Lecture 15

From molecules to solids



Background

@ In the last two lectures, we explored quantum mechanics of
multi-electron atoms — the subject of atomic physics.

@ In this lecture, we will explore how these concepts translate into
many-atom systems, from simple molecular structures to solid state.
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@ Here we will explore H;L and Hs, a simple elemental chain, and a
simple two-dimensional crystal (e.g. graphene).




Molecular physics: background

@ A molecule consists of electrons moving in the complex potential set
up by the charges of the atomic nuclei and other electrons.

@ Even in classical mechanics, it would be extremely difficult to solve
equations of motion.

@ Fortunately, for most purposes, we can treat motion of electrons
and nuclei separately, due to their very different masses:
Since forces that act on nuclei are comparable to those acting on electrons, their

momenta are comparable and their velocities are different.

@ Therefore, (a) in studying the motion of electrons, we can treat the
nuclei as being “nailed down” and

@ (b) in studying nuclear motion (vibrations/rotations) we can assume
that electrons adjust instantly to changes in molecular conformation:

basis of Born-Oppenheimer approximation.



Born-Oppenheimer approximation

@ Wavefunction of a molecule, V({r,}, {Rn}, t) determined by
many-body Schrodinger equation
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@ Since k e. of nuclei small as compared to electrons, we may drop

N o by - and focus on electron component of wavefunction:

Here wk, k=0,1,2,--- denote electron wavefunction with nuclei
“nailed down” at positions R;, Ry, . ..

@ As conformation varied, ground state Eo({Ry}) traces a manifold —
molecular potential energy; minimum = equilibrium structure.



@ To apply these ideas, consider simplest
molecule, the hydrogen ion HJ — two

protons (R,, Rp) and one electron (r).

@ HI is found in abundance in
interstellar gas clouds.

@ In Born-Oppenheimer approximation, electron Schrodinger equation:
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@ Although equation can be solved analytically(!), more instructive to
look for more general approximation scheme.
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@ Since Hamiltonian does not have a “small
parameter’, we adopt variational approach.

@ If electron is close to one proton, expect other
to exert only a small influence — here ¥
mirrors hydrogen atomic orbital.

@ Therefore, in seeking ground state, take trial wavefunction that is
linear combination of 1s wavefunctions centred on two protons,
e—|r—Ra,b|/ao
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where coefficients o and (3 are taken as real.



Y(r; Ra, Rp) = atp,(r; R,) + Bs(r; Rp)

@ Variational ground state energy:
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where Haa — <¢a|i_\l|¢a> — bev and Hab — <¢a”ﬁl|¢b> — Hba-

@ Since 9, and v, not orthogonal, we have to introduce overlap
integral, S = (1,|Yp).

@ Since potential is symmetric, wavefunction must be either
symmetric or antisymmetric, i.e. a = £[3, and
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@ Two possible wavefunctions for HJ ion,
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with energies E, =

@ Subscript g (gerade — even) used in molecular physics to denote
state symmetric under inversion (without exchanging nuclei) The
odd (ungerade) state denoted by u.

@ In chemistry, orthogonal states, ¢, and 1, are molecular orbitals
and general methodology is known as the linear combination of
atomic orbitals (LCAO) approach.



Nodal plane
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@ The state 1), has lower energy, while ¢, represents an excited state
of the molecular ion.

@ For v, (v,) state, the two atomic wavefunctions interfere
constructively (destructively) in region between protons.

@ For 15, enhanced electron density in region where electron is
attracted by both protons — screens protons from each other.



The H; ion: molecular potential £(|R, — R,|)

@ As expected, variational approximation
provides upper limit on ground state
energy.

@ Since E, + Ry does not have a :
minimum, suggests that odd =\ 100

wavefunction v, does not correspond
to bound molecular state. . ‘\ LCAO E, + Ry
=3 Exact E + Ry

@ To improve approximation, could introduce further orbitals, e.g. at
small R wavefunction should approach He™.



The HJ ion: remarks
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@ Although not very accurate, LCAO approximation for 1, does
exhibit correct features of true bonding wavefunction, o,:

(i) it is even with respect to inversion;

(ii) there is constructive interference which leads to enhanced
probability of finding electron in the region between nuclei.

@ 1), is characteristic of anti-bonding state, o7.



L2k

@ At first sight, might expect H, is simple extension of HJ ion; but
several new features arise. In Born-Oppenheimer approximation, for
two electrons r; » and two protons, R, ,, H = Hy + H; where
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where V(r,) = ch (i -1 _ ib) and rp = |11 — Ry,
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sum of two HJ ions (Hp) and an additional term Hj.
1

@ Since <%> ~ (=) can treat H; as a perturbation.



The H>; molecule

@ Neglecting H,, there are four ways of filling two orbitals o, and o7,
¢g(r1)¢g(r2)a ¢g(rl)¢u* (r2)7 wu* (rl)wg(r2)7 wu*(rl)wu* (r2)

Of these, expect | 9g(r1)1g(r2) | to be ground state.

@ However, at this stage, we have given no consideration to
constraints imposed by particle statistics.

@ Since electrons are identical fermions, total wavefunction must be
antisymmetric under exchange.

@ Taking account of spin degrees of freedom, for both electrons to
occupy the bonding o, orbital, they must occupy spin singlet state,

Xo0 = 5 (x+(D)x=(2) = x=(1)x+(2))




The H>; molecule

@ If we compute energy of state 1,(r1)1z(r2)Xo 0 as a function of R,
minimum occurs at Ry = 85pm with binding energy of 2.7eV — but
true molecule is smaller and more tightly bound.

@ Allowing for more variation in atomic orbitals, variable effective
charge, etc., gives equilibrium Ry much closer to experiment, but a
binding energy that is still not high enough.

@ The reason is that afg configuration alone is not a very good
representation of the ground state. Why...?



The H>; molecule
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Vg (r1)vg(ra) o< [Ya(ri)vn(ra) + ¥p(ri)a(r2)]
+ A[pa(r1)wa(r2) + ¥p(r1)vs(r2)]

@ In the LCAO approximation, o2 wavefunction has a strange form,

@ First term involves two electrons shared between two hydrogen
atoms — a covalent bond

@ Second term involves both electrons assigned to same atom — an
ionic bond.

@ Since equal coefficients, ionic and covalent contributions are equal
= when protons pulled apart, ground state just as likely to consist
of H" and H™ ion as two neutral atoms! — implausible.

@ If we drop ionic part of wavefunction — valence bonding
approximation — binding energy and nuclear separation improved.

@ Including a variational parameter for amplitude of ionic component,
find optimal value A ~ 1/6 = only ca. 3% ionic.



From molecules to solids
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@ Having established basic principles of molcular structure, we now
consider how methodology can be applied to crystalline solids.

@ In the Born-Oppenheimer approximation, for “elemental” solid,
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@ In the physical system, we would have to take into account the
influence of relativistic corrections (viz. spin-orbit interaction).

@ To address the properties of such a complex interacting system, we
will have to draw upon many of the insights developed previously.



From molecules to solids

@ To proceed, helpful to partition electrons into those which are bound
to core and those which are unbound. Tightly-bound electrons
screen charge leading to a modified nuclear potential, V.g(r).

@ Focussing on those electrons which are “free” (itinerant),
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where H,, = 2'77’; + Ve (r,) represents “single-particle” Hamiltonian

experienced by each electron.

@ H, describes motion of an electron in a periodic lattice potential,
Vet (r) = Ve (r + R) with R belonging to set of lattice vectors.

@ If electrons remain itinerant, they screen each other and diminish
the effect of electron-electron interaction.



From molecules to solids

Droping Coulomb interaction between electrons, we can apply
molecular orbital theory using variational LCAO scheme: i.e. build
trial wavefunction by combining orbital states of single ion, Vo, (r),

where Veg(r) = ) g Vion(r).
As with hydrogen molecule, Hamiltonian for individual nuclei,

A ~2D
Hy = % + Vion(r), associated with a set of atomic orbitals, 1,
with quantum numbers, g.

In “atomic limit”" — when atoms are far-separated, these states
mirror simple hydrogenic wavefunctions.

To find variational ground state of the system, we can then build
trial state from a linear combination of these atomic orbitals.
Taking only lowest orbital g = 0 into account,

P(r) =) ar(r—R)

where, as before, ar represent set of variational coefficients.



From molecules to solids

@ Variational state energy,

E — <¢|/:/O‘¢> _ ZR,R/ O‘EHRR’OKR/
<¢|¢> ZR,R/ aESRR’QfR/

where Hrr' = [ dr¢*(r — R)Hytp(r — R’) denote matrix elements
of orbital wavefunction and Sgr' = [ dr¢*(r — R)y(r — R’)
represent overlap integrals.

@ Minimizing energy with respect to ag, obtain secular equation,
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Example: periodic one-dimensional system

@ If atoms are well-separated, overlap integrals and matrix elements
decay exponentially with separation.

@ Dominant contribution then derives from coupling neighbouring
states — Huckel approximation. In 1d, secular equation:

(e — E)a, — (t+ ES)(apr1 + ap_1) =0, for each n

where H,, = ¢ is atomic orbital energy, H, nt1 = Hpy1.n = —t <0
denotes matrix element between neighbouring states, S, , =1 and

Sn+1,n — Sn—|—1,n = S.



Example: periodic one-dimensional system

(e — E)a, — (t+ ES)(apr1 +ap_1) =0
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@ cf. equation of motion of discrete classical N atom “chain”:

mén — _ks(¢n+1 — §bn) + ks(¢n — an—l)a ¢n+N — §bn

with spring constant ks and masses m. With ¢,(t) = e/“t¢,,,

(m‘*‘)2 + 2ks)pn — ks(Pnt1 + dn_1) =0

@ Normal vibrational modes: ¢, = - e’ " where k = 2= denote N
Vv'N Na

discrete “reciprocal lattice vectors” with —N/2 < m < N/2.



Example: periodic one-dimensional system

(e — E)a, — (t+ ES)(apr1 +ap_1) =0

@ For N lattice sites and periodic boundary condition, a,in = ap,

solution given by o, = _\/lne:kna’

F_F _ e — 2t cos(ka)
D 1 + S cos(ka)

I.e. reciprocal lattice vector k parameterizes a band of electronic
states.

E(k)

& _./é




Example: periodic one-dimensional system

@ According to LCAO approximation, for a single electron, lowest

energy state predicted to be uniform a, = ﬁ with Eg = ‘Sl_T%t

@ For more than one electron, we must consider influence of Pauli
exclusion and particle indistinguishability. Since electrons are
identical fermions, each state k can host a maximum of two
electrons in a spin singlet configuration.

@ Lowest energy state obtained by adding electrons sequentially into
states of increasing k. If maximum k value — Fermi level — lies
within band, excitations cost vanishingly small energy — metal. If
each atom contributes an even integer number of electrons, Fermi
wavevector may lie at a band gap — band insulator.



Example: graphene

@ Recently, much attention has been paid to
graphene, a single layer of graphite.

@ Flakes of graphene can be prepared by running
graphite — a pencil! — over adhesive layer.

@ Resulting electron states of single layer compound
have been of enormous interest to physicists.

@ To understand why, let us implement LCAO
technology to explore electronic structure of
graphene.




Example: graphene

@ Graphene forms periodic two-dimensional honeycomb lattice
structure with two atoms per unit cell.

@ With electron configuration (1s52)(25%)(2p?), two 1s electrons are
bound tightly to nucleus.

@ 2s and 2p orbitals hybridize into three “sp? orbitals” which form
covalent o bonding orbitals and constitute honeycomb lattice.

@ Remaining electrons (1/atom), which occupy out-of-plane p,
orbital, is then capable of forming an itinerant band of electron
states. It is this band which we now address.



Example: graphene

@ Suppose that wavefunction of band involves the basis of p, orbitals,

P(r) = [ortr(r — R) + Brie(r — R)]
R

@ Taking into account matrix elements involving only nearest
neighbours, trial wavefunction translates to secular equation,

(6 — E)ar — (t + ES)(BR + Br-a; + BR—a,) =0
(6 — E)ﬁR - (t + ES)(aR T R+a; T CVR—l—az) =0

where the primitive lattice vectors a; = (1/3/2,1/2)a and
a, = (v/3/2,—1/2)a, with a the lattice spacing.



Example: graphene

(e — E)ar — (t + ES)(Br + Br—a, + Or—a,) =0
(e — E)Br — (t + ES)(ar + ARta; + QRta,) =0

@ With the plane wave ansatz, agr = %e"k'R and Or = %e"k'R

(6 — E)Ckk — (t + ES)fkﬁk =0
(¢ — E)Be — (t + ES)fF oy = 0
where fi = 1 + 2e~7V3ka/2 co5(k,a/2).

@ If we neglect overlap integral S (for simplicity),

E:Ek=€:|:|fk|t




Example: graphene electronic structure
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@ At “half-filling”, where each atom contributes one electron to band,
Fermi level lies precisely at centre where dispersion, Ey is point-like.




Example: graphene
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@ Doping electrons into (or removing electrons from) the system

results in (two copies) of a linear dispersion, Ex ~ clk|, where c is a
constant (velocity).

@ Such a linear dispersion relation is the hallmark of a relativistic
particle (cf. a photon).

@ Although electrons are not moving at relativistic velocities, their
properties mirror behaviour of relativistic particles.



From molecules to solids

But what about (neglected) electron-electron interactions?

@ In principle, we could develop Hartree-Fock scheme to address
effects on band structure in perturbation theory.

@ However, it is a surprising, yet robust, feature of Fermi systems that
properties of non-interacting ground state remain qualitatively
correct over an unreasonably wide range.

@ Rigidity can be attributed to constraints implied by nodal structure
of wavefunction — encapsulated by Landau’s Fermi liquid theory.

@ However, electron interactions can induce striking modifications in
ground state reflected in novel experimental behaviour
Electron localization — Mott transition; local moment and itinerant
magnetism; quantum Hall fluids; and superconductivity.

@ Such phases, which by their nature, lie outside any perturbative
scheme built around the non-interacting ground state, underpin the
field of modern quantum condensed matter and solid state physics.



Molecular spectra

Having established a basic formalism to describe molecular structure, we
turn now to consider excitations and (radiative) transitions.

@ These can include transitions between electron states (typically
O(eV) — optical) as well as rotational /vibrational excitations.

@ Usually electronic transition induces motion of nuclei as well.

@ Energies of rotational states, O(h?/21), are much smaller than
those of electron excitations.

@ Typical rotational energies are O(10~*eV) (far IR) and vibrational
excitations are O(107teV) (cf. “Greenhouse effect”).

@ All three types of transitions can occur radiatively, i.e. through
emission or absorption of a photon of frequency v = AE/h.



Molecular spectra: transitions

@ As with atoms, most probable radiative transitions are electric
dipole, i.e. usual selection rule applies:

AJ=0,=1, but not 0 — 0

accompanied by change in the parity of the molecular state.

@ In a gas or liquid, transitions can also be produced by collisions.
Such non-radiative transitions do not have to obey selection rules,
I.e. molecule in a “metastable state” can be de-excited by collision.

@ Collisions lead to thermal distribution of molecular energy levels,

E;

ni & g €Xp [_kB—T]

where g; is degeneracy and E; the energy. At room temperature,
kg T ~ 2 x 1072 eV, many rotational states of molecules are
excited, but not electronic or vibrational.



Born-Oppenheimer approximation revisited

How can rotational /vibrational excitation spectrum be computed? |

@ Armed with Born-Oppenheimer approximation for electron states,
Wi, we can exploit completeness to express full stationary state as

W({ra}, {Rn}) = > ox({Rn})vw({ra}, {Rn})

where ¢ represents the nuclear part of the wavefunction.

@ Substituting into full time-independent Schrodinger equation,

S 2 S P vn) (Rub) | Virah (R




Born-Oppenheimer approximation revisited

k N=a,b,...

Y| X S B(RwY)| btk = EY dun
k

@ Now, since dependence of ¥, ({r,}, {Rn}) on {Rn} is weak
compared with that of the nuclear part ¢x({Ryn}), we can write

Viadkk = vk Vi bk

@ Using the orthogonality of 1), we can pick out the kK = 0 term,

/ G |- S V3 4 Eo({Ru))
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Molecular rotation

@ Schrodinger equation for nuclear motion has many solutions, which
give various molecular energy levels for given electron configuration.

@ For diatomic molecules, Eo(R1, Ry) = Eo(R) e =

Where R p— |R1 — Rz‘ gl'a\-'it)-'-
1 | p——
’ g

I

R,

@ Separating variables, Schrodinger equation
of relative motion, I

h2
_Z—VZR + Eo(R) | ¢o = Ego
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where p = ™72 is reduced mass. .

@ Ey(R) acts as a central potential, and the usual separation into
angular and radial equations can be carried out.



Molecular rotation

—— Vi + E(R)| ¢o = Egy % e

@ In lowest radial state, rotational energy levels described by usual
spherical harmonic functions Y ,,, with

h2
E, = — 1
J 2IJ(J+)

where | = ,uRg Is moment of inertia of molecule, and Ry is
equilibrium bond length.

@ Since molecular dimensions set by Bohr radius ap, | ~ mpa3
2 2
EJ ~ h /mNaO.

@ For the electron states, p. ~ h/ag and electron energies are ca.
h?/mea3, a factor of my/m. ~ 10* greater.



Molecular rotation: transitions

@ To bring about a radiative rotational transition, an emitted or
absorbed photon must interact with the electric dipole moment of
the molecule.

@ Since the initial and final electronic states are the same, this state
needs to have a permanent electric dipole moment.

@ Therefore, can have rotational radiative transitions in heteronuclear
diatomic molecules (e.g. HCl and CO), which have permanent
dipole moments, but not in homonuclear (e.g. H, and O,).

@ Usual electric dipole selection rules apply: AJ = %1, 0; but
requirement for parity change excludes AJ = 0.

AE) 4 = Z—j (J+1)(J+2)—JJ+1)] = hTz(J + 1)




Molecular vibrations

h2

—@V% + Eo(R) | ¢o = Ego

@ For a diatomic molecule, can Taylor expand molecular potential
Eo(R) around the equilibrium nuclear separation Ry,

1
Eo(R) = EO(R()) + E(R — R0)28,2?E0|R0 + ...

@ Leads to approximate harmonic oscillator with w = (%8%E0|R0)1/2,
E:EO(R0)+(n+1/2)hw, n:O,1,2,...

@ Vibrational excitations typically larger than rotational by \/mpy/m.
and smaller than electronic excitations by /m./my (see notes).

@ Vibrational transitions: dipole selection rule (exercise), An = +1,
I.e. only a single energy in the spectrum,

AE = (Epi1 — Ep) = hw




Example: Rotation-vibration spectrum of HCI
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