
Chapter 6

Spin

Until we have focussed on the quantum mechanics of particles which are “fea-
tureless”, carrying no internal degrees of freedom. However, a relativistic
formulation of quantum mechanics shows that particles can exhibit an intrin-
sic angular momentum component known as spin. However, the discovery
of the spin degree of freedom marginally predates the development of rela-
tivistic quantum mechanics by Dirac and was acheived in a ground-breaking
experiement by Stern and Gerlach (1922). In their experiment, they passed a
well-collimated beam of silver atoms through a region of inhomogeneous field
before allowing the particles to impact on a photographic plate (see figure).
The magnetic field was directed perpendicular to the beam, and has a strong
gradient, ∂zBz != 0 so that a beam comprised of atoms with a magnetic mo-
ment would be bent towards the z or -z axis. As the magnetic moment will
be proportional to the total angular momentum, such an experiment can be
thought of as a measurement of its projection along z.

At the time of the experiment, there was an expectation that the magnetic
moment of the atom was generated in its entirety by the orbital angular mo-
mentum. As such, one would expect that there would be a minimum of three
possible values of the z-component of angular momentum: the lowest non-zero
orbital angular momentum is " = 1, with allowed values of the z-component

Gerlach’s postcard, dated 8th
February 1922, to Niels Bohr. It
shows a photograph of the beam
splitting, with the message, in
translation: “Attached [is] the
experimental proof of directional
quantization. We congratulate
[you] on the confirmation of your
theory.” (Physics Today Decem-
ber 2003)

m!, m = 1, 0,−1. Curiously, Stern and Gerlach’s experiment (right) showed
that the beam of silver atoms split into two! This discovery, which caused
great discussion and surprise presented a puzzle.

However, in our derivation of allowed angular momentum eigenvalues we
found that, although for any system the allowed values of m form a ladder
with spacing !, we could not rule out half-integral values of m. The lowest
such case, " = 1/2, would in fact have just two allowed m values: m = ±1/2.
However, such an " value could not translate to an orbital angular momentum
because the z-component of the orbital wavefunction, ψ has a factor e±iφ,
and therefore acquires a factor −1 on rotating through 2π! This would imply
that ψ is not single-valued, which doesn’t make sense for a Schrödinger-type
wavefunction.

Yet the experimental result was irrefutable. Therefore, this must be a
new kind of non-orbital angular momentum – spin. Conceptually, just as
the Earth has orbital angular momentum in its yearly circle around the sun,
and also spin angular momentum from its daily turning, the electron has an
analogous spin. But this analogy has obvious limitations: the Earth’s spin
is after all made up of material orbiting around the axis through the poles.
The electron spin cannot be imagined as arising from a rotating body, since
orbital angular momenta always come in integral multiples of !. Fortunately,
this lack of a simple quasi-mechanical picture underlying electron spin doesn’t
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prevent us from using the general angular momentum machinery developed
ealier, which followed just from analyzing the effect of spatial rotation on a
quantum mechanical system.

6.1 Spinors, spin pperators, Pauli matrices

The Hilbert space of angular momentum states for spin 1/2 is two-dimensional.
Various notations are used: |", m〉 becomes |s, m〉 or, more graphically,

|1/2, 1/2〉 = | ↑〉, |1/2,−1/2〉 = | ↓〉 .

A general state of spin can be written as the lienar combination,

α| ↑〉+ β| ↓〉 =
(

α
β

)
,

with the normalisation condition, |α|2 + |β|2 = 1, and this two-dimensional
ket is called a spinor. Operators acting on spinors are necessarily of the form
of 2 × 2 matrices. We shall adopt the usual practice of denoting the angular
momentum components Li by Si for spins. (Once again, for clarity, we also
drop the hats on the angular momentum operators!)

Wolfgang Pauli and Niels Bohr
demonstrating ‘tippe top’ toy at
the inauguration of the new In-
stitute of Physics at Lund, Swe-
den 1954.

From our definition of the spinor, it is evident that the z-component of the
spin can be represented as the matrix,

Sz =
!
2
σz, σz =

(
1 0
0 −1

)
.

From the general formulae (4.5) for raising and lowering operators S± =
Sx ± iSy, with s = 1/2, we have S+|1/2,−1/2〉 = !|1/2, 1/2〉, S−|1/2, 1/2〉 =
!|1/2,−1/2〉, or, in matrix form,

Sx + iSy = S+ = !
(

0 1
0 0

)
, Sx − iSy = S− = !

(
0 0
1 0

)
.

It therefore follows that an appropriate matrix representation for spin 1/2 is
ggiven by the Pauli spin matrices, S = !

2σ where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.1)

These matrices are Hermitian, traceless, and obey the relations σ2
i = I, σiσj =

−σjσi, and σiσj = iσk for (i, j, k) a cyclic permutation of (1, 2, 3). These
relations can be summarised by the identity,

σiσj = Iδij + iεijkσk .

The total spin S2 = !2

4 σ2 = 3
4!2, i.e. s(s + 1)!2 for s = 1/2.

* Exercise. Explain why any 2 × 2 matrix can be written in the form α0I +∑
i αiσi. Use your results to show that (a) (n̂ ·σ)2 = I for any unit vector n̂, and (b)

(σ · A)(σ · B) = (A · B)I + σ · (A×B).
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6.2 Relating the spinor to the spin direction

For a general state α| ↑〉 + β| ↓〉, how do α, β relate to which way the spin
is pointing? To find out, let us assume that it is pointing up along the unit
vector n̂ = (sin θ cos φ, sin θ sinφ, cos θ), i.e. in the direction (θ, φ). In other
words, the spin is an eigenstate of the operator n̂ ·σ having eigenvalue unity:

(
nz nx − iny

nx + iny −nz

) (
α
β

)
=

(
α
β

)
.

From this expression, we find that α/β = (nx − iny)/(1− nz) = e−iφ cot(θ/2)
(exercise). Then, making use of the normalisation, |α|2 + |β|2 = 1, we obtain
(up to an arbitrary phase)

(
α
β

)
=

(
e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)
.

Since e−iφ cot(θ/2) can be used to specify any complex number with 0 ≤ θ ≤ π,
0 ≤ φ < 2π, so for any possible spinor, there is an associated direction along
which the spin points up.

* Info. The spin rotation operator: In general, the rotation operator for
rotation through an angle θ about an axis in the direction of the unit vector n̂ is given
by eiθn̂·J/! where J denotes the angular momentum operator. For spin, J = S = 1

2!σ,
and the rotation operator takes the form1 eiθn̂·J/! = ei(θ/2)(n̂·σ). Expanding the
exponential, and making use of the Pauli matrix identities ((n · σ)2 = I), one can
show that (exercise)

ei(θ/2)(n·σ) = I cos(θ/2) + in · σ sin(θ/2) .

The rotation operator is a 2 × 2 matrix operating on the ket space. The 2 × 2
rotation matrices are unitary and form a group known as SU(2); the 2 refers to the
dimensionality, the U to their being unitary, and the S signifying determinant +1.
Note that for rotation about the z-axis, n̂ = (0, 0, 1), it is more natural to replace θ
with φ, and the rotation operator takes the form,

ei(θ/2)(n·σ) =
(

e−iφ/2 0
0 eiφ/2

)
.

In particular, the wavefunction is multiplied by −1 for a rotation of 2π. Since this is
true for any initial wave function, it is clearly also true for rotation through 2π about
any axis.

* Exercise. Construct the infinitesimal version of the rotation operator eiδθn̂·J/!

for spin 1/2, and prove that eiδθn̂·J/!σe−iδθn̂·J/! = σ + δθn̂× σ, i.e. σ is rotated in
the same way as an ordinary three-vector - note particularly that the change depends
on the angle rotated through (as opposed to the half-angle) so, reassuringly, there
is no −1 for a complete rotation (as there cannot be - the direction of the spin is a
physical observable, and cannot be changed on rotating the measuring frame through
2π).

1Warning: do not confuse θ – the rotation angle - with the spherical polar angle used to
parameterise n̂.
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6.3 Spin precession in a magnetic field

Consider a magnetized classical object spinning about it’s centre of mass, with
angular momentum L and parallel magnetic moment µ, µ = γL. The constant
γ is called the gyromagnetic ratio. Now suppose that we impose a magnetic
field B along, say, the z-direction. This will exert a torque T = µ × B =
γL × B = dL

dt . This equation is easily solved and shows that the angular
momentum vector L precesses about the magnetic field direction with angular
velocity of precession ω0 = −γB.2

In the following, we will show that precisely the same result appears in
the study of the quantum mechanics of an electron spin in a magnetic field.
The electron has magnetic dipole moment µ = γS, where γ = g −e

2me
and the

gyromagnetic ratio, g, is very close to 2.3 The Hamiltonian for the interaction
of the electron’s dipole moment with the magnetic field is given by Ĥ =
−µ · B = −γS · B. Hence the time development is specified by the equation
|ψ(t)〉 = Û(t)|ψ(0)〉, with the time-evolution operator (or propagator), Û(t) =
e−iĤt/! = eiγσ·Bt/2. However, this is nothing but the rotation operator (as
shown earlier) through an angle −γBt about the direction of B!

For an arbitrary initial spin orientation
(

α
β

)
=

(
e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)
,

the propagator for a magnetic field in the z-direction is given by

U(t) = eiγσ·Bt/2 =
(

e−iω0t/2 0
0 eiω0t/2

)
,

so the time-dependent spinor is set by
(

α(t)
β(t)

)
=

(
e−i(φ+ω0t)/2 cos(θ/2)
ei(φ+ω0t)/2 sin(θ/2)

)
.

The angle θ between the spin and the field stays constant while the azimuthal
angle around the field increases as φ = φ0+ω0t, exactly as in the classical case.
The frequency ω0 = gωc, where ωc = |e|B

2me
denotes the cyclotron frequency. For

a magnetic field of 1 T, ωc ( 1011 rads/s.

* Exercise. For a spin initially pointing along the x-axis, prove that 〈Sx(t)〉 =
(!/2) cos(ω0t).

6.3.1 Paramagnetic Resonance

The analysis above shows that the spin precession frequency is independent
of the angle of the spin with respect to the field direction. Consider then
how this looks in a frame of reference which is itself rotating with angular
velocity ω about the z-axis. Let us specify the magnetic field B0 = B0ẑ, since
we’ll soon be adding another component. In the rotating frame, the observed
precession frequency is ωr = −γ(B0 + ω/γ), so there is a different effective

2Proof: From the equation of motion, with L+ = Lx + iLy,
dL+
dt = −iγBL+, L+ =

L0
+e−iγBt. Of course, dLz

dt = 0, since dL
dt = γL × B is perpendicular to B, which is in the

z-direction.
3This g-factor terminology is used more widely: the magnetic moment of an atom is

written µ = gµB , where µB = e!
2me

is the known as the Bohr magneton, and g depends
on the total orbital angular momentum and total spin of the particular atom.
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field (B0 +ω/γ) in the rotating frame. Obviously, if the frame rotates exactly
at the precession frequency, ω = ω0 = −γB0, spins pointing in any direction
will remain at rest in that frame – there is no effective field at all.

Suppose we now add a small rotating magnetic field with angular frequency
ω in the xy plane, so the total magnetic field,

B = B0ẑ + B1(êx cos(ωt)− êy sin(ωt)) .

The effective magnetic field in the frame rotating with the same frequency ω
as the small added field is then given by

Br = (B0 + ω/γ)ẑ + B1êx .

Now, if we tune the angular frequency of the small rotating field so that it
exactly matches the precession frequency in the original static magnetic field,
ω = ω0 = −γB0, all the magnetic moment will see in the rotating frame is the
small field in the x-direction! It will therefore precess about the x-direction
at the slow angular speed γB1. This matching of the small field rotation
frequency with the large field spin precession frequency is the “resonance”.

If the spins are lined up preferentially in the z-direction by the static field,
and the small resonant oscillating field is switched on for a time such that
γB1t = π/2, the spins will be preferentially in the y-direction in the rotating
frame, so in the lab they will be rotating in the xy plane, and a coil will pick
up an a.c. signal from the induced e.m.f.

* Info. Nuclear magnetic resonance is an important tool in chemical anal-
ysis. As the name implies, the method uses the spin magnetic moments of nuclei
(particularly hydrogen) and resonant excitation. Magnetic resonance imaging
uses the same basic principle to get an image (of the inside of a body for example). In
basic NMR, a strong static B field is applied. A spin 1/2 proton in a hydrogen nucleus
then has two energy eigenstates. After some time, most of the protons fall into the
lower of the two states. We now use an electromagnetic wave (RF pulse) to excite
some of the protons back into the higher energy state. The proton’s magnetic moment
interacts with the oscillating B field of the EM wave through the Hamiltionian,

Ĥ = −µ · B =
gpe

2mpc
S · B =

gpe!
4mpc

σ · B =
gp

2
µNσ · B ,

where the gyromagnetic ratio of the proton is about +5.6. The magnetic moment is
2.79µN (nuclear magnetons). Different nuclei will have different gyromagnetic ratios
giving more degrees of freedom with which to work. The strong static B field is chosen
to lie in the z direction and the polarization of the oscillating EM wave is chosen so
that the B field points in the x direction. The EM wave has (angular) frequency ω,

Ĥ =
gp

2
µNBzσz + Bx cos(ωt)σx =

gp

2
µN

(
Bz Bx cos(ωt)

Bx cos(ωt) −Bz

)
.

If we now apply the time-dependent Schrödinger equation, i!∂tχ = Ĥχ, i.e.
(

ȧ
ḃ

)
= −i

(
ω0 ωI cos(ωt)

ωI cos(ωt) −ω0

) (
a
b

)
,

where ω0 = gpµNBz/2! and ωI = gpµNBx/2!, we obtain,
A proton NMR spectrum of a
solution containing a simple or-
ganic compound, ethyl benzene.
Each group of signals corre-
sponds to protons in a different
part of the molecule.

∂t(be−iω0t) = −ωI

2

(
ei(ω−2ω0)t + e−i(ω+2ω0)t

)
.

The second term oscillates rapidly and can be neglected. The first term will only
result in significant transitions if ω ≈ 2ω0. Note that this is exactly the condition
that ensures that the energy of the photons in the EM field E = !ω is equal to the
energy difference between the two spin states ∆E = 2!ω0. The conservation of energy
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condition must be satisfied well enough to get a significant transition rate. In NMR,
we observe the transitions back to the lower energy state. These emit EM radiation
at the same frequency and we can detect it after the stronger input pulse ends (or by
more complex methods).

NMR is a powerful tool in chemical analysis because the molecular field adds
to the external B field so that the resonant frequency depends on the molecule as
well as the nucleus. We can learn about molecular fields or just use NMR to see

High resolution MRI scan of a
brain!

what molecules are present in a sample. In MRI, we typically concentrate on the one
nucleus like hydrogen. We can put a gradient in Bz so that only a thin slice of the
material has ω tuned to the resonant frequency. Therefore we can excite transitions
to the higher energy state in only a slice of the sample. If we vary (in the orthogonal
direction!) the B field during the decay, we can recover 3d images.

6.4 Addition of angular momenta

In subsequent chapters, it will be necessary to add angular momentum, be it
the addition of orbital and spin angular momenta, Ĵ = L̂+S, as with the study
of spin-orbit coupling in atoms, or the addition of general angular momenta,
Ĵ = Ĵ1 + Ĵ2 as occurs in the consideration of multi-electron atoms. In the
following section, we will explore three problems: The addition of two spin
1/2 degrees of freedom; the addition of a general orbital angular momentum
and spin; and the addition of spin J = 1 angular momenta. However, before
addressing these examples in turn, let us first make some general remarks.

Without specifying any particular application, let us consider the total
angular momentum Ĵ = Ĵ1 + Ĵ2 where Ĵ1 and Ĵ2 correspond to distinct
degrees of freedom, [Ĵ1, Ĵ2] = 0, and the individual operators obey angular
momentum commutation relations. As a result, the total angular momentum
also obeys angular momentum commutation relations,

[Ĵi, Ĵj ] = i!εijkĴk .

For each angular momentum component, the states |j1, m1〉 and |j2, m2〉 where
mi = −ji, · · · ji, provide a basis of states of the total angular momentum
operator, Ĵ2

i and the projection Ĵiz. Together, they form a complete basis
which can be used to span the states of the coupled spins,4

|j1, m1, j2, m2〉 ≡ |j1, m1〉 ⊗ |j2, m2〉 .

These product states are also eigenstates of Ĵz with eigenvalue !(m1 + m2),
but not of Ĵ2.

* Exercise. Show that [Ĵ2, Ĵiz] != 0.

However, for practical application, we require a basis in which the total angular
momentum operator Ĵ2 is also diagonal. That is, we must find eigenstates
|j,mj , j1, j2〉 of the four mutually commuting operators Ĵ2, Ĵz, Ĵ2

1, and Ĵ2
2.

In general, the relation between the two basis can be expressed as

|j,mj , j1, j2〉 =
∑

m1,m2

|j1, m1, j2, m2〉〈j1, m1, j2, m2|j,mj , j1, j2〉 ,

4Here ⊗ denotes the “direct product” and shows that the two constituent spin states
access their own independent Hilbert space.
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where the matrix elements are known as Clebsch-Gordon coefficients. In
general, the determination of these coefficients from first principles is a some-
what soul destroying exercise and one that we do not intend to pursue in great
detail.5 In any case, for practical purposes, such coefficients have been tabu-
lated in the literature and can be readily obtained. However, in some simple
cases, these matrix elements can be determined straightforwardly. Moreover,
the algorithmic programme by which they are deduced offer some new con-
ceptual insights.

Operationally, the mechanism for finding the basis states of the total an-
gular momentum operator follow the strategy:

1. As a unique entry, the basis state with maximal Jmax and mj = Jmax is
easy to deduce from the original basis states since it involves the product
of states of highest weight,

|Jmax, mj = Jmax, j1, j2〉 = |j1, m1 = j1〉 ⊗ |j2, m2 = j2〉 ,

where Jmax = j1 + j2.

2. From this state, we can use of the total spin lowering operator Ĵ− to
find all states with J = Jmax and mj = −Jmax · · ·Jmax.

3. From the state with J = Jmax and mj = Jmax − 1, one can then obtain
the state with J = Jmax − 1 and mj = Jmax − 1 by orthogonality.6 Now
one can return to the second step of the programme and repeat until
J = |j1− j2| when all (2j1 + 1)(2j2 + 1) basis states have been obtained.

6.4.1 Addition of two spin 1/2 degrees of freedom

For two spin 1/2 degrees of freedom, we could simply construct and diagonalize
the complete 4 × 4 matrix elements of the total spin. However, to gain some
intuition for the general case, let us consider the programme above. Firstly,
the maximal total spin state is given by

|S = 1, mS = 1, s1 = 1/2, s2 = 1/2〉 = |s1 = 1/2, ms1 = 1/2〉 ⊗ |s2 = 1/2, ms2 = 1/2〉 .

Now, since s1 = 1/2 and s = 1/2 is implicit, we can rewrite this equation in a
more colloquial form as

|S = 1, mS = 1〉 = | ↑1〉 ⊗ | ↑2〉 .

We now follow step 2 of the programme and subject the maximal spin state
to the total spin lowering operator, Ŝ− = Ŝ−1 + Ŝ+

1 . In doing so, making use
of Eq. (4.5), we find

Ŝ−|S = 1, mS = 1〉 =
√

2!|S = 1, mS = 0〉 = ! (| ↓1〉 ⊗ | ↑2〉+ | ↑1〉 ⊗ | ↓2〉) ,

5In fact, one may show that the general matrix element is given by

〈j1, m1, j2, m2|j, mj , j1, j2〉 = δmj ,m1+m2

s
(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!(2j + 1)

(j + j1 + j2 + 1)!

×
X

k

(−1)k
p

(j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!(j + m)!(j −m)!

k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 + m2 − k)!(j − j2 + m1 + k)!(j − j1 −m2 + k)!
.

6Alternatively, as a maximal spin state, |J = Jmax − 1, mj = Jmax − 1, j1, j2〉 can be
identified by the “killing” action of the raising operator, Ĵ+.

Advanced Quantum Physics



6.4. ADDITION OF ANGULAR MOMENTA 60

i.e. |S = 1, mS = 0〉 = 1√
2
(| ↓1〉 ⊗ | ↑2〉+ | ↑1〉 ⊗ | ↓2〉). Similarly,

Ŝ−|S = 1, mS = 0〉 =
√

2!|S = 1, mS = −1〉 =
√

2!| ↓1〉 ⊗ | ↓2〉 ,

i.e. |S = 1, mS = −1〉 = | ↓1〉 ⊗ | ↓2〉. This completes the construction of
the manifold of spin S = 1 states – the spin triplet states. Following the
programme, we must now consider the lower spin state.

In this case, the next multiplet is the unique total spin singlet state
|S = 0, mS = 0〉. The latter must be orthogonal to the spin triplet state
|S = 1, mS = 0〉. As a result, we can deduce that

|S = 0, mS = 0〉 =
1√
2

(| ↓1〉 ⊗ | ↑2〉 − | ↑1〉 ⊗ | ↓2〉) .

6.4.2 Addition of angular momentum and spin

We now turn to the problem of the addition of angular momentum and spin,
Ĵ = L̂ + Ŝ. In the original basis, for a given angular momentum ", one can
identify 2 × (2" + 1) product states |", m%〉 ⊗ | ↑〉 and |", m%〉 ⊗ | ↓〉, with
m% = −", · · · ", involving eigenstates of L̂2, L̂z, Ŝ2 and Ŝz, but not Ĵ2. From
these basis states, we are looking for eigenstates of Ĵ2, Ĵz, L̂2 and Ŝ2. To
undertake this programme, it is helpful to recall the action of the angular
momentum raising and lower operators,

L̂±|", m%〉 = ((" ± m% + 1)("∓m%))1/2!|", m% ± 1〉 ,

as well as the identity

Ĵ2 = L̂2 + Ŝ2+

2L̂ · Ŝ︷ ︸︸ ︷
2L̂zŜz + L̂+Ŝ− + Ŝ+L̂− .

For the eigenstates of Ĵ2, Ĵz, L̂2 and Ŝ2 we will adopt the notation |j,mj , "〉
leaving the spin S = 1/2 implicit. The maximal spin state is given by7

|" + 1/2, " + 1/2, "〉 = |", "〉 ⊗ | ↑〉 .

To obtain the remaining states in the multiplet, |j = " + 1/2, mj=%+1/2, "〉, we
may simply apply the total spin lowering operator Ĵ−,

Ĵ−|", "〉 ⊗ | ↑〉 = !(2")1/2|", "− 1〉 ⊗ | ↑〉+ !|", "〉 ⊗ | ↓〉 .

Normalising the right-hand side of this expression, one obtains the spin state,

|" + 1/2, "− 1/2, "〉 =
√

2"

2" + 1
|", "− 1〉 ⊗ | ↑〉+

√
1

2" + 1
|", "〉 ⊗ | ↓〉 .

7The proof runs as follows:

Ĵz|$, $〉 ⊗ | ↑〉 = (L̂z + Ŝz)|$, $〉 ⊗ | ↑〉 = ($ + 1/2)!|$, $〉 ⊗ | ↑〉 ,

and

Ĵ2|$, $〉 ⊗ | ↑〉 = !2($($ + 1) + 1/2(1/2 + 1) + 2$
1
2
)|$, $〉 ⊗ | ↑〉

= !2($ + 1/2)($ + 3/2)|$, $〉 ⊗ | ↑〉 .
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By repeating this programme, one can develop an expression for the full
set of basis states,

|j = " + 1/2, mj , "〉 =
√

" + mj + 1/2
2" + 1

|", mj − 1/2〉 ⊗ | ↑〉

+
√

"−mj + 1/2
2" + 1

|", mj + 1/2〉 ⊗ | ↓〉 ,

with mj = " + 1/2, · · · ,−(" + 1/2). In order to obtain the remaining states
with j = " − 1/2, we may look for states with mj = " − 1/2, · · · ,−(" − 1/2)
which are orthogonal to |" + 1/2, mj , "〉. Doing so, we obtain

|"− 1/2, mj , "〉 = −
√

"−mj + 1/2
2" + 1

|", mj − 1/2〉 ⊗ | ↑〉

+
√

" + mj + 1/2
2" + 1

|", mj + 1/2〉 ⊗ | ↓〉 .

Finally, these states can be cast in a compact form by setting

|j = " ± 1/2, mj , "〉 = α±|", mj − 1/2〉 ⊗ | ↑〉+ β±|", mj + 1/2〉 ⊗ | ↓〉 , (6.2)

where α± = ±
√

%±mj+1/2
2%+1 = ±β∓.

6.4.3 Addition of two angular momenta J = 1

As mentioned above, for the general case the programme is algebraically tech-
nical and unrewarding. However, for completeness, we consider here the ex-
plicit example of the addition of two spin 1 degrees of freedom. Once again,
the maximal spin state is given by

|J = 2, mJ = 2, j1 = 1, j2 = 1〉 = |j1 = 1, m1 = 1〉 ⊗ |j2 = 1, m2 = 1〉 ,

or, more concisely, |2, 2〉 = |1〉 ⊗ |1〉, where we leave j1 and j2 implicit. Once
again, making use of Eq. (4.5) and an ecomony of notation, we find (exercise)






|2, 2〉 = |1〉 ⊗ |1〉
|2, 1〉 = 1√

2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

|2, 0〉 = 1√
6
(| − 1〉 ⊗ |1〉+ 2|0〉 ⊗ |0〉+ |1〉 ⊗ | − 1〉)

|2,−1〉 = 1√
2
(|0〉 ⊗ | − 1〉+ | − 1〉 ⊗ |0〉)

|2, 2〉 = | − 1〉 ⊗ | − 1〉

.

Then, from the expression for |2, 1〉, we can construct the next maximal spin
state |1, 1〉 = 1√

2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉), from the orthogonality condition. Once

again, acting on this state with the total spin lowering operator, we obtain the
remaining members of the multiplet,






|1, 1〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

|1, 0〉 = 1√
2
(| − 1〉 ⊗ |1〉 − |1〉 ⊗ | − 1〉)

|1,−1〉 = 1√
2
(| − 1〉 ⊗ |0〉 − |0〉 ⊗ | − 1〉)

.

Finally, finding the state orthogonal to |1, 0〉 and |2, 0〉, we obtain the final
state,

|0, 0〉 =
1√
3

(| − 1〉 ⊗ |1〉 − |0〉 ⊗ |0〉+ |1〉 ⊗ | − 1〉) .
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