
Chapter 13

Radiative transitions

Previously, we have addressed the quantum theory of atoms coupled to a clas-
sical time-independent electromagneic field, cf. our discussion of the Zeeman
and Stark effects. However, to develop a complete quantum mechanical de-
scription of light-matter interaction, we have to address both the quantum
theory of the electromagnetic field and the coupling of light to matter. In the
following section, we will address both of these issues in turn. Our motivation
for developing such a consistent theory is that it will (a) provide us with a
platform to address the problem of radiative transitions in atoms and (b) it
forms the basis of the field of quantum optics.

13.1 Coupling of matter to the electromagnetic field

Let us then consider the Hamiltonian of a single-electron atom subject to a
time-dependent external electromagnetic field,

Ĥatom =
1

2m
(p̂ + eA(r, t))2 − eφ(r, t) + V (r) .

Here V (r) denotes the binding potential associated with the atomic nucleus.
To keep our discussion of a complex problem as simple as possible, we have fo-
cussed on the single electron system. However, a generalization of the method-
ology to multi-electron atoms would not present significant challenges. Ex-
panding the kinetic energy, the atomic Hamiltonian can be recast as Ĥatom =
Ĥ0 + Ĥpara + Ĥdia., where

Ĥ0 =
p̂2

2m
+ V (r) ,

denotes the usual non-interacting Hamiltonian of the isolated atom,

Ĥpara(t) =
e

m
A(t) · p̂ ,

represents the time-dependent paramagnetic term arising from the coupling of
the electron to the electromagnetic field, and Ĥdia = (eA)2/2m represents the
diamagnetic term. Since we will be interested in the absorption and emission
of single photons, we can neglect the influence of diamagnetic term which
presents only a tiny perturbation in the atomic system.

Previously, in chapter 11.2, we have see that the quantum Hamiltonian for
the electromagnetic field can be expressed as,

Ĥrad =
∑

k,λ=1,2

!ωk

(
a†
kλakλ +

1
2

)
,
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where the operators a†
kλ and akλ create and annihilate photons with wavevec-

tor k and polarization λ, and ωk = c|k|. These ladder operators obey the
(bosonic) commutation relations, [akλ, a†

k′λ′ ] = δk,k′δλ,λ′ , with [akλ, ak′λ′ ] =
[a†

kλ, a†
k′λ′ ] = 0, and act on photon number states as

akλ|nkλ〉 =
√

nkλ|nkλ − 1〉
a†
kλ|nkλ〉 =

√
nkλ + 1|Nkλ + 1〉 .

Here |nkλ〉 represents a photon number state with nk,λ photons in the mode
(kλ). Finally, in the Heisenberg representation, we have seen that the vector
potential can be expanded in field operators as

A(r, t) =
∑

k,λ

√
!

2ε0ωkV

(
êkλakλei(k·r−ωkt) + ê∗kλa†

kλe−i(k·r−ωkt)
)

.

Taken together, Ĥ = Ĥ0+Ĥrad+Ĥpara(t) specify the full quantum mechanical
Hamiltonian of the atom light system.

13.1.1 Spontaneous emission

With this background, let us now consider the probability for an atom, initially
in a state |i〉 to make a transition to a state |f〉 leading to the emission of a
photon of wavevector k and polarization λ – a process of spontaneous emission.
If we suppose that the radiation field is initially prepared in the vacuum state,
|0〉, then the final state involves one photon, |kλ〉 = a†

kλ|0〉. Therefore, making
use of Fermi’s Golden rule (12.5), with the perturbation Ĥpara = e

mÂ(t) · p̂,
we have the transition probability

Schematic showing spontaneous
emission from an initial state at
energy Ei = E2 to a final state
at energy Ef = E1.

Γi→f(t) =
2π

!2
|〈f|⊗〈 kλ|Ĥpara|i〉 ⊗ |Ω〉|2δ(ωif − ωk)

where ωif = (Ei−Ef)/!. Then substituting the field operator expansion of Â,
we have

Γi→f,kλ =
2π

!

∣∣∣∣∣〈f|⊗〈 Ω|akλ
e

m

√
!

2ε0ωkV
ê∗kλa†

kλe−ik·r · p̂|i〉 ⊗ |Ω〉

∣∣∣∣∣

2

δ(ωif − ωk)

As a result, we finally obtain

Γi→f,kλ =
2π

!

∣∣∣∣∣〈f|
e

m

√
!

2ε0ωkV
ê∗kλe−ik·r · p̂|i〉

∣∣∣∣∣

2

δ(Ei − Ef − !ωk)

To determine the transition rate, we have to analyse matrix elements of the
form 〈f|eik·rê∗kλ · p̂|i〉. Let us begin by estimating its magnitude. For a typical
atomic state, 〈ê∗kλ · p̂〉 & p & Zmcα, where we have included a general nuclear
charge, Z. But what about the exponential factor? With r ∼ !/p & !/mZcα,
and ωk = c|k| & p2

2m (for electronic transitions), we have

k · r & ωk

c

!
p
& !p

mc
& Zα .

This means that, for Zα ( 1, we can expand the exponential as a power
series in k · r with the lowest terms being dominant. Taking the zeroth order
term, and making use of the operator identity, p̂ = i

![Ĥ0, r] which follows from
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the Heisenberg equations of motion for operators, the matrix element may be
written as

〈f|ê∗kλ · p̂|i〉 = mê∗kλ · 〈f| i! [Ĥ0, r]|i〉 = im
Ef − Ei

! ê∗kλ · 〈f|r|i〉 = −imωk〈f|ê∗kλ · r|i〉 .

This result, which emerges from the leading approximation in Zα, is known
as the electric dipole approximation. Effectively, we have set (exercise)

e

m
Â(r, t) · p̂ & eÊ(r, t) · r ,

translating to the potential energy of a dipole, with moment d = −er, in an
oscillating electric field.

13.1.2 Absorption and stimulated emission

Let us now consider the absorption of a photon with wave number, k, and
polarization, λ. If we assume that, in the initial state, there are nkλ photons
in state (kλ) then, after the transition, there will be nkλ − 1. Then, if the
initial state of the atom is i〉 and the final state is |f〉, the transition amplitude
involves the matrix element,

〈f|⊗〈 (nk,λ − 1)|Ĥpara|i〉 ⊗ |nkλ〉

= 〈f|⊗〈 (nk,λ − 1)| e

m

√
!

2ε0ωkV
êkλakλeik·r · p̂|i〉 ⊗ |nkλ〉

Then, using the relation akλ|nkλ〉 = √
nkλ|(nkλ − 1)〉,

Schematic showing absorption
from an initial state at energy
Ei = E1 to a final state at en-
ergy Ef = E2.

〈f|⊗〈 (nk,λ − 1)|Ĥpara|i〉 ⊗ |nkλ〉 = 〈f| e

m

√
!nkλ

2ε0ωkV
eik·rêkλ · p̂|i〉

As a result, using Fermi’s Golden rule, we obtain the transition amplitude,

Γi→f,kλ =
2π

!

∣∣∣∣∣〈f|
e

m

√
!nkλ

2ε0ωkV
eik·rêkλ · p̂|i〉

∣∣∣∣∣

2

δ(Ef − Ei − !ωk)

In particular, we find that the absorption rate increases linearly with photon
number, nkλ.

Similarly, if we now consider the emission process in which there is are
already nk,λ photons in the initial state, we have the revised transition rate,

Schematic showing the stimu-
lated emission from an initial
state at energy Ei = E2 to a final
state at energy Ef = E1.

Γi→f,kλ =
2π

!

∣∣∣∣∣∣
〈f| e

m

√
!(nk,λ + 1)

2ε0ωkV
e−ik·rê∗kλ · p̂|i〉

∣∣∣∣∣∣

2

δ(Ef − Ei − !ωk) .

This enhancement of the transition rate by the photon occupancy is known as
stimulated emission.

Altogether, in the dipole approximation, we have the transition rates,

Γi→f,kλ =
πωk

ε0V
|〈f|êkλ · d|i〉|2

{
nkλ δ(Ef − Ei − !ωk) absorption

(nkλ + 1) δ(Ei − Ef − !ωk) emission

If there are no photons present initially, this expression reduces to that ob-
tained from spontaneous emission. The nkλ-independent component of the
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expression for absorption and emission coincide, an equality known as de-
tailed balance.

If we are interested in the total rate, dΓλ at which photons of polarization λ
are scattered into the solid angle dΩ, we must compute dRλ =

∑
k∈dΩ Γi→f,kλ.

Since, in the elemental volume d3k = k2dk dΩ, there are d3kV/(2π)3 states, we
may set

∑
k = V

(2π)3
∫

k2dk dΩ. Finally, if we assume that the photon occupa-
tion of state (kλ) is isotropic, dependent only on |k|, we find that the integrated
transition rate per unit solid angle is given by dRλ

dΩ = V
∫

k2dk
(2π)3 Γi→f,kλ from

which we obtain

dRλ

dΩ
=

1
4πε0

ω3

2π!c3
|〈f|êkλ · d|i〉|2

{
nλ(ω) absorption
nλ(ω) + 1 emission

Here, in carrying out the integral, we have used the relation ωk = c|k| and
!ω = |Ef−Ei|. For a thermal distribution of photons, with the energy density
specified by the Planck formula,

u(ω) =
!ω3

πc3
n̄λ(ω), n̄λ(ω) =

1
e!ωk/kBT − 1

,

this equates a stimulated absorption/emission rate,

dRλ

dΩ
=

1
4πε0

1
2!2

|〈f|êkλ · d|i〉|2u(ω)

From these expressions, we can obtain the power loss as Pλ = !ωRλ. Before
discussing the selection rules implied by the form of the dipolar coupling, it is
first helpful to digress and discuss connections of this result to a famous result
due to Einstein.

( Info. Einstein’s A and B coefficients: In fact, the frequency dependence
of the spontaneous emission rate can be inferred without invoking quantum field the-
oretic methods by means of an ingenious argument due to Einstein which showed that
the stimulated and spontaneous transitions must be related. Consider an ensemble
of atoms exposed to a black-body radiation field at temperature T . Let us consider
transitions between two states |ψj〉 and |ψk〉, with Ek −Ej = !ω. Suppose the num-
bers of atoms in the two states are nj and nk. The possible transitions and their rates
per atom are given by:

absorption j → k Bj→ku(ω)
stimulated emission k → j Bk→ju(ω)

spontaneous emission k → j Ak→j(ω)

where u(ω), the energy density of radiation per unit ω. A and B are known as
Einstein’s A and B coefficients, and, as we have seen, are properties of the atomic
states concerned.

Now, in thermodynamic equilibrium, the rates must balance, so that

nk [Ak→j(ω) + Bk→ju(ω)] = njBj→ku(ω) .

At the same time, the relative populations of the two states (assumed non-degenerate
for simplicity), are given by a Boltzmann factor

nj

nk
=

e−Ej/kBT

e−Ek/kBT
= e!ω/kBT .

Thus we have:
Ak→j(ω) =

[
Bj→ke!ω/kBT −Bk→j

]
u(ω) . (13.1)
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For a black-body, the energy density u(ω) is just given by Planck’s formula, u(ω) =
!ω3

π2c3
1

e!ω/kBT−1
. The Ak→j coefficient in Eq. (13.1) certainly cannot depend on tem-

perature, so T must cancel on the right hand side. Hence,

Bk→j = Bj→k and Ak→j(ω) = Bk→j
!ω3

π2c3
.

So, the A and B coefficients are related, and if we can calculate the B coefficient for
stimulated emission from Fermi’s golden rule, we can infer A, and vice versa.

13.2 Selection Rules

It is clear from the formulae for the transition rates that no transition, either
spontaneous or stimulated, will occur between the states |i〉 and |f〉 unless at
least one component of the dipole transition matrix element 〈f|d̂|i〉 is non-
zero. It is often possible to show that the matrix elements are zero for certain
pairs of states. If so, the transition is not allowed (at least in the electric
dipole approximation), and the results can often be summarised in terms of
simple selection rules governing the allowed changes in quantum numbers
in transitions.

Since the dipole operator d̂ = qr changes sign under parity (r→ −r), the
matrix element 〈f|d̂|i〉 will trivially vanish if the states |f〉 and |i〉 have the
same parity. Therefore, the parity of the wavefunction must change in
an electric dipole transition.

Moreover, in the absence of spin-orbit interaction, since the wavefunction
can be separated into spatial and spin components, |f〉 = |φf〉 ⊗ |χf〉, with χf

being the spin wavefunction, and the dipole operator only acts on the spatial
part of the wavefunction, so the matrix element becomes

〈f|d̂|i〉 = 〈χf |χi〉
∫

d3r φ∗f (r) qrφi(r) .

The spin term 〈χf |χi〉 (and therefore the matrix element) vanishes unless |χi〉
and |χf〉 are identical. This can be expressed by the selection rule

∆s = 0, ∆ms = 0 .

The spin state is not altered in an electric dipole transition.
Let us now consider the selection rules for the orbital angular momenta.

From the operator identity, [L̂i, rj ] = i!εijkrk (exercise), it follows that

[L̂z, z] = 0, [L̂z, x ± iy] = ±(x ± iy)! ,

We therefore obtain the relation,

〈+′, m′|[L̂z, z]|+, m〉 = (m′ −m)!〈+′, m′|z|+, m〉 = 0 .

Similarly, since 〈+′, m′|[L̂z, x ± iy]|+, m〉 = ±〈+′, m′|x ± iy|+, m〉, it follows that

(m′ −m∓ 1)〈+′, m′|x ± iy|+, m〉 = 0 .

Therefore, to get non-zero component of the dipole matrix element, we require.

∆m$ = 0,±1 .

Advanced Quantum Physics



13.2. SELECTION RULES 151

Similarly, using operator identity [L̂2, [L̂2, r]] = 2!2(rL̂2 + L̂2r) (exercise),
we have

〈+′, m′|[L̂2, [L̂2, r]]|+, m〉 = [+′(+′ + 1)− +(+ + 1)]2〈+′, m′|r|+, m〉
= 2[+′(+′ + 1) + +(+ + 1)]〈+′, m′|r|+, m〉

i.e. (+ + +′)(+ + +′ + 2)[(+′ − +)2 − 1]〈+′, m′|r|+, m〉 = 0. Since +, +′ ≥ 0, we can
conclude that, to effect an electric dipole transition, we must have

∆+ = ±1 .

One may summarize the selection rules for + and m$ is by saying that the
photon carries off (or brings in, in an absorption transition) one unit of angular
momentum. It should be noted, however, that these rules were derived for the
specific case of an electric dipole transition of the system. It is possible, though
much less likely in the case of an atom, for the electromagnetic field to interact
with some other observable such as the magnetic dipole moment or the electric
quadrupole moment. In such transitions the selection rules are different. For
example, the magnetic dipole operator is µ̂ = −µBL̂/! (or −2µBŜ/! for the
spin) and since the angular momentum does not change sign under the parity
transformation, there is no change of parity in a magnetic dipole transition. To
avoid confusion, we shall continue to confine the discussion to electric dipole
transitions, which are responsible for the prominent lines in atomic spectra.

For transitions with ∆m$ = 0, the dipole matrix element 〈f|d|i〉 ∼ êz and
there is no component of polarization along z-direction. Similarly, for electric
dipole transitions with m′ = m ± 1, 〈+′, m′|x ∓ iy|+, m〉 = 0 = 〈+′, m′|z|+, m〉,
and 〈f|d|i〉 ∼ (1,∓i, 0). In this case, if the wavevector of photon lies along
z, the emitted light is circularly polarized with a polarization which depends
on helicity. Conversely, if the wavevector lies in xy place, the emitted light is
linearly polarized, while in general the polarization is elliptical.

Finally, in the presence of spin-orbit coupling, stationary states are labelled
by quantum numbers J, mJ , +, s where Ĵ = L̂ + Ŝ. In this case, the selection
rules can be inferred by looking for the conditions for non-zero matrix elements
〈J ′, mJ ′ , +′, s′|r|J, mJ , +, s〉. By expanding states |J, mJ , +, s〉 in the basis states
|+, m$〉⊗|s, ms〉, one may uncover the following set of selection rules: For dipole
transitions to take place, we require that

∆mj = 0,±1 ∆j = 0,±1 not 0 → 0

( Info. As another example of selection rules, consider a charged particle moving
in a one-dimensional harmonic potential. The wavefunctions are characterised by the
quantum number n, so the state |n〉 corresponds to energy (n+1/2)!ω. An oscillating
electric field in the x-direction can induce transitions between states |n〉 and |n′〉,
governed by matrix elements of the form 〈n′|x |n〉. These can be evaluated by use of
the ladder operators â and â†. Since x =

√
!

2mω (a+a†), the matrix element becomes

〈n′|x |n〉 =
√

!
2mω

(√
n + 1〈n′|n + 1〉+

√
n〈n′|n− 1〉

)
,

and therefore vanishes unless n = n′ ± 1. Hence the selection rule, in the electric
dipole approximation, is ∆n = ±1.
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13.3 Lasers

Finally, to close this section, we will consider a principle application of light
matter interaction – the laser. The laser provides a light source which enables
modern spectroscopy. The term “laser” is an acronym for “light amplification
by stimulated emission of radiation”. However, a laser not only amplifies light,
but it acts as a special kind of light source which is characterised by a number
of properties:

Monochromaticity: The emission of the laser generally corresponds to
just one of the atomic transitions of the gain medium (in contrast to discharge
lamps, which emit on all transitions). The spectral line width can be much
smaller than that of the atomic transition. This is because the emission is
affected by the optical cavity. In certain cases, the laser can be made to
operate on just one of the modes of the cavity. Since the Q of the cavity1

is generally rather large, the mode is usually much narrower than the atomic
transition, and the spectral line width is orders of magnitude smaller than the
atomic transition.

Arthur Leonard Schawlow 1921-
1999
American
physicist and
corecipient, with
Nicolaas Bloem-
bergen of the US
and Kai Manne
Borje Siegbahn
of Sweden, of
the 1981 Nobel
Prize for Physics for his work in
developing the laser and in laser
spectroscopy. In 1949 he went to
Columbia University, where he began
collaborating with Charles Townes on
the development of masers, lasers,
and laser spectroscopy. Schawlow
worked on the project that led to
the construction of the first working
maser in 1953 (for which Townes
received a share of the 1964 Nobel
Prize for Physics). Schawlow was a
research physicist at Bell Telephone
Laboratories from 1951 to 1961.
In 1958 he and Townes published
a paper in which they outlined
the working principles of the laser,
though the first such working device
was built by another American
physicist, Theodore Maiman, in
1960. In 1961 Schawlow became
a professor at Stanford University.
He became a world authority on
laser spectroscopy, and he and
Bloembergen earned their share
of the 1981 Nobel Prize by using
lasers to study the interactions
of electromagnetic radiation with
matter.

Coherence: In discussing the coherence of an optical beam, we must
distinguish between spatial and temporal coherence – laser beams have a high
degree of both. Spatial coherence refers to whether there are irregularities in
the optical phase in a cross-sectional slice of the beam. Temporal coherence
refers to the time duration over which the phase of the beam is well defined.
In general, the temporal coherence time, tcoh is given as the reciprocal of the
spectral line width, ∆ν. Thus the coherence length +coh is given by,

+coh = ctcoh =
c

∆ν
.

Typical values of the coherence length for a number of light sources are given
in the table below:

Source ∆ν (Hz) tcoh (s) +coh (m)
Na discharge lamp 5× 1011 2× 10−12 6× 10−4

(D-lines at 589nm)
Multi-mode HeNe laser 1.5× 109 6× 10−10 0.2
(632.8nm line)
Single-mode HeNe laser 1× 106 1× 10−6 300
(632.8nm line)

These figures explain why it is much easier to conduct interference experiments
with a laser than with a discharge lamp. If the path difference exceeds +coh

you will not get interference fringes, because the light is incoherent.
Brightness: The brightness of lasers arises from two factors. First of all,

the fact that the light is emitted in a well-defined beam means that the power
per unit area is very high, even though the total amount of power can be
rather low. Then we must consider that all the energy is concentrated within
the narrow spectrum of the active atomic transition. This means that the
spectral brightness (i.e. the intensity in the beam divided by the width of the
emission line) is even higher in comparison with a white light source like a
light bulb. For example, the spectral brightness of a 1mW laser beam could
easily be millions of time greater than that of a 100 W light bulb.

Ultra-short pulse generation: In some cases, lasers can be made to
operate in pulses. The time duration of the pulses tp is linked to the spectral

1Recall that the Q-factor is approximately the number of oscillations required for a freely
oscillating system’s energy to fall by a factor of 1/e2π of its original energy.
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band width of the laser light ∆ν by the “uncertainty” product ∆t∆ν ∼ 1.
This follows from taking the Fourier transform of a pulse of duration tp. As
an example, the bandwidth of the 632.8nm line in the HeNe laser is 1.5 GHz
(see above), so that the shortest pulses that a HeNe laser can produce would
be 0.67 ns long. This is not particularly short by modern standards. Dye
lasers typically have gain bandwidths greater than 1013Hz, and can be used
to generate pulses shorter than 100fs. This is achieved by a technique called
“mode-locking”. These short pulsed lasers are very useful for studying fast
processes in physics, chemistry and biology.

13.3.1 Operating principles of a laser

Light amplification is achieved by stimulated emission. Ordinary optical mate-
rials do not amplify light. Instead, they tend to absorb or scatter the light, so
that the light intensity out of the medium is less than the intensity that went
in. To get amplification you have to drive the material into a non-equilibrium
state by pumping energy into it. Positive optical feedback is achieved by in-
serting the amplifying medium inside a resonant cavity. Light in the cavity
passes through the gain medium and is amplified. It then bounces off the end
mirrors and passes through the gain medium again, getting amplified further.
This process repeats itself until a stable equilibrium condition is achieved when
the total round trip gain balances all the losses in the cavity.

The losses in the cavity fall into two categories: useful, and useless. The
useful loss comes from the output coupling. One of the mirrors (called the
“output coupler”) has reflectivity less than unity, and allows some of the light
oscillating around the cavity to be transmitted as the output of the laser.
The value of the transmission is chosen to maximise the output power. If the
transmission is too low, very little of the light inside the cavity can escape, and
thus we get very little output power. On the other hand, if the transmission
is too high, there may not be enough gain to sustain oscillation, and there
would be no output power. The optimum value is somewhere between these
two extremes. Useless losses arise from absorption in the optical components
(including the laser medium), scattering, and the imperfect reflectivity of the
other mirror (the “high reflector”).

In general we expect the gain to increase as we pump more energy into
the laser medium. At low pump powers, the gain will be small, and there will
be insufficient gain to reach the oscillation condition. The laser will not start
to oscillate until there is enough gain to overcome all the losses. This implies
that the laser will have a threshold in terms of the pump power.

13.3.2 Gain mechanism

Laser operation relies upon the phenomenon of stimulated emission. In a gas
of atoms in thermal equilibrium, the population of lower levels will always
be greater than the population of upper levels. Therefore, if a light beam is
incident on the medium, there will always be more upward transitions due
to absorption than downward transitions due to stimulated emission. Hence
there will be net absorption, and the intensity of the beam will diminish on
progressing through the medium.

To amplify the beam, we require that the rate of stimulated emission ex-
ceeds the rate of absorption. If the light beam is sufficiently intense that we can
ignore spontaneous emission, and the levels are non-degenerate, this implies
that the number of atoms in some upper level, N2, must exceed that of the
lower level N1. This is a highly non-equilibrium situation, and is called popu-
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lation inversion. Once we have population inversion, we have a mechanism
for generating gain in the laser medium. The art of making a laser operate is
to work out how to get population inversion for the relevant transition.

To develop a theory of the laser threshold, we can consider separately the
rate equations for the photon and atomic excitation. Starting with photons, let
us consider excitations created by the transitions between just two levels of the
atom – a lower level 1, and an excited state 2. If the dipole matrix elements,
W , between the two levels are independent of position and frequency, the net
downwards transition rate is given by

W (N2(n + 1)−N1n)

where n denotes the total number of photons in the cavity, and N1,2 is the
number of atoms in states 1, 2. The first term represents the contribution
from stimulated and spontaneous emission, while the latter is associated with
absorption. Taking into account photon loss from the leaky cavity, the rate of
change of photon number is therefore given by

ṅ = DWn + N2W − n

τph
, (13.2)

where D = N2 − N1 represents the population imbalance and 1/τph is the
photon loss rate. This equation shows that the gain in a laser medium is
directly proportional to the degree of population inversion. Laser operation
will occur when there is enough gain to overcome the losses in the cavity. This
implies that a minimum amount of population inversion must be obtained
before the laser will oscillate.

To achieve population inversion atoms must be “pumped” into the upper
level 2. This can be achieved by a variety of techniques: Lasers are classified as
being either three-level of four-level systems. In the following, we will consider
the case of a three-level laser, although four-level lasers are more common.
Examples of four-level lasers include Helium Neon or Nd:YAG. In a four-level
laser, the levels comprise the ground state (0), the two lasing levels (1 and 2),
and a fourth level (3) which is used as part of the pumping mechanism. In
the three-level system, such as the first laser, ruby, level 1 is the ground state,
and pumping is achieved by exiting atoms to level 3 with a bright flash lamp
or by an electrical discharge, and then allowing them to decay rapidly to level
2. In this case, the corresponding rate equations for the populations of levels
1 and 2 can be written as

Ṅ2 & −w21N2 + w12N1 − (N2 −N1)Wn & −Ṅ1 ,

where w12, w21 denote the “effective” transition rates between states 1 and
2 due to the pumping via the third state, and we have dropped the small
contribution from spontaneous emission. From this equation, we can deduce
that N1 + N2 = N , a constant, i.e. the decay from state 3 is so rapid that its
population is always negligible. In this case, we obtain

Ḋ =
D0 −D

T
− 2DWn . (13.3)

where D0 = N(w12 − w21)/(w12 + w21) denotes the unsaturated inversion
(i.e. the degree of population inversion that would exist if there were no
photons in the cavity, n = 0) and 1/T = w12 + w21.
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In steady-state, ṅ = Ḋ = 0, and Eq. (13.3) translates to a population
imbalance,

D ≡ N2 −N1 =
D0

1 + 2TWn
.

From this result, we find the steady state photon number is given by

n =
D0W − 1/τph

2TW/τph
.

When D0 > 1/W τph, the laser threshold condition, there is a rapid increase
in the number of photons in the cavity and the system starts lasing.

Although this analysis addresses the threshold conditions, it does not pro-
vide any insight into the coherence properties of the radiation field. In fact,
one may show that the radiation field generated by the laser cavity forms a
coherent or Glauber state. The proof of this statement and the coherence
properties that follow would take us too far into the realm of laser physics.
However, we can gain some insight into this statement by studying a toy ex-
ample.

13.4 Driven harmonic oscillator

Consider a quantum harmonic oscillator Hamiltonian driven by some external
classical field,

Ĥ = !ω

(
a†a +

1
2

)
+ !

(
f∗(t)a + f(t)a†

)
.

Here f(t), which represents an (as yet) arbitrary function of time, t, charac-
terises the coupling between the harmonic oscillator and the classical pump.
For example, if f(t) is real, the function couples directly to the displacement,
a + a† ∼ x. If the system is prepared in the ground state of the harmonic
oscillator, the perturbation drives the system into a coherent state.

To understand how, let us consider the time-evolution in the interaction
representation, i!∂t|ψ(t)〉I = VI|ψ(t)〉I where |ψ(t)〉I = eiĤ0t/!|ψ(t)〉S and,
defining f̃ = feiωt,2

VI(t) = eiĤ0t/!!
(
f∗(t)a + f(t)a†

)
e−iĤ0t/! = !

(
f̃∗(t)a + f̃(t)a†

)
.

To solve for the time-evolution operator, i!∂tUI(t) = VIUI(t), let us consider
the coherent state, |α〉 = Û(α)|0〉 where Û(α) = exp[αa† − α∗a], where α =
α(t). Equivalently, making use of the BCH identity, the unitary operator may
be written as

Û(α) = e−α∗α/2eαa†e−α∗a .

Then, taking the time derivative, and making use of the identity, [eαa† , a]e−αa† =
−α, one obtains

∂tÛ(α) =
[
α̇a† − α̇∗a +

i

2
Im(α̇∗α)

]
Û(α) .

Therefore, setting α(t) = −i
∫ t
0 dt′f̃(t′), we obtain the solution

UI(t) = exp
[
α(t)a† − α∗(t)a + iϕ(t)

]
,

2Here we have made use of the identity (exercise), eiωta†aae−iωta†a = e−iωta.
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where ϕ(t) =
∫ t
0 dt′ 12 Im(α̇∗α).

If the driving force f(t) = f0e−iωt (with f0 real), we have α(t) = −i
∫ t
0 dt′f0 =

−if0t and ϕ(t) = 0 leading to the solution, UI(t) = exp[−if0(a† + a)t]. There-
fore, if the system was prepared in the harmonic oscillator ground state |0〉 at
time t = 0, the solution at time t is given by |ψ(t)〉I = exp[−if0(a† + a)t]|0〉 =
e−(f0t)2/2e−if0a†t|0〉. Then, reexpressed in the Schrödinger representation,

|ψ(t)〉S = e−iĤ0t/!|ψ(t)〉I = e−(f0t)2/2e−if0e−iωta†t|0〉 .

As a result, we can conclude that a classical oscillatory force drives a system
prepared in the vacuum into a coherent state. Applied to an optical cavity, an
oscillating classical dipole generates a coherent state of light – the principle
that underlies the operation of a laser.
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