Lecture 16

Quantum field theory:
from phonons to photons



Field theory: from phonons to photons

In our survey of single- and “few” -particle quantum mechanics, it
has been possible to work with individual constituent particles.

However, when the low energy excitations involve coherent
collective motion of many individual particles — such as wave-like
vibrations of an elastic solid...

...or where discrete underlying classical particles can not even be
identified — such as the electromagnetic field,...

...such a representation is inconvenient or inaccessible.

In such cases, it is profitable to turn to a continuum formulation of
quantum mechanics.

In the following, we will develop these ideas on background of the
simplest continuum theory: lattice vibrations of atomic chain.

Provides platform to investigate the quantum electrodynamics —
and paves the way to development of quantum field theory.



@ As a simplified model of (one-dimensional) crystal, consider chain of
point particles, each of mass m (atoms), elastically connected by
springs with spring constant ks (chemical bonds).
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@ Although our target will be to construct a quantum theory of
vibrational excitations, it is helpful to first review classical system.

@ Once again, to provide a bridge to the literature, we will follow the
route of a Lagrangian formulation — but the connection to the
Hamiltonian formulation is always near at hand!



Classical chain
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@ For an N-atom chain, with periodic boundary conditions:
xn+1 = Na+ xq, the Lagrangian is given by,

N
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@ In real solids, inter-atomic potential is, of course, more complex —
but at low energy (will see that) harmonic contribution dominates.

@ Taking equilibrium position, x, = na, assume that |x,(t) — x,| < a.
With x,(t) = X, + ¢,(t), where ¢, is displacement from equlibrium,
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Classical chain: equations of motion
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@ To obtain classical equations of motion from L, we can make use of
Hamilton’s extremal principle:

For a point particle with coordinate x(t), the (Euler-Lagrange)
equations of motion obtained from minimizing action

S[X]:/dtL(X,X) - %(@L)—@XL:O

e.g. for a free particle in a harmonic oscillator potential

V(x) = 2kx?,
1 1
L(x, x) = =mx? — = mw?x?
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and Euler-Lagrange equations translate to familiar equation of
motion, mx = —kx.



Classical chain: equations of motion
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@ Minimization of the classical action for the chain, S = [ dt L[bn, dn]
leads to family of coupled Euler-Lagrange equations,

d

® With 8; L =m¢, and 9y, L = —ks(¢p — Pns1) — ks(¢n — dn_1), we
obtain the discrete classical equations of motion,

Mop = —ks(dn — 1) — ks(¢pn — ¢pn_1)  for each n

@ These equations describe the normal vibrational modes of the
system. Setting ¢,(t) = e'“*¢,, they can be written as

(_mwz + 2ks)pn — ks(Pnt1 + dn_1) =0




Classical chain: normal modes

(—mw2 + 2ks)pn — ks(Pnt1 + dn_1) =0

@ These equations have wave-like solutions (normal modes) of the

form ¢, = ﬁe"k”a.

@ With periodic boundary conditions, ¢, n = ¢,, we have
elkNa — 1 — g2™mi  Ag 3 result, the wavenumber k = 27”” takes N
discrete values set by integers N/2 < m < N/2.

@ Substituted into the equations of motion, we obtain

1
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(_mw2 i 2ks)_elkna — ks(e/ka 4+ e—lka)

VN

@ We therefore find that

W= wy = \/%(1 — cos(ka)) = 2\f| sin(ka/2)|

e’k k. cos(ka)




Classical chain: normal modes

Wk = 2\/%| sin(ka/2)|

@ At low energies, k — 0, (i.e. long wavelengths) the linear dispersion
relation,

Wy = V|k|

where v = a % denotes the sound wave velocity, describes
collective wave-like excitations of the harmonic chain.

@ Before exploring quantization of these modes, let us consider how we
can present the low-energy properties through a continuum theory.



Classical chain: continuum limit
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@ For low energy dynamics, relative displacement of neighbours is
small, |¢pn11 — ¢n| < a, and we can transfer to a continuum limit:
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@ Lagrangian L[¢] = fOL dx L(¢, ), where Lagrangian density
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Classical chain: continuum limit
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@ By turning to a continuum limit, we have succeeded in abandoning
the N-point particle description in favour of one involving a set of
continuous degrees of freedom, ¢(x) — known as a (classical) field.

@ Dynamics of ¢(x, t) specified by the Lagrangian and action
functional

L=Na
L[¢] = / dxL(dd),  S[d] = / dt L[g)

@ To obtain equations of motion, we have to turn again to the
principle of least action.



Dynamics of harmonic chain

£(6,0) = 567

@ For a system with many degrees of freedom, we can still apply the
same variational principle: ¢(x,t) — ¢(x, t) + en(x, t)

1 !
t!i_rpo 2(5[¢+€77] S[o]) = /dt/ dX pgbn—/ﬁzsa ﬁxqbé’xn)

@ Integrating by parts

/ dt /0 L dx(pd — ksa*02¢)n

Since this relation must hold for any function n(x, t), we must have

pé — “532@%@5 =0




Dynamics of harmonic chain
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@ Classical equations of motion associated with Lagrangian density
translate to classical wave equation:

pé — /435828)2(¢ =0

@ Solutions have the general form: ¢, (x + vt) 4+ ¢_(x — vt) where

v =a\/ks/p = a\/ks/m, and ¢, are arbitrary smooth functions.

¢+ r=ut
r=-ut ¢ =

=<

@ Low energy elementary excitations are lattice vibrations, sound
waves, propagating to left or right at constant velocity v.

@ Simple behaviour is consequence of simplistic definition of potential
— no dissipation, etc.



Quantization of classical chain

@ Is there a general methodology to quantize models of the form
described by the atomic chain?

Kea®
2

(0x)?

‘C((b? ¢) — §¢2 -

@ Recall the canonical quantization procedure for point particle
mechanics:

@ Define canonical momentum: p = 9;L(x, x)

@ Construct Hamiltonian,
H(x,p) = px — L(%,)

© and, finally, promote conjugate coordinates x and p to
operators with canonical commutation relations: [p,X] = —ih



Quantization of classical chain

@ Is there a general methodology to quantize models of the form
described by the atomic chain?
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@ Canonical quantization procedure for continuum theory follows
same recipe:

@ Define canonical momentum: m = 8§-b£(q'5, d) = po

@ Construct Hamiltonian, H[¢p, 7] = | dx H(¢, ), where
Hamiltonian density
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H(g,m) = 7 — L, &) = %ﬁ T

© Promote fields ¢(x) and 7(x) to operators with canonical
commutation relations: [7(x), ¢(x")] = —ihd(x — x")



Quantization of classical chain
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@ For those uncomfortable with Lagrangian-based formulation, note
that we could have obtained the Hamiltonian density by taking
continuum limit of discrete Hamiltonian,

N - s
H = ~ _ks n — ®n
E:[2m+2 (Pns1 Qb)]

n=1

and the canonical commutation relations,

[Bms &0 = =iy = [#(x), o(x)] = —ihd(x — x')
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@ Operator-valued functions, ngS and 7, referred to as quantum fields.

@ Hamiltonian represents a formulation but not yet a solution.

@ To address solution, helpful to switch to Fourier representation:

%>

{Eikx ¢ & :L ' {Fikx Qg(X)
{W(X) L1/2Ze k{ ko {ﬁ: =17 | dxeij{ﬁ(X)

wavevectors k = 2mrm/L, m integer.

@ Since ¢(x) real, ¢(x) is Hermitian, and ¢, = ggT_k (similarly for 7x)

commutation relations: | [k, ¢x/] = — iRk

(exercise)



Quantum chain
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@ In Fourier representation, gg(x) — ﬁ P e** B,
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® Together with parallel relation for [ dx @2,
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wi = v|k|, and v = a(ks/p)'/? is classical sound wave velocity.



Quantum chain

H = E lgﬂkﬂ—k + Epwi ¢k¢—k]
k

@ Hamiltonian describes set of independent quantum harmonic
oscillators (existence of indicies k and —k is not crucial).

@ Interpretation: classically, chain supports discrete set of wave-like
excitations, each indexed by wavenumber k = 27rm/L.

@ In quantum picture, each of these excitations described by an
oscillator Hamiltonian operator with a k-dependent frequency.

@ Each oscillator mode involves all N — oo microscropic degrees of
freedom — it is a collective excitation of the system.



Quantum harmonic oscillator: revisited

@ The quantum harmonic oscillator describes motion of a single
particle in a harmonic confining potential. Eigenvalues form a /ladder
of equally spaced levels, hw(n + 1/2).

@ Although we can find a coordinate representation of the states,
(x|n), ladder operator formalism offers a second interpretation, and
one that is useful to us now!

@ Quantum harmonic oscillator can be viewed as a simple system
involving many featureless fictitious particles, each of energy hw,
created and annihilated by operators, a' and a.



Quantum harmonic oscillator: revisited
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which fulfil the commutation relations [a, a'] = 1, we have,

A 1
H = hw (aTa%— 5)

@ The ground state (or vacuum), |0) has energy Ey = hw/2 and is
defined by the condition a|0) = 0.

@ Excitations |n) have energy E, = hw(n+ 1/2) and are defined by

. = . T ¥} - 1
action of the raising operator, |n) = &) ) |0> i.e. the “creation” of n
fictitious particles.



Quantum chain

H= zk:[pﬂkﬁ k+1pw DK k]

@ Inspired by ladder operator formalism for harmonic oscillator, set
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@ Ladder operators obey the commutation relations:

Ak

mwyg |1 A ~ N
210 2] = St ([ ko 64 = [ A)owir [k, 2w0] = [a) ] =

@ Hamiltonian assumes the diagonal form

1
k




Quantum chain: phonons
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@ Low energy excitations of discrete atomic chain behave as discrete
particles (even though they describe the collective motion of an
infinite number of “fundamental” degrees of freedom) describing
oscillator wave-like modes.

@ These particle-like excitations, known as phonons, are characterised
by wavevector k and have a linear dispersion, wx = v|k]|.

@ A generic state of the system is then given by

—(a),)" (aL)" - [0

) =
NS




Quantum chain: remarks

@ In principle, we could now retrace our steps and express the
elementary excitations, az|0>, in terms of the continuum fields, ¢(x)
(or even the discrete degrees of freedom ¢,). But why should we?

@ Phonon excitations represent perfectly legitimate (bosonic) particles
which have physical manifestations which can be measured directly.

@ We can regard phonons are “fundamental” and abandon microscopic
degrees of freedom as being irrelevant on low energy scales!

@ This heirarchy is generic, applying equally to high and low energy
physics, e.g. electrons can be regarded as elementary collective
excitation of a microscopic theory involving quarks, etc.

for a discussion, see Anderson’s article “More is different”



Quantum chain: further remarks

40
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@ Universality: At low energies, when
phonon excitations involve long
wavelengths (k — 0), modes become
insensitive to details at atomic scale
justifying our crude modelling scheme.

Energy [meV]

@ As k — 0, phonon excitations incur
vanishingly small energy — the
spectrum is said to be “massless’ .

@ Such behaviour is in fact generic: the
breaking of a continuous symmetry (in | T
this case, translation) always leads to r:n.{l:ll. 0.2 ,,:,_4 IE.E 0.8 1",
massless collective excitations — known r
as Goldstone modes.




Quantization of the harmonic chain: recap
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@ Starting with the classical Lagrangian for a harmonic chain,
N

L= nzzjl [g¢'27 - % (¢n—|—1 — ¢n)2 9 ¢N—|—1 = @1
we showed that the normal mode spectrum was characterised by a
linear low energy dispersion, wx = v|k|, where v = a\/ks/m
denotes the classical sound wave velocity.

@ To prepare for our study of the quantization of the EM field, we
then turned from the discrete to the Eontinu_um formulation of the
classical Lagrangian setting L[¢] = |, dx L(¢, ¢), where

L(6,) = 567

p = m/ais mass per unit length and ks = ks/a.



Quantization of harmonic chain: recap
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@ From the minimisation of the classical action, S[¢] = [ dt L[¢], the
Euler-Lagrange equations recovered the classical wave equation,

,OQB = ’1532@2&5

with the solutions: ¢ (x + vt) + ¢_(x — vt)

:E;—Vt /Cb\

@ As expected from the discrete formulation, the low energy
excitations of the chain are lattice vibrations, sound waves,
propagating to left or right at constant velocity v.




Quantization of harmonic chain: recap

@ To quantize the classical theory, we developed the canonical
quantization procedure:

Kea®
2
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@ Define canonical momentum: 7 = (%E(qlb, b)) =po

@ Construct Hamiltonian, H[¢, 7] = [ dx H(¢, ), where
Hamiltonian density

Ksa 5
2 (9,9)

: : 1
H(p, 7)) =nd — L(),d) = yz +

© Promote fields ¢(x) and 7(x) to operators with canonical
commutation relations: [7(x), ¢(x")] = —ihd(x — x’)



Quantization of harmonic chain: recap

Xy

@ To find the eigenmodes of the quantum chain, we then turned to
the Fourier representation:

{ igi) = Ze{i/kx{ Ok

with kK = 2mm/L, m integer, whereupon the Hamiltonian takes the
“near-diagonal” form,




Quantization of harmonic chain: recap

@ H describes set of independent oscillators with k-dependent
frequency. Each mode involves all N — oo microscropic degrees of
freedom — it is a collective excitation.

@ Inspired by ladder operator formalism, setting

N mwy [ - I R mwk ] A
k=4 | Ok + —7_« |, 32— Cbk— Tk | -
2h muwy muwy

where [a,, az,] — Ok, Hamiltonian takes diagonal form,

1
k




Quantization of harmonic chain: recap
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@ Low energy excitations of discrete atomic chain behave as discrete
particles (even though they describe collective motion of an infinite
number of “fundamental” degrees of freedom).

@ These particle-like excitations, known as phonons, are characterised
by wavevector k and have a linear dispersion, wy = v|k|.

@ A generic state of the system is then given by

() (a},) -+ 10)
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Quantization of harmonic chain: recap
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A= hw (alak + 5)
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@ In theory, we could now retrace our steps and express the
elementary excitations, az|0>, in terms of continuum fields, ¢(x) (or
even the discrete degrees of freedom ¢,). But why should we?

@ Phonon excitations represent perfectly “legitimate” particles which
have physical manifestations which can be measured directly — we
can regard phonons are “fundamental” and abandon microscopic
degrees of freedom as being irrelevant on low energy scales!

@ If fact, such a heirarchy is quite generic in physics: “Fundamental”
particles are always found to be collective excitations of some yet
more “fundamental” theory!

see Anderson’s article “More is different” (now on website!)



Quantization of harmonic chain: second quantization

But when we studied identical quantum particles we declared that all
fundamental particles can be classified as bosons or fermions — so what
about the quantum statistics of phonons?

@ In fact, commutation relations tell us that phonons are bosons:

Using the relation [ai, a}:,] = 0, we can see that the many-body
wavefunction is symmetric under particle exchange,

ki, ko) = af a} |0) = a] al [0) = |k, ki)
@ In fact, the commutation relations of the operators circumvent need

to explicitly symmetrize the many-body wavefunction,

1

a, ko) = al, 3}, 10) = = ((a,af, + a],al, ) [0)

is already symmetrized!

@ Again, this property is generic and known as second quantization.



Quantization of harmonic chain: further lessons
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@ Universality: At low energies, when phonon
excitations involve long wavelengths (k — 0),
modes become insensitive to details at atomic
scale justifying crude modelling scheme.

Energy [meV]

@ As k — 0, phonon excitations incur
vanishingly small energy — the spectrum is
said to be “massless”.

@ Again, such behaviour is generic: the breaking . ——
_ _ _ 00 02 04 08 08 1.
of a continuous symmetry (in this case, r
translation) always leads to massless collective
excitations — known as Goldstone modes.



T hree-dimensional lattices

@ Our analysis focussed on longitudinal vibrations of one-dimensional
chain. In three-dimensions, each mode associated with three
possible polarizations, A: two transverse and one longitudinal.

@ Taking into account all polarizations

A 1
kA

where wy) = vy |k| and v, are respective sound wave velocities.

@ Let us apply this result to obtain internal energy and specific heat
due to phonons.



Example: Debye theory of solids

For equilibrium distribution, average phonon occupancy of state
(k, \) given by Bose-Einstein distribution, ng(fwg) = 1

ehwk/kB T_l -

The internal energy therefore given by

1 1

In thermodynamic limit, Y, — ks [ d3k = 5 [ k2 dk, with
cut-off kp fixed by ensuring that total number of modes matches

1 443 _ pn= L 3 _ 6m°
degrees of freedom, CIIIAE 2Tk = N= 5, ie kp =25

Dropping zero point fluctuations, if vy = v (independent of ),
internal energy/particle given by

E a 9 [k hvk
N:3X2—7{2% . k dkeﬁvk/kBT_]_

€



Example: Debye theory of solids

@ Defining Debye temperature, kg Tp = hvkp,

T\> /T ;34
=Okp T | —
= B (TD) _/0 eZ—l

@ Leads to specific heat per particle,

T )3/TD/T z* dz . { 3/(]3 > TD
0 (

o SCHES he (T—D e2—1)2 | AT} T < Tp




Example: Debye theory of solids

T > To/T z* dz . 3/(]3 > TD
o T\ AT® T< T

Fit of silver specific heat

data 1o the Debye curve
with Ty =215 K.
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Quantization of the
Electromagnetic Field



Quantum electrodynamics

@ As with harmonic chain, electromagnetic (EM) field satisfies wave
equation in vacua.

1 .. 1 ..
—E=V’E, —B=V°B
C c
@ Generality of quantization procedure for chain suggests that
quantization of EM field should proceed in analogous manner.

@ However, gauge freedom of vector potential introduces redundant
degrees of freedom whose removal on quantum level is not
completely straightforward.

@ Therefore, to keep discussion simple, we will focus on a simple
one-dimensional waveguide geometry to illustrate main principles.



Classical theory of electromagnetic field

@ In vacuum, Lagrangian density of EM field given by

where F,, = 0,A, — 0,A, denotes EM field tensor, E = A is
electric field, and B =V x A is magnetic field.

@ In absence of current/charge sources, it is convenient to adopt
Coulomb gauge, V- A = 0, with the scalar component ¢ = 0, when

L[A,A] = /d3x£: 2—2m/d3x [él@ —(V x A)?

@ Corresponding classical equations of motion lead to wave equation

1.
—2A:V2A — o, F" =0
C



Classical theory of electromagnetic field

L[A,A] = 2—2%/d3x [—A2 —(V x A)2]

@ Structure of Lagrangian mirrors that of harmonic chain:

L[p, 6] = /dx [gq52 _ “5232 (8X<b)2]

@ By analogy with chain, to quantize classical field, we should elevate
fields to operators and switch to Fourier representation.

@ However, in contrast to chain, we are now dealing with
(i) a full three-dimensional Laplacian acting upon...
(ii) the vector field A that is...

(iii) subject to the constraint V- A = 0.



Classical theory of EM field: waveguide

L[A,A] =

1

/d3x [%A2
C

@ We can circumvent difficulties by considering simplifed geometry
which reduces complexity of eigenvalue problem.

o —(V x A)2]

@ In a strongly anisotropic waveguide, the low frequency modes
become quasi one-dimensional, specified by a single wavevector, k.

@ For a classical EM field, the modes of the cavity must satisfy
boundary conditions commensurate with perfectly conducting walls,
e, x E= E|| ‘boundary =0ande,-B= BJ_‘boundary = 0.



Classical theory of EM field: waveguide

@ For waveguide, general vector potential configuration may be
expanded in eigenmodes of classical wave equation,

— Vug(x) = Agug(x)

where uy are real and orthonormal, f d3xug-up = Spp (cf. Fourier
mode expansion of ¢(x) and #(x)).
@ With boundary conditions uj[boundary = 0 (cf. Ej|boundary = 0), for

anisotropic waveguide with [, < L, < L, smallest A, are those
with k, =0, k, =7/L,, and k, = k < Lz_j,

2 T 2
Uy = ——sin L,)sin(kx)e,, A\ = k% + (—)
=5 (my/Ly)sin(kx) k L



Classical theory of EM field: waveguide

1

[

@ Setting A(x,t) = >, ak(t)ux(x), with k = mn/L and n integer,
and using orthonormality of functions ug(x),

Lo, a] =

1

2/10 P

I.e. system described in terms of independent dynamical degrees of
freedom, with coordinates « (cf. atomic chain),

Lib.o] = [ o |

—(V x A)2]

— )\kozi]

2 0.0



Quantization of classical EM field

L[é, o] = 1 > [iai = Akai]

2/10 P

1

o IS

@ Define canonical momenta 7y = 04, L = €gcuk, Where ¢y =
vacuum permittivity

. 1 1
H = Zwkak — L = Z <2—€O7Ti —+ §€0C2>\kai>
k k

@ Quantize operators: o, — &y and T — k.

© Declare commutation relations: [k, &x] = — iR kk
A D
n T 1
Z 2 A2 , 2
H — LS + _Eowkak y wk = C )\k
260 2




Quantization of classical EM field

2 )
A T 1 .
H = Ek [2—61; + 560(4}/2(0&] , wi = Cz)\k

@ Following analysis of atomic chain, if we introduce ladder operators,

€oWk [ A I ; EoWk [ A I
ai = Qe + Tk |, a, = Qe — T
2h €Wk 2h EoWk

with [ag, a;[(,] = Ok, Hamiltonian takes familiar form,

A 1
H = Z h(x}k (3}:3/( + 5)
k

@ For waveguide of width L, hwy = c[k? + (7/L,)?]*/2.




Quantization of EM field: remarks

. 1 1
H = hoi | ala +—), ng) = al)™|Q
S (slatz) I = ey

@ Elementary particle-like excitations of EM field, known as photons,

are created an annihilated by operators az and ay.

a;r<|”k>:\/”k‘|‘1|”k‘|‘1>a ak|nk) = /nilnk — 1)

@ Unfamiliar dispersion relation
wi = c[k? + (7T/Ly)2]1/2

is manifestation of waveguide geometry —

for k> L', recover expected linear

dispersion,

wk2c|k\




Quantization of EM field: generalization

So far, we have considered EM field quantization for a waveguide — what
happens in a three-dimensional cavity or free space?

@ For waveguide geometry, we have seen that A(x) = 3, dxuy where

h
2€0wk

Qy = (ak + ai)

@ In a three-dimensional cavity, vector potential can be expanded in
plane wave modes as

. 7 | |
A(x) = [é Ay e X 4 aF al e_’k'x]
(x) kkz;z\/%oka kA kA AN

where V is volume, wyx = c|k|, and &g, denote two sets of (generally
complex) normalized polarization vectors (&}, - €, = 1).




Quantization of EM field: generalization

@ Coulomb gauge condition, V- A =0,
requires €y -k = €, -k =0.

@ If vectors €, real (in-phase), polarization
linear, otherwise circular — typically
define ék)\ . ék,u = 5#’/'

@ Finally, operators obey (bosonic)
commutation relations,

[akxs 3t 3] = S Oan

while [ak,\, ak/)\/] =0 = [alA,aiw].



Quantization of EM field: generalization

. 7 | |
A(x) = [é ae®* + &k af e_’k'x]
(x) kkz;z\/%oka kA kA kA i

@ With these definitions, the photon Hamiltonian then takes the form

A= hon [afa0 +1/2]
kA

@ Defining vacuum,

(), eigenstates involve photon number states,

1
V1T !

N.B. commutation relations of bosonic operators ensures that
many-photon wavefunction symmetrical under exchange.

[{mat) =

(ai1)\)nk1>\(a|]:2>\)nk2>\ S ‘Q>




Momentum carried by photon field

@ Classical EM field carries linear momentum density, S/c? where
S = E x B/pg denotes Poynting vector, i.e. total momentum

c2

P= /d3x iS = —¢€ / d®x A(x, t) x (V x A(x, t))

@ After quantization, find (exercise)

|S = Z hk al/\ak,\
kA

Q) = hklk, A) (for both A =1,2).

.e. Plk,\) = Paj



Angular momentum carried by photon field

@ Angular momentum L = x X P includes intrinsic component,

M = _/d3xA X A— M= —ihzék {allakz - 3123k1]
k

@ Defining creation operators for right/left circular polarization,

: i o1 2l )

AR — i(5’k1 ’alz)a AL, — (31 — ias
V2 V2

find that

.i.
§ [akRakR akL dkl,

k

@ Therefore, since & - M|k, R/L) = 47|k, R/L), we conclude that
photons carry intrinsic angular momentum +# (known as helicity),
oriented parallel/antiparallel to direction of momentum propagation.



A= hox |afa0 +1/2]
kA

@ As with harmonic chain, quantization of EM field ~~
zero-point fluctuations with physical manifestations.
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Cammwl’r Vacuum/

plates fluctuations

@ Consider two metallic plates, area A, separated by distance d —
quantization of EM field leads to vacuum energy/unit area

<E>_ dkL hwkﬂ,_ T
7—“/ Z 0T

@ Field quantization results in attractive
(Casimir) force/unit area,

Fc 04(E) 72 hc

A A 240 d*

i 1 ! !
100 200 300 400 500

Plate-Sphere Surface Separation (nm)



Quantum field theory: summary

@ Starting with continuum field theory of the classical harmonic chain,

. . 2
Libyo] = [ ox |53~ "5 (0u0)

we have developed a general quantization programme.

@ From this programme, we find that the low-energy elementary
excitations of the chain are described by (bosonic) particle-like
collective excitations known as phonons,

H = Zhwk(aiak +1/2), hwy = v|k|
k

@ In three-dimensional system, modes acquire polarization index, A.



Quantum field theory: summary

@ Starting with continuum field theory of EM field for waveguide,

we applied quantization procedure to establish quantum theory.

@ These studies show that low-energy excitations of EM field
described by (bosonic) particle-like modes known as photons,

A=Y ho(aja +1/2),  wi=c(k®+ (/L))"
k

@ In three-dimensional system modes acquire polarization index, A.

/:/ = Zhwk(abak,\ -+ 1/2), Wk = C|k|
kA




Spin wave theory

and spin angular momentum, we close this section by considering the

As a final example of field quantization, which revises operator methods
quantum mechanical spin chain.



Spin wave theory

@ In correlated electron systems Coulomb interaction can result in
electrons becoming localized — the Mott transition.

@ However, in these insulating materials, the spin degrees of freedom
carried by the constituent electrons can remain mobile — such
systems are described by quantum magnetic models,

i_\l — Z Jmngm : gn
m=n

where exchange couplings J,,, denote matrix elements coupling
local moments at lattice sites m and n.



Spin wave theory

@ Since matrix elements J,,, decay rapidly with distance, we may
restrict attention to just neighbouring sites, Jyn, = JOm n+1.

@ Although J typically positive (leading to antiferromagnetic
coupling), here we consider them negative leading to
ferromagnetism — i.e. neighbouring spins want to lie parallel.

@ Consider then the 1d spin S quantum Heisenberg ferromagnet,

I/_\I:_ngm'gm—kl

where J > 0, and spins obey spin algebra, [5¢, 58] = ih6m,e®P757.



Spin wave theory

I/‘\I: _ngm'gm—l—l

?00060

@ As a strongly interacting quantum system, for a general spin S, the
quantum magnetic Hamiltonian is not easily addressed. However,
for large spin S, we can develop a “semi-classical” expansion:

@ In problem set |, we developed a representation of the quantum spin
algebra, [S;1, 5] = 2hS5Z 0 mn, using raising and lowering (ladder)
operators — the Holstein-Primakoff spin representation,

SZ=nS—ala)

T
~ _ T . amam
S, =hv25al (1 G

where, as usual, [am, al] = 6mn,

1/2
) ~ hv2Sal 4+ O(S71/?)

S5t =(5) ~hv/2Sa,, + 0(571/?)



Spin wave theory

—YYYYY

@ Defining spin raising and lowering operators, §i = §X + igf,’q,
A=-031{ S5 + 580 +5 G

(5*511 +5,50.)

m

@ Using Holstein-Primakoff transformation,
SZ=nS—ala), S.~n/2Sal, Sf~Hn/2Sa,
expansion to quadratic order in raising and lowering operators gives,

H~ —JNR?S% — JK3S Z(amajn—l—l + a,TnamH — a,J[nam — ainﬂamﬂ)

A

—INI?S® + JR?S (a1 — al)(ams1 — am) + O(S?)



Spin wave theory

—INI?S® + JR?S > (a1 — al)(ams1 — am) + O(S°)

A

@ Taking continuum limit, a1 — am =~ 0xa(x)|x=m (unit spacing),
N
H=—JNR2S? + Jh25/ dx (0xa')(0xa) + O(S°)
0

@ As with harmonic chain, Hamiltonian can be diagonalized by Fourier
transformation. With periodic boundary conditions, a:[nJrN = al,

lkX _i " Xe—ikan
a(x) = fZe ak—m/() d (x)

where sum on k = 2wn/N, runs over integers n and |a,, a;ﬂ,] = Okk’,
N

N
/ dx (Oxa')(0ya) Z(—/kak)(/k a’) —/ dx e'(k=K') ZkQakak
0

kk’

~"~

O Kk



Spin wave theory

?90000

A~ —JNR*S® + ) hwiala,
k

- l||"l
L an.FSru.:-;M n (_)3 J

|
|
|
where w, = JhSk? represents the | | I
. . . ) . _ itstoE=FEF, q ;
dispersion of the spin excitations (cf. 2 25| : | s
|
|
|
|

linear dispersion of harmonic chain). T=27 K

D=188 + 4 meV &2 /
E,=0.75+ 040 meV/

2
fa—
T T T

@ As with harmonic chain, magnetic
system defined by massless low-energy
collective excitations known as spin
waves or magnons.
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/’/ I'=300 K h

5L
_ § /:/,/_l} 114 + 2 meV .-*'r'J:

@ Spin wave spectrum can be recorded S By =035+ 022 meV:
by neutron scattering measurements. 095 1 105 11 115 12
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