
Advanced Quantum Physics



Aim of the course

Building upon the foundations of wave mechanics, this course will
introduce and develop the broad field of quantum physics including:

Quantum mechanics of point particles

Approximation methods

Basic foundations of atomic, molecular, and solid state physics

Basic elements of quantum field theory

Scattering theory

Relativistic quantum mechanics

Although these topics underpin a variety of subject areas from high
energy, quantum condensed matter, and ultracold atomic physics to
quantum optics and quantum information processing, our focus is on
development of basic conceptual principles and technical fluency.
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Prerequisites

This course will assume (a degree of) familiarity with course material
from NST IB Quantum Physics (or equivalent):

Failure of classical physics

Wave-particle duality, and the uncertainty principle

The Schrödinger equation

Wave mechanics of unbound particles

Wave mechanics of bound particles

Operator methods

Quantum mechanics in three dimensions

Spin and identical particles

Since this material is pivotal to further developments, we will begin by
revisiting some material from the Part IB course.
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Further prerequisites...

Quantum physics is an inherently mathematical subject – it is therefore
inevitable that the course will lean upon some challenging concepts from
mathematics:

e.g. operator methods, elements of Sturm-Liouville theory (eigenfunction
equations, etc,), variational methods (Euler-Lagrange equations and
Lagrangian methods – a bit), Green functions (a very little bit – sorry),
Fourier analysis, etc.

Fortunately/unfortunately∗ (∗delete as appropriate) such mathematical
principles remain an integral part of the subject and seem unavoidable.

Since there has been a change of lecturer, a change of style, and partially
a change of material, I would welcome feedback on accessibility of the
more mathematical parts of the course!
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Synopsis: (mostly revision) Lectures 1-4ish

1 Foundations of quantum physics:

Historical background; wave mechanics to Schrödinger equation.

2 Quantum mechanics in one dimension:

Unbound particles: potential step, barriers and tunneling; bound
states: rectangular well, δ-function well; Kronig-Penney model.

3 Operator methods:

Uncertainty principle; time evolution operator; Ehrenfest’s theorem;
symmetries in quantum mechanics; Heisenberg representation;
quantum harmonic oscillator; coherent states.

4 Quantum mechanics in more than one dimension:

Rigid rotor; angular momentum; raising and lowering operators;
representations; central potential; atomic hydrogen.



Synopsis: Lectures 5-10

5 Charged particle in an electromagnetic field:

Classical and quantum mechanics of particle in a field; normal
Zeeman effect; gauge invariance and the Aharonov-Bohm effect;
Landau levels.

6 Spin:

Stern-Gerlach experiment; spinors, spin operators and Pauli
matrices; spin precession in a magnetic field; parametric resonance;
addition of angular momenta.

7 Time-independent perturbation theory:

Perturbation series; first and second order expansion; degenerate
perturbation theory; Stark effect; nearly free electron model.

8 Variational and WKB method:

Variational method: ground state energy and eigenfunctions;
application to helium; Semiclassics and the WKB method.



Synopsis: Lectures 11-15

9 Identical particles:

Particle indistinguishability and quantum statistics; space and spin
wavefunctions; consequences of particle statistics; ideal quantum
gases; degeneracy pressure in neutron stars; Bose-Einstein
condensation in ultracold atomic gases.

10 Atomic structure:

Relativistic corrections – spin-orbit coupling; Darwin structure;
Lamb shift; hyperfine structure. Multi-electron atoms; Helium;
Hartree approximation and beyond; Hund’s rule; periodic table;
coupling schemes LS and jj; atomic spectra; Zeeman effect.

11 Molecular structure:

Born-Oppenheimer approximation; H+
2 ion; H2 molecule; ionic and

covalent bonding; solids; molecular spectra; rotation and vibrational
transitions.



Synopsis: Lectures 16-19

12 Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic
chain; quantization of atomic chain; phonons. Classical theory of
the EM field; waveguide; quantization of the EM field and photons.

13 Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden
approximation; harmonic perturbations and Fermi’s Golden rule.

14 Radiative transitions:

Light-matter interaction; spontaneous emission; absorption and
stimulated emission; Einstein’s A and B coefficents; dipole
approximation; selection rules; †lasers.



Synopsis: Lectures 20-24

15 Scattering theory

Elastic and inelastic scattering; method of particle waves; Born
approximation; scattering of identical particles.

16 Relativistic quantum mechanics:

Klein-Gordon equation; Dirac equation; relativistic covariance and
spin; free relativistic particles and the Klein paradox; antiparticles;
coupling to EM field: minimal coupling and the connection to
non-relativistic quantum mechanics; †field quantization.



What’s missing?

“Philosophy” of quantum mechanics

(e.g. nothing on EPR paradoxes, Bell’s inequality, etc.)

Specializations and applications (covered later in Lent and Part III)

(e.g. nothing detailed on quantum information processing, etc.)



Handouts and lecture notes

Both lecture notes and overheads will be available (in pdf format)
from the course webpage:

www.tcm.phy.cam.ac.uk/~bds10/aqp.html

But try to take notes too.

The lecture notes are extensive (apologies!) and, as with textbooks,
include more material than will covered in lectures or examined.

Unlike textbooks, the lecture notes may contain (many?) typos –
corrections welcome!

For the most part, non-examinable material will be listed as “Info
blocks” in lecture notes.

Generally, the examinable material will be limited to what is taught
in class, i.e. the overheads.
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Supervisions and problem sets

To accompany the four supervisions this term, there will be four
problem sets. Answers to all probems will be made available via the
webpage in due course.

If there are problems/questions with lectures or problem sets, please
feel free to contact me by e-mail (bds10@cam.ac.uk) or in person
(Rm 539, Mott building).



A few (random but recommended) books

B. H. Bransden and C. J. Joachain, Quantum Mechanics, (2nd
edition, Pearson, 2000). Classic text covers core elements of
advanced quantum mechanics; strong on atomic physics.

S. Gasiorowicz, Quantum Physics, (2nd edn. Wiley 1996, 3rd
edition, Wiley, 2003). Excellent text covers material at
approximately right level; but published text omits some topics
which we address.

K. Konishi and G. Paffuti, Quantum Mechanics: A New
Introduction, (OUP, 2009). This is a new text which includes
some entertaining new topics within an old field.

L. D. Landau and L. M. Lifshitz, Quantum Mechanics:
Non-Relativistic Theory, Volume 3, (Butterworth-Heinemann,
3rd edition, 1981). Classic text which covers core topics at a level
that reaches beyond the ambitions of this course.

F. Schwabl, Quantum Mechanics, (Springer, 4th edition, 2007).
Best text for majority of course.



Books

...but, in general, there are a very large number of excellent
textbooks in quantum mechanics.

It is a good idea to spend some time in the library to find the
text(s) that suit you best.

It is also useful to look at topics from several different angles.



Wave mechanics and the Schrödinger equation

Aim of the first several lectures is to review, consolidate, and
expand upon material covered in Part IB:

1 Foundations of quantum physics

2 Wave mechanics of one-dimensional systems

3 Operator methods in quantum mechanics

4 Quantum mechanics in more than one dimension

To begin, it is instructive to go back to the historical foundations of
quantum theory.



Lecture 1

Foundations of quantum physics



Foundations of quantum physics: outline

1 Historically, origins of quantum mechanics can be traced to failures
of 19th Century classical physics:

Black-body radiation

Photoelectric effect

Compton scattering

Atomic spectra: Bohr model

Electron diffraction: de Broglie hypothesis

2 Wave mechanics and the Schrödinger equation

3 Postulates of quantum mechanics



Black-body radiation

In thermal equilibrium, radiation emitted by a cavity in frequency
range ν = c

λ to ν + dν is proportional to mode density and fixed by
equipartition theorem (kBT per mode):

Rayleigh-Jeans law ρ(ν, T ) dν =
8πν2

c3
kBT dν

i.e. ρ(ν, T ) increases without bound – UV catastrophe.

e.g. emission from cosmic
microwave background
(T ! 2.728K )

Experimentally, distribution conforms to Rayleigh-Jeans law at low
frequencies but at high frequencies, there is a departure!



Black-body radiation: Planck’s resolution

Planck: for each mode, ν, energy is quantized in units of hν, where
h denotes the Planck constant. Energy of each mode, ν,

〈ε(ν)〉 =

∑∞
n=0 n hν e−nhν/kBT

∑∞
n=0 e−nhν/kBT

=
hν

ehν/kBT − 1

Leads to Planck distribution:

ρ(ν, T ) =
8πν2

c3
〈ε(ν)〉 =

8πhν3

c3

1

ehν/kBT − 1

recovers Rayleigh-Jeans law as h → 0 and resolves UV catastrophe.

Parallel theory developed to explain low-temperature specific heat of
solids by Debye and Einstein.



Photoelectric effect

When metal exposed to EM radiation, above a
certain threshold frequency, light is absorbed and
electrons emitted.

von Lenard (1902) observed that energy of
electrons increased with light frequency (as
opposed to intensity).

Einstein (1905) proposed that light composed of
discrete quanta (photons): k.e.max = hν −W

Einstein’s hypothesis famously
confirmed by Millikan in 1916



Compton scattering

In 1923, Compton studied scattering of
X-rays from carbon target.

Two peaks observed: first at wavelength
of incident beam; second varied with
angle.

If photons carry momentum,

p =
hν

c
=

h

λ

electron can recoil and be ejected.

Energy/momentum conservation:

∆λ = λ′ − λ =
h

mec
(1− cos θ)



Atomic spectra: Bohr model

Studies of electric discharge in
low-pressure gases reveals that atoms
emit light at discrete frequencies.

For hydrogen, wavelength follows
Balmer series (1885),

λ = λ0

(
1

4
− 1

n2

)

Bohr (1913): discrete values reflect emission of photons with energy
En − Em = hν equal to difference between allowed electron orbits,

En = −Ry
n2

Angular momenta quantized in units of Planck’s constant, L = n!.



de Broglie hypothesis

But why only certain angular momenta? Just
as light waves (photons) can act as particles,
electrons exhibit wave-like properties.

λ =
h

p
, i.e. p = !k

First direct evidence from electron scattering from Ni, Davisson and
Germer (1927).



Wave mechanics

Although no rigorous derivation, Schrödinger’s equation can be
motivated by developing connection between light waves and photons,
and constructing analogous structure for de Broglie waves and electrons.

For a monochromatic wave in vacuo, Maxwell’s wave equation,

∇2E− 1

c2
∂2

t E = 0

admits the plane wave solution, E = E0e i(k·x−ωt), with linear
dispersion, ω = c |k|.

From photoelectric effect and Compton scattering, photon energy
and momentum related to frequency and wavelength:

E = hν = !ω, p =
h

λ
= !k



Wave mechanics

If we think of wave e i(k·x−ωt) as describing a particle (photon), more
natural to recast it in terms of energy/momentum, E0e i(p·x−Et)/!.

i.e. applied to plane wave, wave equation ∇2E− 1
c2 ∂2

t E = 0
translates to energy-momentum relation, E 2 = (cp)2 for massless
relativistic particle.

For a particle with rest mass m0, require wave equation to yield
energy-momentum invariant, E 2 = (cp)2 + m2

0c
4.

With plane “wavefunction” φ(x , t) = Ae i(p·x−Et)/!, recover
energy-momentum invariant by adding a constant mass term,

(
∇2 − 1

c2
∂2

t −
m2

0c
2

!2

)
Ae i(p·x−Et)/!

= − 1

(!c)2
(
(cp)2 − E 2 + m2

0c
4
)
Ae i(p·x−Et)/! = 0
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Schrödinger’s equation

In fact, we will see that the Klein-Gordon equation,
(
∇2 − 1

c2
∂2

t −
m2

0c
2

!2

)
φ(x, t) = 0

can describe quantum mechanics of massive relativistic particles,
but it is a bit inconvenient for non-relativistic particles...

If a non-relativistic particle is also described by a plane wave,
Ψ(x , t) = Ae i(p·x−Et)/!, require wave equation consistent with the

energy-momentum relation, E = p2

2m .

Although p2 can be recovered from action of two gradient
operators, E can only be generated by single time-derivative,

i!∂tΨ(x, t) = − !2

2m
∇2Ψ(x, t)

i.e. Schrödinger’s equation implies that wavefunction is complex!
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Schrödinger’s equation

How does spatially varying potential influence de Broglie wave?

In a potential V (x), we expect the wave equation to be consistent

with (classical) energy conservation, E = p2

2m + V (x) = H(p, x),

i!∂tΨ(x, t) = − !2

2m
∇2Ψ(x, t) + V (x)Ψ(x, t)

i.e. wavelength λ ∼ h/p varies with potential.

From the solution of the stationary wave equation for the Coulomb
potential, Schrödinger deduced allowed values of angular
momentum and energy for atomic hydrogen.

These values were the same as those obtained by Bohr (except that
the lowest allowed state had zero angular momentum).



Schrödinger’s equation

How does spatially varying potential influence de Broglie wave?

In a potential V (x), we expect the wave equation to be consistent

with (classical) energy conservation, E = p2

2m + V (x) = H(p, x),

i!∂tΨ(x, t) = − !2

2m
∇2Ψ(x, t) + V (x)Ψ(x, t)

i.e. wavelength λ ∼ h/p varies with potential.

From the solution of the stationary wave equation for the Coulomb
potential, Schrödinger deduced allowed values of angular
momentum and energy for atomic hydrogen.

These values were the same as those obtained by Bohr (except that
the lowest allowed state had zero angular momentum).



Postulates of quantum mechanics

1 The state of a quantum mechanical system is completely specified
by the complex wavefunction Ψ(r, t).

Ψ∗(r, t)Ψ(r, t) dr represents probability that particle lies in volume
element dr ≡ dd r located at position r at time t. For single particle,

∫ ∞

−∞
Ψ∗(r, t)Ψ(r, t) dr = 1

The wavefunction must also be single-valued, continuous, and finite.

2 To every observable in classical mechanics there corresponds a
linear, Hermitian operator, Â, in quantum mechanics.

If the result of a measurement of an operator Â is the number a,
then a must be one of the eigenvalues,

ÂΨ = aΨ
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Postulates of quantum mechanics

3 If system is in a state described by Ψ, average value of observable

corresponding to Â given by 〈A〉 =

∫ ∞

−∞
Ψ∗ÂΨdr.

Arbitrary state can be expanded in eigenvectors of Â (ÂΨi = aiΨi )

Ψ =
n∑

i

ciΨi , i.e. P(ai ) = |ci |2, 〈A〉 =
∑

i

ai |ci |2

4 A measurement of Ψ that leads to eigenvalue ai causes
wavefunction to “collapse” into corresponding eigenstate Ψi , i.e.
measurement effects the state of the system.

5 The wavefunction according to the time-dependent Schrödinger
equation, i!∂tΨ = ĤΨ.
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Postulates in hand, is it now just a matter of application and detail?

How can we understand how light quanta (photons) emerge from
such a Hamiltonian formulation?

How do charged particles interact with an EM field?

How do we read and interpret spectra of multielectron atoms?

How do we address many-body interactions between quantum
particles in an atom, molecule, or solid?

How do we elevate quantum mechanics to a relativistic theory?

How can we identify and characterize instrinsic (non-classical)
degrees of freedom such as spin?

How to incorporate non-classical phenomena such as particle
production into such a consistent quantum mechanical formulation?

These are some of the conceptual challenges that we will address in this
course.



Next lecture

1 Foundations of quantum physics

2 Wave mechanics of one-dimensional systems

3 Operator methods in quantum mechanics

4 Quantum mechanics in more than one dimension


