Lecture 18

Time-dependent perturbation theory

t (nanoseconds)

40

20

60

80

< □ ▶

100

< ⊒→

E

590

probabili

60

50

40

- So far, we have focused on quantum mechanics of systems described by Hamiltonians that are *time-independent*.
- In such cases, time dependence of wavefunction developed through time-evolution operator, $\hat{U} = e^{-i\hat{H}t/\hbar}$, i.e. for $\hat{H}|n\rangle = E_n|n\rangle$,

$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar} \underbrace{|\psi(0)\rangle}_{\sum_{n} c_{n}(0)|n\rangle} = \sum_{n} e^{-iE_{n}t/\hbar}c_{n}(0)|n\rangle$$

- Although suitable for closed quantum systems, formalism fails to describe interaction with an external environment, e.g. EM field.
- In such cases, more convenient to describe "induced" interactions of small isolated system, \hat{H}_0 , through time-dependent interaction V(t).
- In this lecture, we will develop a formalism to treat such time-dependent perturbations.

- So far, we have focused on quantum mechanics of systems described by Hamiltonians that are *time-independent*.
- In such cases, time dependence of wavefunction developed through time-evolution operator, $\hat{U} = e^{-i\hat{H}t/\hbar}$, i.e. for $\hat{H}|n\rangle = E_n|n\rangle$,

$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar} \underbrace{|\psi(0)\rangle}_{\sum_{n} c_{n}(0)|n\rangle} = \sum_{n} e^{-iE_{n}t/\hbar}c_{n}(0)|n\rangle$$

- Although suitable for closed quantum systems, formalism fails to describe interaction with an external environment, e.g. EM field.
- In such cases, more convenient to describe "induced" interactions of small isolated system, \hat{H}_0 , through time-dependent interaction V(t).
- In this lecture, we will develop a formalism to treat such time-dependent perturbations.

Time-dependent perturbation theory: outline

- Time-dependent potentials: general formalism
- Time-dependent perturbation theory
- "Sudden" perturbation
- Harmonic perturbations: Fermi's Golden Rule

- Consider Hamiltonian $\hat{H}(t) = \hat{H}_0 + V(t)$, where all time dependence enters through the potential V(t).
- So far, we have focused on **Schrödinger representation**, where dynamics specified by time-dependent wavefunction,

 $i\hbar\partial_t|\psi(t)
angle_{
m S}=\hat{H}|\psi(t)
angle_{
m S}$

• However, to develop time-dependent perturbation theory for $\hat{H}(t) = \hat{H}_0 + V(t)$, it is convenient to turn to a new representation known as the **Interaction representation**:

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}=|\psi(0)
angle_{\mathrm{S}}$$

- Consider Hamiltonian $\hat{H}(t) = \hat{H}_0 + V(t)$, where all time dependence enters through the potential V(t).
- So far, we have focused on **Schrödinger representation**, where dynamics specified by time-dependent wavefunction,

$$i\hbar\partial_t|\psi(t)
angle_{
m S}=\hat{H}|\psi(t)
angle_{
m S}$$

• However, to develop time-dependent perturbation theory for $\hat{H}(t) = \hat{H}_0 + V(t)$, it is convenient to turn to a new representation known as the Interaction representation:

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}=|\psi(0)
angle_{\mathrm{S}}$$

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}
angle=|\psi(0)
angle_{\mathrm{S}}$$

 In the interaction representation, wavefunction obeys the following equation of motion:

$$egin{aligned} &i\hbar\partial_t|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_0t/\hbar}(i\hbar\partial_t-\hat{H}_0)|\psi(t)
angle_{\mathrm{S}}\ &=e^{i\hat{H}_0t/\hbar}(\hat{H}-\hat{H}_0)|\psi(t)
angle_{\mathrm{S}}\ &=e^{i\hat{H}_0t/\hbar}V(t)e^{-i\hat{H}_0t/\hbar}\,|\psi(t)
angle_{\mathrm{I}}\ &V_{\mathrm{I}}(t) \end{aligned}$$

We therefore have that

 $i\hbar\partial_t |\psi(t)
angle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)
angle_{\mathrm{I}}, \qquad V_{\mathrm{I}}(t) = e^{i\hat{H}_0t/\hbar}V(t)e^{-i\hat{H}_0t/\hbar}$

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

$$i\hbar\partial_t|\psi(t)
angle_{\mathrm{I}}=V_{\mathrm{I}}(t)|\psi(t)
angle_{\mathrm{I}},\qquad V_{\mathrm{I}}(t)=e^{i\hat{H}_0t/\hbar}V(t)e^{-i\hat{H}_0t/\hbar}$$

• Then, if we form eigenfunction expansion, $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$, where $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$,

$$i\hbar\partial_{t}\sum_{n}c_{n}(t)|n\rangle = e^{i\hat{H}_{0}t/\hbar}V(t)e^{-i\hat{H}_{0}t/\hbar}\sum_{n}c_{n}(t)|n\rangle$$
$$i\hbar\sum_{n}\dot{c}_{n}(t)|n\rangle = \sum_{n}c_{n}(t)e^{i\hat{H}_{0}t/\hbar}V(t)\underbrace{e^{-i\hat{H}_{0}t/\hbar}|n\rangle}{e^{-iE_{n}t/\hbar}|n\rangle}$$

• If we now contract with a general state |m
angle

$$i\hbar\partial_t |\psi(t)
angle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)
angle_{\mathrm{I}}, \qquad V_{\mathrm{I}}(t) = e^{i\hat{H}_0 t/\hbar}V(t)e^{-i\hat{H}_0 t/\hbar}$$

• Then, if we form eigenfunction expansion, $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$, where $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$,

$$i\hbar\partial_{t}\sum_{n}c_{n}(t)|n\rangle = e^{i\hat{H}_{0}t/\hbar}V(t)e^{-i\hat{H}_{0}t/\hbar}\sum_{n}c_{n}(t)|n\rangle$$
$$i\hbar\sum_{n}\dot{c}_{n}(t)|n\rangle = \sum_{n}c_{n}(t)e^{i\hat{H}_{0}t/\hbar}V(t)\underbrace{e^{-i\hat{H}_{0}t/\hbar}|n\rangle}{e^{-iE_{n}t/\hbar}|n\rangle}$$

• If we now contract with a general state $|m\rangle$

$$\sum_{n} \dot{c}_{n}(t) \underbrace{\langle m|n \rangle}_{\delta_{mn}} = \sum_{n} c_{n}(t) \underbrace{\langle m|e^{i\hat{H}_{0}t/\hbar}}_{\langle m|e^{iE_{m}t/\hbar}} V(t)e^{-iE_{n}t/\hbar}|n\rangle$$
$$i\hbar \dot{c}_{m}(t) = \sum_{n} \langle m|V(t)|n \rangle e^{i(E_{m}-E_{n})t/\hbar} c_{n}(t)$$

$$i\hbar\dot{c}_m(t) = \sum_n \langle m|V(t)|n\rangle e^{i(E_m-E_n)t/\hbar}c_n(t)$$

• So, in summary, if we expand wavefunction $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$, where $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$, the Schrödinger equation,

 $i\hbar\partial_t|\psi(t)
angle_{\mathrm{I}}=V_{\mathrm{I}}(t)|\psi(t)
angle_{\mathrm{I}}$ with $V_{\mathrm{I}}(t)=e^{i\hat{H}_0t/\hbar}V(t)e^{-i\hat{H}_0t/\hbar}$

translates to the relation,

$$i\hbar\dot{c}_{m}(t) = \sum_{n} V_{mn}(t)e^{i\omega_{mn}t}c_{n}(t)$$

where $V_{mn}(t) = \langle m|V(t)|m\rangle$ and $\omega_{mn} = \frac{1}{\hbar}(E_{m} - E_{n}) = -\omega_{nm}$.

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < ()

$$i\hbar\dot{c}_m(t) = \sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

Consider an atom with just two available atomic levels, |1> and |2>, with energies E₁ and E₂. In the eigenbasis, the time-independent Hamiltonian can be written as

$$\hat{H}_0 = E_1 |1\rangle \langle 1| + E_2 |2\rangle \langle 2| \equiv \left(egin{array}{cc} E_1 & 0 \ 0 & E_2 \end{array}
ight)$$

Note that the two-level atom mirrors a spin 1/2 system.

• If the system is driven by an electric field, $\mathcal{E}(\mathbf{r}, t) = \mathcal{E}_0(\mathbf{r}) \cos(\omega t)$, and the states have different parity, close to resonance, $|\omega - \omega_{21}| \ll \omega_{21}$, the effective interaction potential is given by

$$V(t)\simeq \delta e^{i\omega t}|1
angle\langle 2|+\delta e^{-i\omega t}|2
angle\langle 1|\equiv \delta egin{pmatrix} 0&e^{i\omega t}\ e^{-i\omega t}&0 \end{pmatrix}$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

where the matrix element, $\delta = \langle 1 | \boldsymbol{\mathcal{E}} | 2 \rangle$ is presumed real.

$$i\hbar\dot{c}_m(t) = \sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

Consider an atom with just two available atomic levels, |1> and |2>, with energies E₁ and E₂. In the eigenbasis, the time-independent Hamiltonian can be written as

$$\hat{H}_0 = E_1 |1\rangle\langle 1| + E_2 |2\rangle\langle 2| \equiv \left(egin{array}{cc} E_1 & 0 \\ 0 & E_2 \end{array}
ight)$$

Note that the two-level atom mirrors a spin 1/2 system.

• If the system is driven by an electric field, $\mathcal{E}(\mathbf{r}, t) = \mathcal{E}_0(\mathbf{r}) \cos(\omega t)$, and the states have different parity, close to resonance, $|\omega - \omega_{21}| \ll \omega_{21}$, the effective interaction potential is given by

$$V(t) \simeq \delta e^{i\omega t} |1\rangle \langle 2| + \delta e^{-i\omega t} |2\rangle \langle 1| \equiv \delta \left(egin{array}{cc} 0 & e^{i\omega t} \ e^{-i\omega t} & 0 \end{array}
ight)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

where the matrix element, $\delta = \langle 1 | \boldsymbol{\mathcal{E}} | 2 \rangle$ is presumed real.

$$\hat{H}_0 + V(t) = \left(egin{array}{cc} E_1 & 0 \\ 0 & E_2 \end{array}
ight) + \delta \left(egin{array}{cc} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{array}
ight)$$

- The electric field therefore induces transitions between the states.
- If we expand the "spinor-like" wavefunction in eigenstates of \hat{H}_0 , i.e. $|\psi(t)\rangle_I = c_1(t)|1\rangle + c_2(t)|2\rangle$, the equation

$$i\hbar\dot{c}_m(t) = \sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

translates to the quantum dynamics

$$i\hbar\partial_t \mathbf{c} = \delta \begin{pmatrix} 0 & e^{i(\omega-\omega_{21})t} \\ e^{-i(\omega-\omega_{21})t} & 0 \end{pmatrix} \mathbf{c}(t), \qquad \omega_{21} = \frac{1}{\hbar}(E_2 - E_1)$$

where $c(t) = (c_1(t) \ c_2(t))$.

▲□▶▲□▶▲□▶▲□▶ ▲□▶

$$i\hbar\partial_t \mathbf{c} = \delta \left(\begin{array}{cc} 0 & e^{i(\omega-\omega_{21})t} \\ e^{-i(\omega-\omega_{21})t} & 0 \end{array}
ight) \mathbf{c}(t), \qquad \omega_{21} = \frac{1}{\hbar}(E_2 - E_1)$$

• Expanding this equation, we find

$$i\hbar\dot{c}_1 = \delta e^{i(\omega-\omega_{21})t}c_2, \qquad i\hbar\dot{c}_2 = \delta e^{-i(\omega-\omega_{21})t}c_1$$

from which we obtain an equation for c_2 ,

$$\ddot{c}_2(t)+-i(\omega-\omega_{21})\dot{c}_2(t)+\left(rac{\delta}{\hbar}
ight)^2c_2(t)=0$$

With the initial conditions, c₁(0) = 1 and c₂(0) = 0, i.e. particle starts in state |1>, we obtain the solution,

 $c_2(t) = e^{-i(\omega-\omega_{21})t/2}\sin(\Omega t)$

where $\Omega = ((\delta/\hbar)^2 + (\omega - \omega_{21})^2/4)^{1/2}$ is known as **Rabi frequency**.

$$i\hbar\partial_t \mathbf{c} = \delta \left(\begin{array}{cc} 0 & e^{i(\omega-\omega_{21})t} \\ e^{-i(\omega-\omega_{21})t} & 0 \end{array}
ight) \mathbf{c}(t), \qquad \omega_{21} = \frac{1}{\hbar}(E_2 - E_1)$$

• Expanding this equation, we find

$$i\hbar\dot{c}_1 = \delta e^{i(\omega-\omega_{21})t}c_2, \qquad i\hbar\dot{c}_2 = \delta e^{-i(\omega-\omega_{21})t}c_1$$

from which we obtain an equation for c_2 ,

$$\ddot{c}_2(t)+-i(\omega-\omega_{21})\dot{c}_2(t)+\left(rac{\delta}{\hbar}
ight)^2c_2(t)=0$$

• With the initial conditions, $c_1(0) = 1$ and $c_2(0) = 0$, i.e. particle starts in state $|1\rangle$, we obtain the solution,

$$c_2(t) = e^{-i(\omega - \omega_{21})t/2} \sin(\Omega t)$$

where $\Omega = ((\delta/\hbar)^2 + (\omega - \omega_{21})^2/4)^{1/2}$ is known as **Rabi frequency**.

$$c_2(t) = Ae^{-i(\omega-\omega_{21})t/2}\sin(\Omega t), \qquad \Omega = \left(\left(\frac{\delta}{\hbar}\right)^2 + \left(\frac{\omega-\omega_{21}}{2}\right)^2\right)^{1/2}$$

• Together with $c_1(t) = \frac{i\hbar}{\delta} e^{i(\omega - \omega_{21})t} \dot{c}_2$, we obtain the normalization, $A = \frac{\delta}{\sqrt{\delta + \hbar^2(\omega - \omega_{21}^2/4)}}$ and

$$|c_2(t)|^2 = \frac{\delta^2}{\delta^2 + \hbar^2(\omega - \omega_{21})^2/4} \sin^2 \Omega t, \quad |c_1(t)|^2 = 1 - |c_2(t)|^2$$

 Periodic solution describes transfer of probability between states 1 and 2. Maximum probability of occupying state 2 is Lorentzian,

$$|c_2(t)|_{\max}^2 = rac{\delta^2}{\delta^2 + \hbar^2(\omega - \omega_{21})^2/4},$$

taking the value of unity at resonance, $\omega = \omega_{21}$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 → 釣�?

$$c_2(t) = Ae^{-i(\omega-\omega_{21})t/2}\sin(\Omega t), \qquad \Omega = \left(\left(\frac{\delta}{\hbar}\right)^2 + \left(\frac{\omega-\omega_{21}}{2}\right)^2\right)^{1/2}$$

• Together with $c_1(t) = \frac{i\hbar}{\delta} e^{i(\omega - \omega_{21})t} \dot{c}_2$, we obtain the normalization, $A = \frac{\delta}{\sqrt{\delta + \hbar^2(\omega - \omega_{21}^2/4)}}$ and

$$|c_2(t)|^2 = \frac{\delta^2}{\delta^2 + \hbar^2(\omega - \omega_{21})^2/4} \sin^2 \Omega t, \quad |c_1(t)|^2 = 1 - |c_2(t)|^2$$

 Periodic solution describes transfer of probability between states 1 and 2. Maximum probability of occupying state 2 is Lorentzian,

$$|c_2(t)|_{\max}^2 = rac{\delta^2}{\delta^2 + \hbar^2(\omega - \omega_{21})^2/4},$$

taking the value of unity at resonance, $\omega = \omega_{21}$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Rabi oscillations: persistent current qubit

- It is different to prepare and analyse ideal atomic two-level system.
- However, circuits made of superconducting loops provide access to "two-level" systems. These have been of great interest since they (may yet) provide a platform to develop qubit operation and quantum logic circuits.

 By exciting transitions between levels using a microwave pulse, coherence of the system has been recorded through Rabi oscillations.

JQ P

Rabi oscillations: persistent current qubit

- It is different to prepare and analyse ideal atomic two-level system.
- However, circuits made of superconducting loops provide access to "two-level" systems. These have been of great interest since they (may yet) provide a platform to develop qubit operation and quantum logic circuits.

 By exciting transitions between levels using a microwave pulse, coherence of the system has been recorded through Rabi oscillations.

JQ P

- For a general time-dependent Hamiltonian, $\hat{H} = \hat{H}_0 + V(t)$, an analytical solution is usually infeasible.
- However, as for the time-independent Schrödinger equation, we can develop to a perturbative expansion (in powers of interaction):

 $|\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n}(t)|n\rangle, \quad c_{n}(t) = c_{n}^{(0)} + c_{n}^{(1)}(t) + c_{n}^{(2)}(t) + \cdots$

where $\hat{H}_0|n\rangle = E_n|n\rangle$, $c_n^{(m)} \sim O(V^m)$, and $c_n^{(0)}$ represents some (time-independent) initial state of the system.

 As with the Schrödinger representation, in the interaction representation, |ψ(t)⟩_I related to initial state |ψ(t₀)⟩_I, at time t₀, through a time-evolution operator,

 $|\psi(t)
angle_{
m I}=\hat{U}_{
m I}(t,t_0)|\psi(t_0)
angle_{
m I}$

- For a general time-dependent Hamiltonian, $\hat{H} = \hat{H}_0 + V(t)$, an analytical solution is usually infeasible.
- However, as for the time-independent Schrödinger equation, we can develop to a perturbative expansion (in powers of interaction):

$$|\psi(t)\rangle_{\rm I} = \sum_n c_n(t)|n\rangle, \quad c_n(t) = c_n^{(0)} + c_n^{(1)}(t) + c_n^{(2)}(t) + \cdots$$

where $\hat{H}_0|n\rangle = E_n|n\rangle$, $c_n^{(m)} \sim O(V^m)$, and $c_n^{(0)}$ represents some (time-independent) initial state of the system.

 As with the Schrödinger representation, in the interaction representation, |ψ(t)⟩_I related to initial state |ψ(t₀)⟩_I, at time t₀, through a time-evolution operator,

$$|\psi(t)
angle_{
m I}=\hat{U}_{
m I}(t,t_0)|\psi(t_0)
angle_{
m I}$$

 $|\psi(t)
angle_{
m I}=\hat{U}_{
m I}(t,t_0)|\psi(t_0)
angle_{
m I}$

• Substituted into Schrödinger equation $i\hbar\partial_t |\psi(t)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)\rangle_{\mathrm{I}}$, $i\hbar\partial_t \hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}}$

• Since this is true for any initial state $|\psi(t_0)\rangle_I$, we must have

 $i\hbar\partial_t \hat{U}_{\mathrm{I}}(t,t_0) = V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t,t_0)$

with the boundary condition $U_{I}(t_0, t_0) = I$.

• Integrating t_0 to t, $i\hbar \int_{t_0}^t dt' \partial_{t'} \hat{U}_I(t', t_0) = i\hbar(\hat{U}_I(t, t_0) - \mathbb{I})$, i.e.

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - rac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \hat{U}_{\mathrm{I}}(t',t_0)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

5900

provides *self-consistent* equation for $U_{I}(t, t_{0})$,

 $|\psi(t)
angle_{
m I}=\hat{U}_{
m I}(t,t_0)|\psi(t_0)
angle_{
m I}$

- Substituted into Schrödinger equation $i\hbar\partial_t |\psi(t)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)\rangle_{\mathrm{I}}$, $i\hbar\partial_t \hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}}$
- Since this is true for any initial state $|\psi(t_0)
 angle_{
 m I}$, we must have

 $i\hbar\partial_t\hat{U}_{\mathrm{I}}(t,t_0)=V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t,t_0)$

with the boundary condition $U_{I}(t_0, t_0) = \mathbb{I}$.

• Integrating t_0 to t, $i\hbar \int_{t_0}^t dt' \partial_{t'} \hat{U}_{I}(t', t_0) = i\hbar(\hat{U}_{I}(t, t_0) - \mathbb{I})$, i.e.

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - rac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \hat{U}_{\mathrm{I}}(t',t_0)$$

500

provides *self-consistent* equation for $U_{I}(t, t_{0})$,

 $|\psi(t)
angle_{
m I}=\hat{U}_{
m I}(t,t_0)|\psi(t_0)
angle_{
m I}$

- Substituted into Schrödinger equation $i\hbar\partial_t |\psi(t)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)\rangle_{\mathrm{I}}$, $i\hbar\partial_t \hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t, t_0)|\psi(t_0)\rangle_{\mathrm{I}}$
- Since this is true for any initial state $|\psi(t_0)
 angle_{
 m I}$, we must have

 $i\hbar\partial_t\hat{U}_{\mathrm{I}}(t,t_0)=V_{\mathrm{I}}(t)\hat{U}_{\mathrm{I}}(t,t_0)$

with the boundary condition $U_{I}(t_0, t_0) = \mathbb{I}$.

• Integrating t_0 to t, $i\hbar \int_{t_0}^t dt' \partial_{t'} \hat{U}_{I}(t', t_0) = i\hbar(\hat{U}_{I}(t, t_0) - \mathbb{I})$, i.e.

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - rac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \hat{U}_{\mathrm{I}}(t',t_0)$$

provides *self-consistent* equation for $U_{I}(t, t_0)$,

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - rac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \hat{U}_{\mathrm{I}}(t',t_0)$$

• If we substitute $\hat{U}_{\mathrm{I}}(t', t_0)$ on right hand side,

$$egin{split} \hat{U}_{\mathrm{I}}(t,t_{0}) &= \mathbb{I} - rac{i}{\hbar} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \ &+ \left(-rac{i}{\hbar}
ight)^{2} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \int_{t_{0}}^{t'} dt'' V_{\mathrm{I}}(t'') \hat{U}_{\mathrm{I}}(t'',t_{0}) \end{split}$$

5900

Iterating this procedure,

$$\hat{U}_{I}(t,t_{0}) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} dt_{1} \cdots \int_{t_{0}}^{t_{n-1}} dt_{n} V_{I}(t_{1}) V_{I}(t_{2}) \cdots V_{I}(t_{n})$$

where term n = 0 translates to I.

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - \frac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \left(\mathbb{I} - \frac{i}{\hbar} \int_{t_0}^{t'} dt'' V_{\mathrm{I}}(t'') \hat{U}_{\mathrm{I}}(t'',t_0) \right)$$

• If we substitute $\hat{U}_{\mathrm{I}}(t',t_0)$ on right hand side,

$$egin{split} \hat{U}_{\mathrm{I}}(t,t_{0}) &= \mathbb{I} - rac{i}{\hbar} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \ &+ \left(-rac{i}{\hbar}
ight)^{2} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \int_{t_{0}}^{t'} dt'' V_{\mathrm{I}}(t'') \hat{U}_{\mathrm{I}}(t'',t_{0}) \end{split}$$

Iterating this procedure,

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

where term $n = 0$ translates to \mathbb{I} .

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathbb{I} - rac{i}{\hbar} \int_{t_0}^t dt' V_{\mathrm{I}}(t') \hat{U}_{\mathrm{I}}(t',t_0)$$

• If we substitute $\hat{U}_{\mathrm{I}}(t', t_0)$ on right hand side,

$$\hat{U}_{\mathrm{I}}(t,t_{0}) = \mathbb{I} - rac{i}{\hbar} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \ + \left(-rac{i}{\hbar}
ight)^{2} \int_{t_{0}}^{t} dt' V_{\mathrm{I}}(t') \int_{t_{0}}^{t'} dt'' V_{\mathrm{I}}(t'') \hat{U}_{\mathrm{I}}(t'',t_{0})$$

990

• Iterating this procedure,

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

where term n = 0 translates to \mathbb{I} .

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

Remark: Since operators V_I(t) appear as a time-ordered sequence, with

$$t_0 \leq t_n \leq t_{n-1} \leq \cdots \leq t_1 \leq t$$

this expression is sometimes written as

$$\hat{U}_{\mathrm{I}}(t,t_0) = \mathrm{T}\left[e^{-rac{i}{\hbar}\int_{t_0}^t dt' V_{\mathrm{I}}(t')}
ight]$$

where "T" denotes the time-ordering operator and is understood as the identity above.

• Note that, for V independent of t, $\hat{U}_{I}(t, t_0) = e^{-\frac{i}{\hbar}Vt}$ reminiscent of the usual time-evolution operator for time-independent \hat{H} .

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

• If a system is prepared in an initial state, $|i\rangle$ at time $t = t_0$, at a subsequent time, t, the system will be in a final state, $\hat{U}_{\rm I}(t, t_0)|i\rangle$. Using the resolution of identity, $\sum_n |n\rangle\langle n| = \mathbb{I}$, we therefore have

$$\hat{U}_{\mathrm{I}}(t,t_0)|i\rangle = \sum_n |n\rangle \overbrace{\langle n|\hat{U}_{\mathrm{I}}(t,t_0)|i\rangle}^{c_n(t)}$$

• From relation above, the coefficients in the expansion given by

$$c_{n}(t) = \delta_{ni} - \frac{i}{\hbar} \int_{t_{0}}^{t} dt' \langle n | V_{I}(t') | i \rangle$$

$$- \frac{1}{\hbar^{2}} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{t'} dt'' \langle n | V_{I}(t') V_{I}(t'') | i \rangle + \cdots$$

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

If a system is prepared in an initial state, |i⟩ at time t = t₀, at a subsequent time, t, the system will be in a final state, Û_I(t, t₀)|i⟩. Using the resolution of identity, ∑_n |n⟩⟨n| = I, we therefore have

$$\hat{U}_{\mathrm{I}}(t,t_0)|i\rangle = \sum_n |n\rangle \overbrace{\langle n|\hat{U}_{\mathrm{I}}(t,t_0)|i\rangle}^{c_n(t)}$$

• From relation above, the coefficients in the expansion given by

$$c_n(t) = \delta_{ni} - \frac{i}{\hbar} \int_{t_0}^t dt' \langle n | V_{\mathrm{I}}(t') | i \rangle$$
$$- \frac{1}{\hbar^2} \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' \langle n | V_{\mathrm{I}}(t') V_{\mathrm{I}}(t'') | i \rangle + \cdots$$

 \bigcirc

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

• If a system is prepared in an initial state, $|i\rangle$ at time $t = t_0$, at a subsequent time, t, the system will be in a final state, $\hat{U}_{\rm I}(t, t_0)|i\rangle$. Using the resolution of identity, $\sum_n |n\rangle\langle n| = \mathbb{I}$, we therefore have

$$\hat{U}_{\mathrm{I}}(t,t_{0})|i\rangle = \sum_{n} |n\rangle \underbrace{\langle n|\hat{U}_{\mathrm{I}}(t,t_{0})|i\rangle}^{c_{n}(t)}$$

• From relation above, the coefficients in the expansion given by

$$c_n(t) = \delta_{ni} - \frac{i}{\hbar} \int_{t_0}^t dt' \langle n | V_{\mathrm{I}}(t') | i \rangle$$

$$- \frac{1}{\hbar^2} \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' \sum_m \langle n | V_{\mathrm{I}}(t') | m \rangle \langle m | V_{\mathrm{I}}(t'') | i \rangle + \cdots$$

$$c_n(t) = \delta_{ni} - \frac{i}{\hbar} \int_{t_0}^t dt' \langle n | V_{\mathrm{I}}(t') | i \rangle$$
$$- \frac{1}{\hbar^2} \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' \sum_m \langle n | V_{\mathrm{I}}(t') | m \rangle \langle m | V_{\mathrm{I}}(t'') | i \rangle + \cdots$$

• Recalling the definition, $V_{I}(t) = e^{i\hat{H}_{0}t/\hbar}V(t)e^{-i\hat{H}_{0}t/\hbar}$, the matrix elements entering the coefficients are then given by

$$\langle n | V_{\rm I}(t) | m \rangle = \langle n | e^{i\hat{H}_0 t/\hbar} V(t) e^{-i\hat{H}_0 t/\hbar} | m \rangle$$

$$= \underbrace{\langle n | V(t) | m \rangle}_{V_{nm}} \underbrace{\exp\left[\frac{i}{\hbar}(E_n - E_m)\right]}_{e^{i\omega_{nm}t}}$$

where $V_{nm}(t) = \langle n | V(t) | m \rangle$ denote matrix elements between the basis states of \hat{H}_0 on the perturbation, and $\omega_{nm} = (E_n - E_m)/\hbar$.

590

$$c_n(t) = \delta_{ni} - \frac{i}{\hbar} \int_{t_0}^t dt' \langle n | V_{\mathrm{I}}(t') | i \rangle$$
$$- \frac{1}{\hbar^2} \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' \sum_m \langle n | V_{\mathrm{I}}(t') | m \rangle \langle m | V_{\mathrm{I}}(t'') | i \rangle + \cdots$$

• Therefore, using the relation, $\langle n|V_{\mathrm{I}}(t)|m
angle = \langle n|V(t)|m
angle e^{i\omega_{nm}t}$,

$$c_{n}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_{0}}^{t} dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

$$c_{n}^{(2)}(t) = -\frac{1}{\hbar^{2}} \sum_{m} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{t'} dt'' e^{i\omega_{nm}t' + i\omega_{mi}t''} V_{nm}(t') V_{mi}(t'')$$

• As a result, we obtain transition probability $|i\rangle \rightarrow |n \neq i\rangle$,

$$P_{i \to n}(t) = |c_n(t)|^2 = |c_n^{(1)} + c_n^{(2)} + \cdots |^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

Suppose quantum harmonic oscillator, Ĥ = ħω(a[†]a + 1/2), prepared in ground state |0⟩ at time t = -∞. If it is perturbed by weak (transient) electric field,

$$V(t) = -e\mathcal{E}x \, e^{-t^2/\tau^2}$$

what is probability of finding it in first excited state, |1
angle, at $t=+\infty?$

• Working to first order in V, $P_{0
ightarrow 1}\simeq |c_1^{(1)}|^2$ where

$$c_1^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t dt' e^{i\omega_{10}t'} V_{10}(t')$$

with $V_{10}(t') = -e \mathcal{E} \langle 1|x|0
angle e^{-t'^2/ au^2}$ and $\omega_{10} = \omega$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろへぐ

Suppose quantum harmonic oscillator, Ĥ = ħω(a[†]a + 1/2), prepared in ground state |0⟩ at time t = -∞. If it is perturbed by weak (transient) electric field,

$$V(t) = -e\mathcal{E}x \, e^{-t^2/\tau^2}$$

what is probability of finding it in first excited state, $|1\rangle$, at $t=+\infty$?

• Working to first order in V, $P_{0 \rightarrow 1} \simeq |c_1^{(1)}|^2$ where

$$c_1^{(1)}(t) = -rac{i}{\hbar} \int_{t_0}^t dt' e^{i\omega_{10}t'} V_{10}(t')$$

with
$$V_{10}(t') = -e \mathcal{E} \langle 1|x|0
angle e^{-t'^2/ au^2}$$
 and $\omega_{10} = \omega$

< ロ ト < 団 ト < 臣 ト < 臣 ト 臣 の < (?)</p>

$$c_1^{(1)}(t) = -rac{i}{\hbar} \int_{t_0}^t dt' e^{i\omega t'} V_{10}(t'), \qquad V_{10}(t') = -e \mathcal{E} \langle 1|x|0
angle e^{-t'^2/ au^2}$$

ullet Using the ladder operator formalism, with $|1\rangle=a^{\dagger}|0\rangle$ and

$$\begin{aligned} x &= \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger}), \qquad \langle 1|x|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle 0|a(a + a^{\dagger})|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \\ \bullet \text{ With } \int_{t_0 = -\infty}^{t \to \infty} dt' e^{i\omega t'} e^{-t'^2/\tau^2} = \sqrt{\pi\tau} \exp\left[-\frac{1}{4}\omega^2\tau^2\right], \\ c_1^{(1)}(t \to \infty) &= ie\mathcal{E}\tau \sqrt{\frac{\pi}{2m\hbar\omega}} e^{-\omega^2\tau^2/4} \end{aligned}$$

• Transition probability,

$$P_{0\rightarrow 1}\simeq |c_1^{(1)}(t)|^2 = (e\mathcal{E} au)^2\left(rac{\pi}{2m\hbar\omega}
ight)e^{-\omega^2 au^2/2}$$

$$c_1^{(1)}(t) = -rac{i}{\hbar}\int_{t_0}^t dt' e^{i\omega t'} V_{10}(t'), \qquad V_{10}(t') = -e \mathcal{E} \langle 1|x|0
angle e^{-t'^2/ au^2}$$

ullet Using the ladder operator formalism, with $|1\rangle=a^{\dagger}|0\rangle$ and

$$\begin{aligned} x &= \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger}), \qquad \langle 1|x|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle 0|a(a + a^{\dagger})|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \\ \bullet \text{ With } \int_{t_0 = -\infty}^{t \to \infty} dt' e^{i\omega t'} e^{-t'^2/\tau^2} = \sqrt{\pi}\tau \exp\left[-\frac{1}{4}\omega^2\tau^2\right], \\ c_1^{(1)}(t \to \infty) &= ie\mathcal{E}\tau \sqrt{\frac{\pi}{2m\hbar\omega}} e^{-\omega^2\tau^2/4} \end{aligned}$$

Transition probability,

$$P_{0\to 1} \simeq |c_1^{(1)}(t)|^2 = (e\mathcal{E}\tau)^2 \left(\frac{\pi}{2m\hbar\omega}\right) e^{-\omega^2\tau^2/2}$$

$$c_1^{(1)}(t) = -rac{i}{\hbar}\int_{t_0}^t dt' e^{i\omega t'} V_{10}(t'), \qquad V_{10}(t') = -e\mathcal{E}\langle 1|x|0
angle e^{-t'^2/ au^2}$$

ullet Using the ladder operator formalism, with $|1\rangle=a^{\dagger}|0\rangle$ and

$$\begin{aligned} x &= \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger}), \qquad \langle 1|x|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle 0|a(a + a^{\dagger})|0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \\ \bullet \text{ With } \int_{t_0 = -\infty}^{t \to \infty} dt' e^{i\omega t'} e^{-t'^2/\tau^2} = \sqrt{\pi}\tau \exp\left[-\frac{1}{4}\omega^2\tau^2\right], \\ c_1^{(1)}(t \to \infty) &= ie\mathcal{E}\tau \sqrt{\frac{\pi}{2m\hbar\omega}} e^{-\omega^2\tau^2/4} \end{aligned}$$

• Transition probability,

$$P_{0\to 1} \simeq |c_1^{(1)}(t)|^2 = (e\mathcal{E}\tau)^2 \left(\frac{\pi}{2m\hbar\omega}\right) e^{-\omega^2\tau^2/2}$$

Note that $P_{0 \to 1}$ is maximal for $\tau \sim 1/\omega$.

"Sudden" perturbation – quantum quench

- Suppose there is a switch from \hat{H}_0 to \hat{H}'_0 in a time shorter than any other characteristic scale perturbation theory is irrelevant:
- If system is initially in eigenstate $|n\rangle$ of \hat{H}_0 , time evolution after switch will just follow that of \hat{H}'_0 ,

i.e. simply expand initial state as a sum over eigenstates of \hat{H}'_0 ,

$$|n\rangle = \sum_{n'} |n'\rangle \langle n'|n\rangle, \qquad |n(t)\rangle = \sum_{n'} e^{-iE_{n'}t/\hbar} |n'\rangle \langle n'|n\rangle$$

- "Non-trivial" part of the problem lies in establishing that the change is sudden enough.
- This is achieved by estimating the actual time taken for the Hamiltonian to change, and the periods of motion associated with the state |n> and with its transitions to neighbouring states.

"Sudden" perturbation – quantum quench

- Suppose there is a switch from \hat{H}_0 to \hat{H}'_0 in a time shorter than any other characteristic scale perturbation theory is irrelevant:
- If system is initially in eigenstate $|n\rangle$ of \hat{H}_0 , time evolution after switch will just follow that of \hat{H}'_0 ,

i.e. simply expand initial state as a sum over eigenstates of \hat{H}'_0 ,

$$|n\rangle = \sum_{n'} |n'\rangle \langle n'|n\rangle, \qquad |n(t)\rangle = \sum_{n'} e^{-iE_{n'}t/\hbar} |n'\rangle \langle n'|n\rangle$$

- "Non-trivial" part of the problem lies in establishing that the change is sudden enough.
- This is achieved by estimating the actual time taken for the Hamiltonian to change, and the periods of motion associated with the state |n> and with its transitions to neighbouring states.

Consider system prepared in initial state |i⟩ and perturbed by a periodic harmonic potential V(t) = Ve^{-iωt} which is abruptly switched on at time t = 0.

e.g. atom perturbed by an external oscillating electric field.

- What is the probability that, at some later time t, the system is in state |f>?
- To first order in perturbation theory,

$$c_{
m f}^{(1)}(t)=-rac{i}{\hbar}\int_{t_0}^t dt' e^{i\omega_{
m fi}t'}V_{
m fi}(t')$$

• i.e. probability of effecting transition after a time t,

$$P_{\mathrm{i}
ightarrow \mathrm{f}}(t) \simeq |c_{\mathrm{f}}^{(1)}(t)|^2 = \left| -\frac{i}{\hbar} \langle \mathrm{f} | V | \mathrm{i} \rangle e^{i(\omega_{\mathrm{fi}} - \omega)t/2} \frac{\sin((\omega_{\mathrm{fi}} - \omega)t/2)}{(\omega_{\mathrm{fi}} - \omega)/2} \right|^2$$

▲□▶▲□▶▲□▶▲□▶ ■ めるの

Consider system prepared in initial state |i⟩ and perturbed by a periodic harmonic potential V(t) = Ve^{-iωt} which is abruptly switched on at time t = 0.

e.g. atom perturbed by an external oscillating electric field.

- What is the probability that, at some later time t, the system is in state |f>?
- To first order in perturbation theory,

$$c_{\mathrm{f}}^{(1)}(t) = -rac{i}{\hbar}\int_{t_0}^t dt' e^{i\omega_{\mathrm{fi}}t'}V_{\mathrm{fi}}(t')$$

• i.e. probability of effecting transition after a time t,

$$P_{\mathrm{i}
ightarrow\mathrm{f}}(t) \simeq |c_{\mathrm{f}}^{(1)}(t)|^2 = \left|-rac{i}{\hbar}\langle\mathrm{f}|V|\mathrm{i}
angle e^{i(\omega_{\mathrm{fi}}-\omega)t/2}rac{\mathrm{sin}((\omega_{\mathrm{fi}}-\omega)t/2)}{(\omega_{\mathrm{fi}}-\omega)/2}
ight|^2$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Consider system prepared in initial state |i⟩ and perturbed by a periodic harmonic potential V(t) = Ve^{-iωt} which is abruptly switched on at time t = 0.

e.g. atom perturbed by an external oscillating electric field.

- What is the probability that, at some later time t, the system is in state |f>?
- To first order in perturbation theory,

$$c_{\mathrm{f}}^{(1)}(t) = -rac{i}{\hbar} \int_{0}^{t} dt' \langle \mathrm{f} | V | \mathrm{i}
angle e^{i(\omega_{\mathrm{fi}}-\omega)t'} = -rac{i}{\hbar} \langle \mathrm{f} | V | \mathrm{i}
angle rac{e^{i(\omega_{\mathrm{fi}}-\omega)t}-1}{i(\omega_{\mathrm{fi}}-\omega)}$$

• i.e. probability of effecting transition after a time t,

$$P_{\mathrm{i}
ightarrow\mathrm{f}}(t)\simeq |c_{\mathrm{f}}^{(1)}(t)|^2 = \left|-rac{i}{\hbar}\langle\mathrm{f}|V|\mathrm{i}
angle e^{i(\omega_{\mathrm{fi}}-\omega)t/2}rac{\mathrm{sin}((\omega_{\mathrm{fi}}-\omega)t/2)}{(\omega_{\mathrm{fi}}-\omega)/2}
ight|^2$$

・ 「 「 」 ・ 山 下 ・ 山 下 ・ 山 下 ・ ト ・ 日 ト ・ (日 ト ・ 日 ト ・ (日 ト ・)

Consider system prepared in initial state |i⟩ and perturbed by a periodic harmonic potential V(t) = Ve^{-iωt} which is abruptly switched on at time t = 0.

e.g. atom perturbed by an external oscillating electric field.

- What is the probability that, at some later time t, the system is in state |f>?
- To first order in perturbation theory,

$$c_{
m f}^{(1)}(t) = -rac{i}{\hbar} \int_{0}^{t} dt' \langle {
m f} | V | {
m i}
angle e^{i(\omega_{
m fi}-\omega)t'} = -rac{i}{\hbar} \langle {
m f} | V | {
m i}
angle rac{e^{i(\omega_{
m fi}-\omega)t}-1}{i(\omega_{
m fi}-\omega)}$$

• i.e. probability of effecting transition after a time t,

$$P_{\mathrm{i}
ightarrow\mathrm{f}}(t)\simeq |c_{\mathrm{f}}^{(1)}(t)|^2 = \left|-rac{i}{\hbar}\langle\mathrm{f}|V|\mathrm{i}
angle e^{i(\omega_{\mathrm{fi}}-\omega)t/2}rac{\mathrm{sin}((\omega_{\mathrm{fi}}-\omega)t/2)}{(\omega_{\mathrm{fi}}-\omega)/2}
ight|^2$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の < ()</p>

Consider system prepared in initial state |i⟩ and perturbed by a periodic harmonic potential V(t) = Ve^{-iωt} which is abruptly switched on at time t = 0.

e.g. atom perturbed by an external oscillating electric field.

- What is the probability that, at some later time t, the system is in state |f>?
- To first order in perturbation theory,

$$c_{
m f}^{(1)}(t) = -rac{i}{\hbar} \int_{0}^{t} dt' \langle {
m f} | V | {
m i}
angle e^{i(\omega_{
m fi}-\omega)t'} = -rac{i}{\hbar} \langle {
m f} | V | {
m i}
angle rac{e^{i(\omega_{
m fi}-\omega)t}-1}{i(\omega_{
m fi}-\omega)}$$

• i.e. probability of effecting transition after a time t,

$$P_{\mathrm{i}
ightarrow\mathrm{f}}(t)\simeq |c_{\mathrm{f}}^{(1)}(t)|^2 = rac{1}{\hbar^2}|\langle\mathrm{f}|V|\mathrm{i}
angle|^2\left(rac{\mathrm{sin}((\omega_{\mathrm{fi}}-\omega)t/2)}{(\omega_{\mathrm{fi}}-\omega)/2}
ight)^2$$

<ロト < 回 > < 回 > < 回 > < 回 >

• Setting $\alpha = (\omega_{\rm fl} - \omega)/2$, probability $\sim \sin^2(\alpha t)/\alpha^2$ with a peak at $\alpha = 0$ – maximum value t^2 , width $O(1/t) \rightsquigarrow$ total weight O(t).

• For large t,
$$\lim_{t \to \infty} \frac{1}{t} \left(\frac{\sin(\alpha t)}{\alpha} \right)^2 = \pi \delta(\alpha) = 2\pi \delta(2\alpha)$$

• Fermi's Golden rule: transition rate,

$$R_{
m i
ightarrow
m f}(t) = \lim_{t
ightarrow\infty} rac{P_{
m i
ightarrow
m f}(t)}{t} = rac{2\pi}{\hbar^2} |\langle {
m f}| V |{
m i}
angle|^2 \delta(\omega_{
m fi}-\omega)$$

• Setting $\alpha = (\omega_{\rm fl} - \omega)/2$, probability $\sim \sin^2(\alpha t)/\alpha^2$ with a peak at $\alpha = 0$ – maximum value t^2 , width $O(1/t) \rightsquigarrow$ total weight O(t).

• For large t,
$$\lim_{t \to \infty} \frac{1}{t} \left(\frac{\sin(\alpha t)}{\alpha} \right)^2 = \pi \delta(\alpha) = 2\pi \delta(2\alpha)$$

• Fermi's Golden rule: transition rate,

$$R_{\mathrm{i}
ightarrow\mathrm{f}}(t) = \lim_{t
ightarrow\infty}rac{P_{\mathrm{i}
ightarrow\mathrm{f}}(t)}{t} = rac{2\pi}{\hbar^2}|\langle\mathrm{f}|V|\mathrm{i}
angle|^2\delta(\omega_{\mathrm{fi}}-\omega)$$

$$R_{\mathrm{i}
ightarrow\mathrm{f}}(t)=rac{2\pi}{\hbar^2}|\langle\mathrm{f}|V|\mathrm{i}
angle|^2\delta(\omega_{\mathrm{fi}}-\omega)$$

- This result shows that, for a transition to occur, to satisfy energy conservation we must have:
 - (a) final states exist over a continuous energy range to match $\Delta E = \hbar \omega$ for fixed perturbation frequency ω , or
 - (b) perturbation must cover sufficiently wide spectrum of frequency so that a discrete transition with $\Delta E = \hbar \omega$ is possible.
- For any two discrete pair of states $|i\rangle$ and $|f\rangle$, since $|V_{\rm fi}|^2 = |V_{\rm if}|^2$, we have $P_{\rm i \rightarrow f} = P_{\rm f \rightarrow i}$

statement of **detailed balance**.

Harmonic perturbations: second order transitions

- Although first order perturbation theory often sufficient, sometimes $\langle f|V|i\rangle = 0$ by symmetry (e.g. parity, selection rules, etc.). In such cases, transition may be accomplished by indirect route through other non-zero matrix elements.
- At second order of perturbation theory,

$$c_{\rm f}^{(2)}(t) = -rac{1}{\hbar^2} \sum_m \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' e^{i\omega_{{
m f}m}t' + i\omega_{{
m mi}}t''} V_{{
m f}m}(t') V_{mi}(t'')$$

• If harmonic potential perturbation is gradually switched on, $V(t) = e^{\varepsilon t} V e^{-i\omega t}, \varepsilon \to 0$, with the initial time $t_0 \to -\infty$,

$$egin{split} c_{
m f}^{(2)}(t) &= -rac{1}{\hbar^2} \sum_{m} \langle {
m f} |V|m
angle \langle m |V| {
m i}
angle \ & imes \int_{-\infty}^t dt' \int_{-\infty}^{t'} dt'' e^{i(\omega_{
m fm}-\omega-iarepsilon)t'} e^{i(\omega_{
m mi}-\omega-iarepsilon)t'} \end{split}$$

Harmonic perturbations: second order transitions

- Although first order perturbation theory often sufficient, sometimes $\langle f|V|i\rangle = 0$ by symmetry (e.g. parity, selection rules, etc.). In such cases, transition may be accomplished by indirect route through other non-zero matrix elements.
- At second order of perturbation theory,

$$c_{
m f}^{(2)}(t) = -rac{1}{\hbar^2} \sum_m \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' e^{i\omega_{
m fm}t' + i\omega_{m
m i}t''} V_{
m fm}(t') V_{m
m i}(t'')$$

• If harmonic potential perturbation is gradually switched on, $V(t) = e^{\varepsilon t} V e^{-i\omega t}$, $\varepsilon \to 0$, with the initial time $t_0 \to -\infty$,

$$c_{\rm f}^{(2)}(t) = -\frac{1}{\hbar^2} \sum_{m} \langle {\rm f} | V | m \rangle \langle m | V | {\rm i} \rangle$$
$$\times \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' e^{i(\omega_{\rm fm} - \omega - i\varepsilon)t'} e^{i(\omega_{\rm mi} - \omega - i\varepsilon)t'}$$

▲□▶▲□▶▲□▶▲□▶ ■ めんの

Harmonic perturbations: second-order transitions

• From time integral,

$$c_n^{(2)} = -\frac{1}{\hbar^2} e^{i(\omega_{\rm fi}-2\omega)t} \frac{e^{2\varepsilon t}}{\omega_{\rm fi}-2\omega-2i\varepsilon} \sum_m \frac{\langle {\rm f} | V | m \rangle \langle m | V | {\rm i} \rangle}{\omega_{m\rm i}-\omega-i\varepsilon}$$

• Leads to transition rate $(\varepsilon \rightarrow 0)$:

$$\frac{d}{dt}|c_n^{(2)}(t)|^2 = \frac{2\pi}{\hbar^4} \left|\sum_{m} \frac{\langle \mathbf{f}|V|m\rangle\langle m|V|i\rangle}{\omega_{mi} - \omega - i\varepsilon}\right|^2 \delta(\omega_{\mathrm{fi}} - 2\omega)$$

- This translates to a transition in which system gains energy 2ħω from harmonic perturbation, i.e. two "photons" are absorbed – Physically, first photon takes effects virtual transition to short-lived intermediate state with energy ω_m.
- If an atom in an arbitrary state is exposed to monochromatic light, other second order processes in which two photons are emitted, or one is absorbed and one emitted are also possible.

Harmonic perturbations: second-order transitions

• From time integral,

$$c_n^{(2)} = -\frac{1}{\hbar^2} e^{i(\omega_{\rm fi} - 2\omega)t} \frac{e^{2\varepsilon t}}{\omega_{\rm fi} - 2\omega - 2i\varepsilon} \sum_m \frac{\langle {\rm f} | V | m \rangle \langle m | V | {\rm i} \rangle}{\omega_{m\rm i} - \omega - i\varepsilon}$$

• Leads to transition rate $(\varepsilon \rightarrow 0)$:

$$\frac{d}{dt}|c_n^{(2)}(t)|^2 = \frac{2\pi}{\hbar^4} \left|\sum_m \frac{\langle \mathbf{f}|V|m\rangle\langle m|V|i\rangle}{\omega_{mi}-\omega-i\varepsilon}\right|^2 \delta(\omega_{\mathrm{fi}}-2\omega)$$

- This translates to a transition in which system gains energy 2ħω from harmonic perturbation, i.e. two "photons" are absorbed – Physically, first photon takes effects virtual transition to short-lived intermediate state with energy ω_m.
- If an atom in an arbitrary state is exposed to monochromatic light, other second order processes in which two photons are emitted, or one is absorbed and one emitted are also possible.

Harmonic perturbations: second-order transitions

• From time integral,

$$c_n^{(2)} = -\frac{1}{\hbar^2} e^{i(\omega_{\rm fi} - 2\omega)t} \frac{e^{2\varepsilon t}}{\omega_{\rm fi} - 2\omega - 2i\varepsilon} \sum_m \frac{\langle {\rm f} | V | m \rangle \langle m | V | {\rm i} \rangle}{\omega_{m\rm i} - \omega - i\varepsilon}$$

• Leads to transition rate $(\varepsilon \rightarrow 0)$:

$$\frac{d}{dt}|c_n^{(2)}(t)|^2 = \frac{2\pi}{\hbar^4} \left|\sum_m \frac{\langle \mathbf{f}|V|m\rangle\langle m|V|\mathbf{i}\rangle}{\omega_{m\mathbf{i}}-\omega-\mathbf{i}\varepsilon}\right|^2 \delta(\omega_{\mathbf{f}\mathbf{i}}-2\omega)$$

- This translates to a transition in which system gains energy 2ħω from harmonic perturbation, i.e. two "photons" are absorbed – Physically, first photon takes effects virtual transition to short-lived intermediate state with energy ω_m.
- If an atom in an arbitrary state is exposed to monochromatic light, other second order processes in which two photons are emitted, or one is absorbed and one emitted are also possible.

▲□▶ ▲圖▶ ▲토▶ ▲토▶ - 토.

• For a general time-dependent Hamiltonian, $\hat{H} = \hat{H}_0 + V(t)$, in which all time-dependence containing in potential V(t), the wavefunction can be expressed in the interaction representation,

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}=|\psi(0)
angle_{\mathrm{S}}$$

 In this representation, the time-dependent Schrödinger equation takes the form,

$$i\hbar\partial_t |\psi(t)
angle_{
m I} = V_{
m I}(t)|\psi(t)
angle_{
m I}, \qquad V_{
m I}(t) = e^{i\hat{H}_0t/\hbar}V(t)e^{-i\hat{H}_0t/\hbar}$$

• If we expand $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$ in basis of time-independent Hamiltonian, $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$, the Schrödinger equation translates to

$$i\hbar\dot{c}_m(t)=\sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

where $V_{mn}(t) = \langle m | V(t) | m \rangle$ and $\omega_{mn} = \frac{1}{\hbar} (E_m - E_n) = -\omega_{nm}$.

• For a general time-dependent Hamiltonian, $\hat{H} = \hat{H}_0 + V(t)$, in which all time-dependence containing in potential V(t), the wavefunction can be expressed in the interaction representation,

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}=|\psi(0)
angle_{\mathrm{S}}$$

 In this representation, the time-dependent Schrödinger equation takes the form,

 $i\hbar\partial_t |\psi(t)\rangle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)\rangle_{\mathrm{I}}, \qquad V_{\mathrm{I}}(t) = e^{i\hat{H}_0 t/\hbar}V(t)e^{-i\hat{H}_0 t/\hbar}$

• If we expand $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$ in basis of time-independent Hamiltonian, $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$, the Schrödinger equation translates to

$$i\hbar\dot{c}_m(t) = \sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

where $V_{mn}(t) = \langle m | V(t) | m \rangle$ and $\omega_{mn} = \frac{1}{\hbar} (E_m - E_n) = -\omega_{nm}$.

• For a general time-dependent Hamiltonian, $\hat{H} = \hat{H}_0 + V(t)$, in which all time-dependence containing in potential V(t), the wavefunction can be expressed in the interaction representation,

$$|\psi(t)
angle_{\mathrm{I}}=e^{i\hat{H}_{0}t/\hbar}|\psi(t)
angle_{\mathrm{S}},\qquad |\psi(0)
angle_{\mathrm{I}}=|\psi(0)
angle_{\mathrm{S}}$$

 In this representation, the time-dependent Schrödinger equation takes the form,

$$i\hbar\partial_t |\psi(t)
angle_{\mathrm{I}} = V_{\mathrm{I}}(t)|\psi(t)
angle_{\mathrm{I}}, \qquad V_{\mathrm{I}}(t) = e^{i\hat{H}_0 t/\hbar}V(t)e^{-i\hat{H}_0 t/\hbar}$$

• If we expand $|\psi(t)\rangle_{I} = \sum_{n} c_{n}(t)|n\rangle$ in basis of time-independent Hamiltonian, $\hat{H}_{0}|n\rangle = E_{n}|n\rangle$, the Schrödinger equation translates to

$$i\hbar\dot{c}_m(t) = \sum_n V_{mn}(t)e^{i\omega_{mn}t}c_n(t)$$

where $V_{mn}(t) = \langle m | V(t) | m \rangle$ and $\omega_{mn} = \frac{1}{\hbar} (E_m - E_n) = -\omega_{nm}$.

• For a general time-dependent potential, V(t), the wavefunction can be expanded as a power series in the interaction,

$$|\psi(t)\rangle_{\rm I} = \sum_n c_n(t)|n\rangle, \quad c_n(t) = c_n^{(0)} + c_n^{(1)}(t) + c_n^{(2)}(t) + \cdots$$

• The coefficents can be expressed as matrix elements of the time-evolution operator, $c_n(t) = \langle n | \hat{U}_{\mathrm{I}}(t, t_0) | \mathrm{i} \rangle$, where

$$\hat{U}_{I}(t,t_{0}) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} dt_{1} \cdots \int_{t_{0}}^{t_{n-1}} dt_{n} V_{I}(t_{1}) V_{I}(t_{2}) \cdots V_{I}(t_{n})$$

From first two terms in the series, we have

$$c_{n}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_{0}}^{t} dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

$$c_{n}^{(2)}(t) = -\frac{1}{\hbar^{2}} \sum_{m} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{t'} dt'' e^{i\omega_{nm}t' + i\omega_{mi}t''} V_{nm}(t') V_{mi}(t'')$$

• For a general time-dependent potential, V(t), the wavefunction can be expanded as a power series in the interaction,

$$|\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n}(t)|n\rangle, \quad c_{n}(t) = c_{n}^{(0)} + c_{n}^{(1)}(t) + c_{n}^{(2)}(t) + \cdots$$

• The coefficients can be expressed as matrix elements of the time-evolution operator, $c_n(t) = \langle n | \hat{U}_{\mathrm{I}}(t, t_0) | \mathrm{i} \rangle$, where

$$\hat{U}_{\mathrm{I}}(t,t_0) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \cdots \int_{t_0}^{t_{n-1}} dt_n V_{\mathrm{I}}(t_1) V_{\mathrm{I}}(t_2) \cdots V_{\mathrm{I}}(t_n)$$

From first two terms in the series, we have

$$c_{n}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_{0}}^{t} dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

$$c_{n}^{(2)}(t) = -\frac{1}{\hbar^{2}} \sum_{m} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{t'} dt'' e^{i\omega_{nm}t' + i\omega_{mi}t''} V_{nm}(t') V_{mi}(t'')$$

• For a general time-dependent potential, V(t), the wavefunction can be expanded as a power series in the interaction,

$$|\psi(t)\rangle_{\rm I} = \sum_n c_n(t)|n\rangle, \quad c_n(t) = c_n^{(0)} + c_n^{(1)}(t) + c_n^{(2)}(t) + \cdots$$

• The coefficients can be expressed as matrix elements of the time-evolution operator, $c_n(t) = \langle n | \hat{U}_{\mathrm{I}}(t, t_0) | \mathrm{i} \rangle$, where

$$\hat{U}_{I}(t,t_{0}) = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} dt_{1} \cdots \int_{t_{0}}^{t_{n-1}} dt_{n} V_{I}(t_{1}) V_{I}(t_{2}) \cdots V_{I}(t_{n})$$

• From first two terms in the series, we have

$$c_{n}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_{0}}^{t} dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

$$c_{n}^{(2)}(t) = -\frac{1}{\hbar^{2}} \sum_{m} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{t'} dt'' e^{i\omega_{nm}t' + i\omega_{mi}t''} V_{nm}(t') V_{mi}(t'')$$

$$c_n^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

• For a harmonic perturbation, $V(t) = Ve^{-i\omega t}$, turned on at t = 0, the leading term in series translates to transition rate,

$$R_{\mathrm{i}
ightarrow\mathrm{f}}(t) = \lim_{t
ightarrow\infty}rac{P_{\mathrm{i}
ightarrow\mathrm{f}}(t)}{t} = rac{2\pi}{\hbar^2}|\langle\mathrm{f}|V|\mathrm{i}
angle|^2\delta(\omega_{\mathrm{fi}}-\omega)$$

Fermi's Golden rule.

- If this term vanishes by symmetry, transitions can be effected by second and higher order processes through intermediate states.
- In the next lecture, we will apply these ideas to the consideration of radiative transitions in atoms.

$$c_n^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t dt' e^{i\omega_{ni}t'} V_{ni}(t')$$

• For a harmonic perturbation, $V(t) = Ve^{-i\omega t}$, turned on at t = 0, the leading term in series translates to transition rate,

$$R_{\mathrm{i}
ightarrow\mathrm{f}}(t) = \lim_{t
ightarrow\infty}rac{P_{\mathrm{i}
ightarrow\mathrm{f}}(t)}{t} = rac{2\pi}{\hbar^2}|\langle\mathrm{f}|V|\mathrm{i}
angle|^2\delta(\omega_{\mathrm{fi}}-\omega)$$

Fermi's Golden rule.

- If this term vanishes by symmetry, transitions can be effected by second and higher order processes through intermediate states.
- In the next lecture, we will apply these ideas to the consideration of radiative transitions in atoms.