Lecture 12

Atomic structure



Atomic structure: background

@ Our studies of hydrogen-like atoms revealed that the spectrum of
the Hamiltonian,

N\

N2 1 7 2
foo P 1 Ze
2m  4mey r

is characterized by large n’-fold degeneracy.

@ However, although the non-relativistic Schrodinger Hamiltonian
provides a useful platform, the formulation is a little too naive.

@ The Hamiltonian is subject to several classes of “corrections”, which
lead to important physical ramifications (which reach beyond the
realm of atomic physics).

@ In this lecture, we outline these effects, before moving on to discuss
multi-electron atoms in the next.



Atomic structure: hydrogen atom revisited

@ As with any centrally symmetric potential, stationary solutions of
Ho index by quantum numbers nfm, ¥pom(r) = Rae(r) Yem(60, @).

@ For atomic hydrogen, n’>-degenerate energy levels set by
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where m is reduced mass (ca. electron mass), and ag = 42260 %
@ For higher single-electron ions (He™, Li**, etc.), E, = —Z2%.

@ Allowed combinations of quantum numbers:

n / Subshell(s)
1 0 1s

2 0,1 2s2p

3 0,1,2 3s3p3d

n 0---(n—1) ns---



Atomic structure: hydrogen atom revisited

@ However, treatment of hydrogen atom inherently non-relativistic:
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is only the leading term in relativistic treatment (Dirac theory).

@ Such relativistic corrections begin to impact when the electron
becomes relativistic, i.e. v ~ c.

@ Since, for Coulomb potential, 2(k.e.) = —(p.e.) (virial theorem),
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where « denotes the fine structure constant, we find




The “real” hydrogen atom: outline

@ Terms of higher order in = = Za provide relativistic corrections

which lead to lifting of the degeneracy.

@ These corrections (known as fine-structure) derive from three
(superficially) different sources:

(a) relativistic corrections to the kinetic energy;
(b) coupling between spin and orbital degrees of freedom;

(c) and a contribution known as the Darwin term.



(a) Relativistic corrections to kinetic energy

@ From the relativistic energy-momentum invariant,
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we can anticipate the leading correction to the non-relativistic

Hamiltonian is given by
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@ The relative scale of perturbation

</:I1> P2 v 2
(Fo) ez~ @ =4

e 1 . 1

Where a = —47""50 e — 137"

I.e. Hi is only a small perturbation for small atomic number, Z.



(a) Relativistic corrections to kinetic energy

@ Since [Hy,L?] =0 and [Hy,L,] =0,

(nfm|[Hy, L2]|nl'm"y = B2 [0'(¢' +1) — (£ + )] (ném|Hy|n' m') =0
(nfm|[Hy, L]|n¢'m"y = B(m' — m){(ném|Hy|n¢'m") = 0

@ Therefore, the off-diagonal matrix elements vanish:

(nbm|Hy|nl!m'y =0 for €#£¢ or m#mnm

and we can estimate energy shift without having to invoke
degenerate perturbation theory.



(a) Relativistic corrections to kinetic energy

@ Making use of the identity,
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scale of resulting energy shift can be obtained from first order
perturbation theory,
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@ Using the identities,
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resulting energy shift acquires angular momentum dependence:
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(b) Spin-orbit coupling

@ Spin degree of freedom of electron emerges naturally from
relativistic formulation of quantum mechanics. Alongside the spin,
this formulation leads to a further relativistic correction which
involves coupling between spin and orbital degrees of freedom.

@ For a general potential V/(r), this spin-orbit coupling is given by:
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(b) Spin-orbit coupling: physical origin

Physically, as electron moves through electric field of nucleus,
E=-VV(r)=—¢&,0,V), in its rest frame it will experience a

magnetic field, B = %v x E.

In this field, the spin magnetic moment of the electron, u, = —=8§,

leads to an additional interaction energy,
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where we have used the relation p x &, = —%L.

Additional factor of 1/2 derives from further relativistic effect
known as Thomas precession.

Those discontent with heuristic derviation need only wait for Dirac
formulation...



(b) Spin-orbit coupling
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@ Without spin-orbit interaction, eigenstates of hydrogen-like atoms
can be expressed in basis of mutually commuting operators, Hy, L2,

LZ, §2 and 5

@ However, with spin-orbit, total Hamiltonian no longer commutes
with L, or S, — useful to exploit degeneracy of Hy to switch to new
basis in which L - S is diagonal.

@ Achieved by turning to basis of eigenstates of the operators, Ho 32,
J,. L2 and S2, where J =L +S. Since J2=1L2+S24+2L-S, it

follows that,
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(b) Spin-orbit coupling

L-S=

(12-12-8%) = %(j(j +1)—4(L+1)—s(s+1))
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@ Combining spin 1/2 with angular momentum ¢, total angular
momentum can take values j = £ + 1/2. Corresponding basis states
j ={¢+1/2, m;,{) diagonalize operator,
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@ Once again, off-diagonal matrix elements of H, vanish allowing
correction to be computed in first order perturbation theory.
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(b) Spin-orbit coupling
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@ Making use of identity,
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@ Rewriting expression for (H;) in new basis |n,j = ¢+ 1/2, m;, (),
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@ Combining these expressions, for £ > 0, we have



@ Final relativistic correction arises from “Zitterbewegung’ of electron
— giggling — which smears effective potential felt by electron,
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@ Since perturbation acts only at origin, it effects only £ = 0 states,
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@ This term is formally identical to that which would be obtained
from (H,) at £ = 0. As a result, combining all three contributions,
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independent of £ and m;.




Spectroscopic notation

@ To discuss energy shifts for particular states, it is helpful to
introduce some nomenclature from atomic physics.

@ For a state with principal quantum number n, total spin s, orbital
angular momentum /¢, and total angular momentum j, one may
define the state by the spectroscopic notation,

n 2s+1 Lj

@ For a hydrogen-like atom, with just a single electron, 2s +1 = 2. In
this case, the factor 2s + 1 is often just dropped for brevity.



Relativistic corrections
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@ For a given n, relativistic corrections depend >
only on j and n. o
Ll
@ Forn=1,¢=0andj=1/2: Both 15,
states, with m; = £1/2, experience negative
energy shift of —1Z%a? Ry.
@ Forn=2,¢=0,1: With j =1/2, both 251/2 _ n=1
and 2Py ), states have shift, —2 Z%a? Ry,
while 2P3 5 experiences a shift —6%24042 Ry. L2
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(Further) relativistic corrections: Lamb shift

@ Perturbative corrections predicted by Dirac theory predict that, for
hydrogen, the 25;,, and 2P; , states should remain degenerate.

@ However, in 1951, an experimental study by Willis Lamb discovered
that 2P; , state is slightly lower than the 25, /, state — Lamb shift.
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Lamb shift

@ Within framework of quantum electrodynamics, Coulomb
interaction is mediated by exchange of photons — “gauge particles”.

@ Interaction of electron with electromagnetic field can induce a
“self-interaction” ~~ effective smearing of electron position,
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@ Causes electron spin g-factor to be slightly different from 2.

@ There is also a slight weakening of the force on the electron when it
is very close to the nucleus, causing 25;/, state to be slightly higher
in energy than the 2P, , state.
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Hyperfine structure

@ Finally, we should address the potential influence of the nuclear
spin, |, which leads to a nuclear magnetic moment,
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where nucleus has mass My and gyromagnetic ratio gy.

@ Since nucleus has internal structure, gy is not simply 2. For proton,
sole nuclear constituent of atomic hydrogen, g, ~ 5.56. Even
though neutron is charge neutral, g, ~ —3.83.

@ Magnetic moment generates vector potential A = —72M x V(1/r)
and magnetic field
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Hyperfine interaction
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@ As a result, we obtain hyperfine interaction with orbital and spin
degrees of freedom of electron,
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@ Energy level shift of the ground state can be estimated using
perturbation theory. If we consider (for simplicity) just the £ =0
states, only last term in B contributes at lowest order, and leads to
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Hyperfine interaction
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@ With |10n00(0)|* = =15(£22€)3, we obtain
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showing scale of perturbation suppressed over fine structure by
factor m/Mpy ~ 1073,

@ Finally, as with spin-orbit interaction, if we set F =1+ S,
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Summary of atomic energy scales

— 3P3/2, 3D3/‘2 3P3/2' 3D3/2
. n=3 3D52 3D52
@ Gross structure: Dictated by =5, o _F=2
. . . . I ekt 3511//22 F=1
orbital kinetic and potential =2 .., < —
energies, ca. 1 — 10eV. B o o
. . . . 251/ F=1
@ Fine structure: Relativistic F=0
corrections (spin-orbit, etc.)
. . >
split degenerate multiplets 3
leading to small shift in energy,
ca. 107 —10"eV.
@ Hyperfine structure:
Interaction of electron
. . . n=1
magnetic moment with field
. F=1
generated by nuclear spin leads < o —
e - I =
to further splitting of
. — — Bohr Dirac Lamb hyperfine
mU|t|p|etS, Ca. ].O r_ 10 8 eV levels fine structure shift styr':lcture
(increased) (increased) (increased)



Lecture 13-14

Multi-electron atoms



Background

How can we determine energy levels of a multi-electron atom? |

@ We could start with hydrogenic energy levels for atom of nuclear
charge Z, and start filling electrons from lowest levels, accounting
for Pauli exclusion.

@ Degeneracy for quantum numbers (n, ¢) is 2 x (2¢ + 1). Each
energy level, n, accommodates 2 X n® electrons:

n 14 Degeneracy in shell Cumulative total
1 0 2 2
2 0,1 (1+3)x2=28 10
3 01,2 (1+3+5)x2=18 28
4 0,1,2,3 (143+5+47)x2=32 60

@ Expect atoms containing 2, 10, 28 or 60 electrons would be
especially stable and that, in atoms containing one more electron,
outermost electron would be less tightly bound.



Background: ionization energies of elements
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@ Instead, find noble gases (Z = 2, 10, 18, 36 --) are especially
stable, and elements containing one more electron (alkali metals)
significantly less tightly bound.




Background

First ionization energy/eV
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@ Failure to predict stable electron configurations reflects omission of
electron-electron interaction (cf. our discussion of helium).

@ In fact, first ionization energies of atoms show only a weak
dependence on Z — outermost electrons are almost completely

shielded from nuclear charge:

Effective nuclear charge varies as Z.g ~ (1 + v)% where v > 0
characterizes “ineffectiveness of screening”; i.e. ionization energy
Iy, = —Ez ~ Z% ~ (1 +2vZ) (cf. experiment).



Multi-electron atoms

@ Leaving aside (for now) relativistic effects, Hamiltonian for
multi-electron atom given by
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where rj = |rj —rj|.

@ In addition to nuclear binding potential, there is a further Coulomb
Interaction between electrons.

As we have seen with helium, this contribution can have important
consequences on spectra and spin structure of wavefunction.

@ However, electron-electron interaction makes problem “many-body’
in character and analytically intractable — we must develop some
approximation scheme (even though effects may not be small!).



Multi-electron atoms: outline

@ Central field approximation
@ Self-consistent field method — Hartree approximation
@ Structure of the periodic table

@ Coupling schemes:

Q LS coupling and Hund'’s rules
Q jj coupling

@ Atomic spectra: selection rules

@ Zeeman effect revisited



Central field approximation

@ Electron interaction contains large spherically symmetric component
arising from ‘“core electrons”. Since

12
> |Yim(6, ¢)]> = const.

m=—/¢

closed shell has spherically symmetric charge distribution.

@ This suggests a “partitioning” of the Hamiltonian, H = Hy + H,
with
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where the radially-symmetric “single-electron potentials”, U;(r),
accommodate “average effect” of other electrons, i.e. H; is small.



Central field approximation

@ Since single-particle Hamiltonian Ho continues to commute with the
angular momentum operator, [Hy, L] = 0, its eigenfunctions remain
indexed by quantum numbers (n, £, my, my).

@ However, since effective potential, V(r) + U;(r), is no longer
Coulomb-like, ¢ values for a given n need not be degenerate.

@ But how do we fix U;(r); the potential energy experienced by each
electron depends on the wavefunction of all the other electrons,
which is only known after the Schrodinger equation has been solved.

@ This suggests an iterative approach to solving the problem.



Self-consistent field method
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Before embarking on this programme, we should I
first consider our ambitions:

@ The development of computation schemes to
address quantum mechanics of many-particle
systems is a specialist (and challenging) topic
common to physics and chemistry.

@ Our interest here is merely in the outcome of such investigations,
and their ramifications for atomic physics.

@ We will therefore discuss (general) principles of the methodology,
but the detailed technical aspects of the approach need not be
committed to memory!



Self-consistent field method

@ To understand how the potentials U;(r) can be estimated, we will
follow a variational approach due to Hartree:

If electrons are (for now) considered distinguishable, wavefunction
can be factorized into (normalized) product state,

V({ri}) = i (r1)vi(r2) - - - iy, (rn)

where the quantum numbers, | = nfmyms, index individual state
occupancies.

@ Note that W({r;}) is not a properly antisymmetrized Slater
determinant — exclusion principle taken into account only insofar
that we have assigned different quantum numbers, nfmyms;.

@ In this approximation, if U;(r) = 0, the ground state would involve
filling the lowest shells with electrons.



Self-consistent field method

V({ri}) = ¥ (r)vi(r2) - - Yi (rv)

@ Variational ground state energy:
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@ According to variational principle, we must minimize energy by
varying E[{v;}], subject to normalization condition, (;|y;) =

@ Latter imposed by set of Lagrange multipliers, ¢;,
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Self-consistent field method

" [E —é ( [ el - 1)] 0

@ Following variation, obtain Hartree equations,
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@ Amongst all possible trial functions v);, set that minimizes energy
determined by effective potential,
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@ To simplify procedure, useful to engineer radial symmetry by
replacing U;(r) by spherical average, U;(r) = [ L2 Uj(r).



Self-consistent field method
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@ To fix Lagrange multipliers, ;, we can multiply Hartree equations
by ¥ (r) and integrate,
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@ From this result, we find
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Self-consistent field method

@ In summary, within the Hartree framework, the multi-electron
Hamiltonian is replaced by the effective single-particle Hamiltonian,

2m Ameg I
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where the central potentials U; depend self-consistently on the
single-particle wavefunctions,
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@ Once Us are found, perturbation theory can be applied to residual
Coulomb interaction,
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Hartree-Fock method

@ An improvement on this procedure can be achieved by introducting
a trial variational state wavefunction involving a Slater determinant,

P1(r1)  Yi(r2)  Ya(rs)
1| wa(re) ta(ra) wa(r3)
V= VNI P3(r1)  ¥s(r2)  s(rs)

where 1 (r;), with i = 1,2--- N, denote the single-particle
wavefunctions for electron i, and k = (nfmymy)

@ A variational analysis leads to Hartree-Fock equations with
additional exchange contribution,
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Central field approximation: conclusions

@ Although states characterized by quantum numbers ném,m;,
Hartree-Fock calculations show that those with different ¢ for given
n are now non-degenerate — large ¢ values more effectively screened
and lie higher in energy.

@ States corresponding to particular n referred to as a shell, and those
belonging to n, ¢ are a subshell. Energy levels ordered as

Subshell name 1s 2s 2p 3s 3p 4s 3d 4p 5s A4d

n= 1 2 2 3 3 4 3 4 5 4
¢f= 0 0 1 0 1 0 2 1 0 2
Degeneracy 2 2 6 2 6 2 10 6 2 10
Cumulative 2 4 10 12 18 20 30 36 38 48



Central field approximation: conclusions

Subshell name 1s 2s 2p 3s 3p 4s 3d 4p b5s A4d
Cumulative 2 4 10 12 18 20 30 36 38 48
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Periodic table

H | (1s) 13.6
He | (1s)° 24.6
Li | He (2s) 5.4
Be | He (25)? 9.3
B He (25)%(2p) | 8.3
C He (25)?(2p)? | 11.3
N He (25)%(2p)° | 14.5

)

)

)

@ Can use energy sequence to
predict ground state electron
configuration — fill levels
accounting for exclusion

aufbau principle.
O He (25)%(2p)* | 13.6

F He (25)%(2p)° | 17.4
He (25)%(2p)° | 21.6
Na | Ne (3s) 5.1
Mg | Ne (3s)? 7.6
Si | Ne (3s)%*(3p)? | 8.1
S Ne (35)?(3p)* | 10.4
Ar | Ne (35)%(3p)° | 15.8
K | Ar (4s) 4.3

@ Sadly, there are exceptions to
rule: e.g. Cu (Z = 29)
expected to have configuration
(Ar)(4s)?(3d)°, actually has
(Ar)(4s)!(3d)*°.
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Periodic table

@ Aufbau principle forms basis of Periodic table of elements:
elements with similar electron configurations in outermost shells
have similar chemical properties.

- PERIODIC TABLE OF THE ELEMENTS
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Coupling schemes

@ The aufbau principle predicts ground state occupation of subshells —
but does not specify spin and orbital angular momenta of subshells.

@ To deal with this question, we must consider spin-orbit and residual
Coulomb interaction between outer electrons.

@ Hamiltonian for multi-electron atom can be written as,

I<J

HO+Z47T€O - ZU(r)+Z§,(r,)L .S

7

/:Il I/_\I2

where I:Io includes central field terms, I:Il is residual Coulomb
interaction, and H, is spin-orbit interaction.



Coupling schemes

/<J

HO‘|‘Z47T€0 - ZU(r)+Z€,(r,)L 'S;

Fll I:I2

@ For light atoms, I:Il > I:Iz, can treat I:Ig as a perturbation on
Hy + Hi — known as LS (or Russell-Saunders) coupling.

@ For heavy atoms (or ionized light atoms), I:IQ > I:Il, electrons
become relativistic and spin-orbit interaction dominates — jj
coupling.

Both scenarios are approximations — real atoms do not always conform to
this “comparatively simple” picture.



Coupling schemes: LS coupling

/<J

oty et ZU(r)+Z§,(r,)L J

7

N\

H1 I:I2

@ Since H commutes with set of total angular momenta, 32, IA_2, and
S2, energy levels of multi-electron atoms are characterized by
quantum numbers L, S, J.

@ Their ordering in energy set by Hund’s rules.

@ As rules empirical, there are exceptions. Moreover, as atomic mass
increases and electrons become relativistic, spin-orbit interactions
become increasingly important further undermining rules.



Coupling schemes: LS coupling and Hund’s rules

I<_j

H0+Z47T€O - ZU(r)+Zg,(r,)L .S

-~
A N

H1 H2

© Combine spins to obtain possible values of total spin S. (Remember
that closed shells contribute zero spin.)

The largest permitted value of S lies lowest in energy.

Physically: maximising S makes spin wavefunction as symmetric as
possible: tends to make spatial wavefunction antisymmetric, reduces
Coulomb repulsion (cf. helium).



Coupling schemes: LS coupling and Hund’s rules

/<J

H°+Z4mo - ZU(r)+Z§,(r,)L 'S;

I:I1 I:I2

@ For each value of S, find the possible values of total angular
momentum L. (Remember that closed shells contribute zero orbital
angular momentum.)

The largest permitted value of L lies lowest in energy.

Physically: maximising L also tends to keep the electrons apart.

@ In deciding on permitted values of L and S, we also have to ensure
that both quantum statistics and the exclusion principle is respected,

I.e. total electron wavefunction must be antisymmetric under
particle exchange.



Coupling schemes: LS coupling and Hund’s rules

I<_j

H°+Z47reo - ZU(r)+Z§,(r,)L .S,

/:Il I:I2

© Couple L and S to obtain values of J (hence name of scheme).
(Remember that closed shells contribute zero angular momentum.)

If subshell is less than half full, smallest value of J lies lowest
in energy; otherwise, largest value lies lowest.

Energy separation for different J arises from treating spin-orbit term
as a perturbation (fine structure),

<JmJL5\Zl_§,~(r;)IA_,- .S;|JmyLS) = ¢(L, S)(JmyLS|L - §|Jm,LS)
— C(L,S)[J(J+1)— L(L+1)— S5(S+1)]/2

Since sign of ((L,S) changes according to the whether the subshell
Is more or less than half-filled, the third Hund's rule is established.



LS coupling — Example: helium

@ Helium has ground state electron configuration
(1s)%,ie. L=S=J=0.

N.B. For any completely filled subshell,
L =5 =0 and hence J =0.

@ For excited state, e.g. (1s)!(2p)!, can have S =1 or S = 0, with
S =1 state lying lower in energy according to Hund's rules.

@ Combining orbital angular momenta gives L = 1 and, with S =0,
J =1, while with $=1, J=0,1,2 with J = 0 lowest in energy.

@ In spectroscopic notation 2>T1L, four possible states, 3Py 3P; 3P,
and ! P; where three 3P states separated by spin-orbit interaction,
and singlet 'P state lies much higher in energy due to Coulomb.



Landé interval rule

@ Since separation of energies for states of different J arises from
spin-orbit term contribution H, (fine structure),

<|J7 my, L75| Zgi(ri)i:i ) gi‘Ja my, L7 S>

_ (L, S)
2

[J(J+1)— L(L+1) = S(S+1)]

separation between pair of adjacent levels in a fine structure
multiplet is proportional to larger of two J values,

Ay J(J+1)—(J—1)J=2J

e.g. separation between 3P, and 3P;, and 3P; and 3P, should be in
ratio 2:1.



LS coupling — Example: carbon

@ Carbon has ground state electron configuration
(15)%(25)%(2p)*.

@ With two identical electrons in same unfilled
subshell, wavefunction must be antisymmetric.

@ Total spin can either be singlet S = 0 (antisymmetric) or one of the
triplet S = 1 states (symmetric).

@ To form antisymmetric total angular mél) mf) m;

momentum state, two electrons must 1 0 1
have different values of my, 1 —1 0
@ Inspecting the values of m; we can 0 -1 -1

deduce that L = 1.

mél) mf) my

@ [o form svmmetri




LS coupling — Example: carbon

@ Carbon has ground state electron configuration /‘\
(15)2(25)2(2p)>. ¥ XX

@ With two identical electrons in same unfilled
subshell, wavefunction must be antisymmetric.

@ To ensure antisymmetry of wavefunction, we must therefore take
S=1withL=1and § =0 with L =2 or 0.

@ To account for fine structure, states with S =1 and L = 1 can be
combined into single J = 0 state, three J = 1 states, and five J =2
states leading to terms 3Py, 3Pq, and 3P, respectively.

@ Similarly the § =0, L = 2 state can be combined to give five J =2
states, 1D, while S = 0, L = 0 state gives single J = 0 state, 1S,.



LS coupling — Example: carbon

s S _,
@ Measured energy levels:
E /cm™! ,ri ------ EZ:E':
1S 20649 2/
0 (p)°,-
D, 10195 T
°P, 43
3P, 16
3Py 0
EPE' =
3P — HE‘E
@ Landé interval rule approximately obeyed by — P o=

fine structure triplet, and separation between R
L and S values caused by Coulomb repulsion
is much greater than spin-orbit effect.



LS coupling — Example: carbon

@ For excited states of carbon, e.g. (2p)!(3p)!, electrons are no
longer equivalent because they have different radial wavefunctions.

@ We can now combine any of $ = 0,1 with any of L =0,1, 2,
yielding the following terms (in order of increasing energy, according

to Hund'’s rules):

3 3 3 1 1 1
D153 Po.1,2 S1 D, Py So



Recap: atomic structure

@ Our studies of the energy spectrum of atomic hydrogen using the
non-relativistic Schrodinger equation showed that states are
organised in a shell structure, indexed by a principle quantum
number n and characterised by an n’-fold degeneracy.

@ To address the electronic structure of multielectron atoms, we have
to accommodate two classes of additional effects:

© Even hydrogenic (i.e. single-electron) atoms are subject to
corrections from relativistic effects (spin-orbit coupling, etc.) —
fine structure, vacuum fluctuations of EM field — Lamb shift,
and interaction with nuclear spin — hyperfine structure which
together conspire to lift state degeneracy.

@ In addition, in multielectron atoms, the direct Coulomb

interaction between electrons lead to screening of the nuclear
charge, and rearrange the ordering of the shell structure.



Recap: atomic structure

@ Although electron-electron interactions make the multielectron
system formally intractable, the spherical symmetry of filled core
electron states justifies central field approximation in which the
principle effect of interactions is captured by a single-particle

potential,

A h2V? Ze? A e?

Hy = — L — U,' i ) Hi = — Ui I
0 Z [ 2m 47'('60/’,' * (I’)] ! Z 47T€0I’;j Z (I’)

1<J

@ Numerical studies (based on self-consistent Hartree-Fock scheme)

provide a simple phenomenology to describe energy ordering of core
subshells — aufbau principle

@ Influence of residual electron interaction, Hy, and relativistic
spin-orbit corrections

Hy = Zf(ﬁ')'—i - S,
i
on valence states can then be addressed within perturbation theory.



Recap: atomic structure

/<J

Ho+Z4mO - ZU(r)+Z§,(n)L 'S

I:I1 I:I2

o For Ilght atoms, H1 > H2, can treat H2 as a perturbation on
Ho + Hy — known as LS (or Russell-Saunders) coupling.

@ For heavy atoms (or ionized light atoms), H2 > H1, electrons
become relativistic and spin-orbit interaction dominates — jj
coupling.



Recap: atomic structure

I<_j

HO+Z47T€O - ZU(r)+Z€,(n)L .S,

-~
N

H1 H2

@ In LS coupling, the ground state electron configure is specified by

an emperical set of rules known as Hund’s rules. Subject to Pauli
exclusion:

O The largest permitted value of total S lies lowest in energy.
©Q The largest permitted value of total L lies lowest in energy.

© |If subshell is less than half full, smallest value of total J lies
lowest in energy; otherwise largest value lies lowest.



LS coupling — Example: nitrogen

Configuration Tahle

@ Nitrogen has ground state electron
configuration (1s)?(2s)%(2p)°. !

@ The maximal value of spinis § = 3/2
while L can take values 3, 2, 1 and O.

@ Since spin wavefunction (being maximal) is symmetric, spatial
wavefunction must be antisymmetric — all three states with

my = 1,0, —1 must be involved.

® We must therefore have L = 0 and J = 3/2 with the term, *S3 /5.



J/ coupling scheme

@ When relativistic effects dominate residual electrostatic interaction,
Hy, (i.e. heavy elements) electrons move independently in central
field, subject to spin-orbit interaction. In this limit, states are both
eigenstates of J? (as before), and also of J? for each electron.

@ In jj coupling, separate energy sbifts independent of total J and M},
AE = <I‘I,'€,'S,'j,'./m_/| Zif(r;)L; . S,-|n,-€,-5,-j,-JmJ> = Zi AE,' where

= C(ni, ;) UiUi + 1) = (i + 1) — si(s; +1)] /2

@ The degeneracy with respect to J is then lifted by the small
electrostatic interaction between electrons, H;.



Jj coupling scheme: Example

@ Consider configuration (np)? (cf. carbon in LS scheme): Combining
s = 1/2 with £ =1, each electron can have j =1/2 or 3/2.

@ If electrons have same j value, they are equivalent, so we have to
take care of symmetry:

(@) p=5p=3/2= J=3,2,1,0, of which J =20 are
antisymmetric.

(b) 1 =p=1/2= J=1,0, of which J =0 is antisymmetric.

(€) h=1/2, p=3/2= J=2,1

@ Taking into account Pauli exclusion, in jj coupling (where the term
is written (j1,/2)s), we have the following terms:

(1/27 1/2)0 (3/27 1/2)1 (3/27 1/2)2 (3/27 3/2)2 (3/27 3/2)0

in order of increasing energy.




Jj coupling scheme: Example

(1/2,1/2)0 (3/2,1/2)1 (3/2,1/2), (3/2,3/2)2 (3/2,3/2)0

@ Both LS and jj coupling give same J values (two states with J = 0,
two with J = 2 and one with J = 1) and in same order.

Pure LS Pure j
@ However, pattern of levels different: in LS 18 H
coupling we found a triplet (3Pg, 3Py, 3P5) and T s s
. 1 1 . . . .. >'(§'§)
two singlets ("D, and *Sp), while in ideal jj A
scenario, we have two doublets and a singlet. D LA
2
; " (E’l)
@ The sets of states in two schemes must be /"/ i
expressible as linear combinations of one another, ) //
and physical states for real atom likely to differ p A
£ . . . .. . 3 /_ 1 [f11
rom either approximation — e.g. jj coupling not P (zr2)
seen in Pb(6p)? but is seen in Cr'¥* which has
same configuration as carbon, (2p)2. Si Ge Sn Pb



Atomic spectra

@ Atomic spectra result from transitions between different electronic
states of an atom via emission or absorption of photons.

@ In emission spectra, atom is excited by some means (e.g.
thermally through collisions), and one observes discrete spectral
lines in light emitted as atoms relax.

@ In absorption spectra, one illuminates atoms using a broad
waveband source, and observes dark absorption lines in the
spectrum of transmitted light.

@ Atoms excited in this process subsequently decay by emitting
photons in random directions — fluorescence.




Atomic spectra: selection rules

Basic theory governing emission and absorption will be outlined in detail
when we study radiative transitions. Here we anticipate some results:

@ In electric dipole approximation, rate of transitions is proportional
to matrix elements of electric dipole operator, d = —e Zi r;,

[ ocw?|(eld|n)]?, w=|E — E

@ Form of dipole operator, d means that some matrix elements vanish
~+ selection rules. For a transition to take place:

@ Parity must change
Q@ AJ=+1, 0 (but 0 — 0 is not allowed) and AM; = +£1, 0

@ Atomic states always eigenstates of parity and J2, so selection rules
can be regarded as absolutely valid in electric dipole transitions.



Atomic spectra: selection rules

@ In specific coupling schemes, further selection rules apply. In the
case of ideal LS coupling, we also require:

QO AS=0and AMs =0

Follows from conservation of total spin in transition.

Q@ AL=41, 0 (but 0 — 0 is not allowed) and AM; = +1, 0

Follows from 1. and rules relating to J.

© A/; = +£1 if only electron i/ is involved in transition.

Follows from parity change rule since the parity of atom is
product of parities of separate electron wavefunctions, (—1)%.

@ However, since LS coupling is only an approximation, these rules
should themselves be regarded as approximate.



Atomic spectra: single electron atoms

@ For “single electron atoms”, e.g. alkali metals such as sodium,

and also hydrogen, ground state is (ns)!.

@ Ground state has term 251/2 while excited states
all doublets with J = L + 1/2 (except for s states
which have J =1/2).

@ Since parity given by (—1), allowed transitions
involve Al = +1, i.e. s« p, p < d, etc. (Larger
changes in ¢ contravene AJ rule.)

@ The s < p transitions are all doublets. In
sodium, transition 3s < 3p gives rise to familiar
yellow sodium “D-lines” at 589 nm.

—Spg
Spin-orbit 2
-3.04--- splitting 0021 eV
3p1
2

S £
= < o
5 g 2
c I o =-0.587 nm
L]
514 —L_ 3s1

2



Atomic spectra: single electron atoms

. 2F50 772
2812 P32 2Py 2Dan sz

@ p < d transitions involve two doublets,
2P1/2,3/2 and 2D3/2,5/2. HOWGVGF, the
°P1 /2 «+°Ds» transition forbidden by AJ
rule, so line is actually a triplet.

@ As n increases, levels approach those for
hydrogen, as nuclear charge is increasingly
screened by inner electrons.

Energie E/eV

@ In an absorption spectrum, atoms start
from ground state, so only ns — n’p lines al
seen. In emission, atoms are excited into
essentially all their excited levels, so many
more lines will be seen in the spectrum. s 1213

D :5'895.930

D:.5'889.963




Zeeman effect: revisited

To conclude survey of atomic structure, we now return to consider how
atomic spectra are influenced by a magnetic field?

@ Begin with hydrogen-like atoms involving just a single electron. In a
magnetic field, H = Hy + H;el. + Hzeeman, Where

N e A ~ ~ A
Heeman:_—B Lz 22 — BLZ 22 h
z S2B(L.+25,) = —uB(L +25.)/

denotes Zeeman term.

@ Since we are dealing with confined electrons, we have neglected the
diamagnetic contribution to the Hamiltonian.

N

@ Depending on scale of magnetic field, the spin-orbit term in H,.o. or
the Zeeman term may dominate the spectrum of the atom.



Zeeman effect: revisited

A e A A N A
Hzcoman = ———B(L, +25,) = —ugB(L, 4+ 25,)/h
z = B(L, +28,) = —ppB(L. +25,)/

@ Previously we have seen that, to leading order, relativistic
corrections lead to fine-structure energy shift,

4
AE,];e-L:lmc2 Za §—. d
2 n 4  j+1)2

for states |n,j =¢£1/2, m;, {).

@ For weak magnetic fields, we can also treat Zeeman energy in
framework of perturbation theory:

Although states with common j (e.g. 25;/, and 2P; /5) are
degenerate, spatial wavefunctions have different parity, and
off-diagonal matrix elements of I:IZeeman vanish — avoids need for
degenerate perturbation theory.



Zeeman effect: revisited

i_\IZeeman — _ﬁB(zz + 232) — _/'LBB(ZZ + 2:5\2)/7;0 — _:LLBB(:IZ + gz)/h

@ Making use of identity, (exercise — refer back to addition of angular
momentum and spin)

hmj

(nj = 1/2,m;, 05,0, j = L4 1/2,m;, £) = 45—

we obtain the following expression for the first order energy shift,

ceman ]'
AEZPE, o =€+1/2,m;,0) = g Bm, (1 - 2£—+1)

i.e. all degenerate levels split by field.

@ In contrast to the “normal” Zeeman effect, the magnitude of the
splitting now depends on /.



Zeeman effect: revisited

I/_\IZeeman — 2mc B(Lz + 25\2) — _MBB(ZZ + 232)/h — _MBB(jz + gz)/h

@ For multi-electron atom in weak field, unperturbed states given by
|J, M, L,S), where J, L, S refer to total angular momenta.

@ To determine Zeeman shift, need to determine (S,), presenting an
opportunity uto revise angular momenta:

N\ N\ AN

@ First we note that the operator 2L - § = J2 — L2 — §2 is diagonal in
the basis of states, |J, M, L, S).

@ Therefore, recalling that [gi,gj] = ihe,-jkgk and [Z,-, §k] =0, it
follows that the matrix element of the following operator vanishes,

S(L-S)—(L-S)S=1L;[S5,5] = ihejl;Sc = —ihS x L



Zeeman effect: revisited

—ihlSxL=S(L-S)—(L-S)S

© Moreover, since [IA_ : g, j] = 0, it follows that the matrix element of
the following operator also vanishes,

—in(SxL)xJ=SxJL-8—(L-5)SxJ
Q If we expand left hand side, we thus find that the matrix element of
the following operator also vanishes,

"

SxD)xJ=0L(S-H-8SL-H"
(

N

2-55(8.3) — 832

© Therefore, it follows ’Ehat (§12) = @ §A3)> With
S-J=1(J2+S%2-1L2), we have (5,)(J?) = (L,)(S-J), i.e.

e JUFD+S(S+1) - L(L+1)
(52) = ) 2J(J+ 1)




Zeeman effect: revisited

J+1)+S5(S+1)— L(L+1)

o

@ As a result, we can deduce that, at first order in perturbation
theory, the energy shift arising from the Zeeman term is given by

AEjm1s = pusB{(J, + S,))/h = usgsM,B

where effective Landé g-factor

JUJ+1)+S(S+1)— L(L+1)
2J(J+1)

gr=1+

N.B. for hydrogen (S =1/2 and J = L +1/2), we recover previous
result.



atomic spectra of sodium
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