e 16 /2he " Tt )



Driven quantum harmonic oscillator

U(t) = exp [(ha' — f72)t]

@ Therefore, if the system was prepared in the ground state |0) at
t = 0, at later times,

() = expl(fal — fra)t]|0) = =10 /2eh"t o)
@ Reexpressed in the Schrodinger representation,
|1/J(t)>s — efiltiot/hW)(t»I _ e,‘ﬁ)|2t2/2eﬁ)e*iwt3’rt|0>
@ A classical oscillatory force drives a system prepared in the vacuum

state into a coherent state with an excitation number which climbs
as |fo|2t2.



Synopsis: Lectures 16-19

@ Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic
chain; quantization of atomic chain; phonons. Classical theory of
the EM field; waveguide; quantization of the EM field and photons.

@® Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden
approximation; harmonic perturbations and Fermi's Golden rule.

@ Radiative transitions:
Light-matter interaction; spontaneous emission; absorption and
stimulated emission; Einstein’s A and B coefficents; dipole
approximation; selection rules; Tlasers.



Synopsis: Lectures 20-24

@ Scattering theory

Elastic scattering; cross section; method of particle waves; Born
approximation; scattering of identical particles.

@ Relativistic quantum mechanics:

Klein-Gordon equation; Dirac equation; relativistic covariance and
spin; free relativistic particles and the Klein paradox; antiparticles;
coupling to EM field: minimal coupling and the connection to
non-relativistic quantum mechanics; ffield quantization.



