
Chapter 14

Scattering theory

Almost everything we know about nuclei and elementary particles has been
discovered in scattering experiments, from Rutherford’s surprise at finding
that atoms have their mass and positive charge concentrated in almost point-
like nuclei, to the more recent discoveries, on a far smaller length scale, that
protons and neutrons are themselves made up of apparently point-like quarks.
More generally, the methods that we have to probe the properties of condensed
matter systems rely fundamentally on the notion of scattering. In this sec-
tion, we will provide a brief introduction to the concepts and methodology of
scattering theory.

As preparation for the quantum mechanical scattering problem, let us first
consider the classical problem. This will allow us to develop (hopefully a
revision!) some elementary concepts of scattering theory, and to introduce
some notation. In a classical scattering experiment, one considers particles
of energy E = 1

2mv2
0 (mass m and asymptotic speed v0), incident upon a

target with a central potential V (r). For a repulsive potential, particles are
scattered through an angle θ (see figure). The scattering cross-section, σ,
can be inferred from the number of particles dn scattered into some element
of solid angle, dΩ, at angle (θ, φ), i.e. for an incident flux ji (number of
particles per unit time per unit area), dn = jiσ dΩ. The total cross-section is
then obtained as σT =

∫
dΩ σ(θ,φ) =

∫ π
0 sin θdθ

∫ 2π
0 dφ σ(θ,φ). The angle of

deflection of the beam depends on the impact parameter, b (see figure right).
We therefore have that dn = jibdb dφ = jiσ sin θdθdφ and

σ(θ,φ) =
b

sin θ

db

dθ
.

$ Example: Let us consider then the case of classical Coulomb scattering
from a repulsive potential V (r) = κ

r where κ > 0. From classical physics, we know
that the particle will follow a hyperbolic trajectory with

r =
L2

mκ(e cos ϕ− 1)
,

where r = (r, ϕ) parameterises the relative coordinates of the particle and target,1

and e = (1+ 2EL2

κ2m )1/2 > 1 denotes the eccentricity. Since the potential is central, the
angular momentum L is conserved and can be fixed asymptotically by the condition
L = mv0b.

To obtain the scattering angle, θ, we can use the relation above to find the limiting
angle, cos ϕ0 = 1/e, where ϕ0 = (π − θ)/2. We therefore have tan(θ/2) = cot ϕ0 =

1Note that the angle ϕ is distinct form the azimuthal angle φ associated with the axis of
scattering.
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1/
√

e2 − 1 = ( mκ2

2EL2 )1/2 = κ
2Eb . Then, from this relation, we obtain the cross-section

σ =
b

sin θ

db

dθ
=

κ2

16E2

1
sin4 θ/2

,

known as the Rutherford formula.

14.1 Basics

Let us now turn to the quantum mechanical problem of a beam of particles
incident upon a target. The potential of the target, V (r), might represent that
experienced by a fast electron striking an atom, or an α particle colliding with
a nucleus. As in the classical problem, the basic scenario involves directing
a stream or flux of particles, all at the same energy, at a target and detect
how many particles are deflected into a battery of detectors which measure
angles of deflection. In principle, if we assume that all the in-going particles
are represented by wavepackets of the same shape and size, our challenge is
to solve the full time-dependent Schrödinger equation for such a wavepacket,

i!∂tΨ(r, t) =
[
− !2

2m
∇2 + V (r)

]
Ψ(r, t) ,

and find the probability amplitudes for out-going waves in different directions
at some later time after scattering has taken place. However, if the incident
beam of particles is switched on for times very long as compared with the time
a particle would take to cross the interaction region, steady-state conditions
apply. Moreover, if we assume that the wavepacket has a well-defined energy
(and hence momentum), so it is many wavelengths long, and we may consider
it a plane wave. Setting Ψ(r, t) = ψ(r)e−iEt/!, we may therefore look for
solutions ψ(r) of the time-independent Schrödinger equation,

Eψ(r) =
[
− !2

2m
∇2 + V (r)

]
ψ(r) ,

subject to the boundary condition that the incoming component of the wave-
function is a plane wave, eik·x. Here E = p2/2m = !2k2/2m denotes the
energy of the incoming particles while their flux is given by

j = −i
!

2m
(ψ∗∇ψ − ψ∇ψ∗) =

!k
m

.

In the one-dimensional geometry, the impact of a plane wave with the
localized target resulted in a portion of the wave being reflected and a portion
transmitted through the potential region. From energy conservation, we may
deduce that both components of the outgoing scattered wave are plane waves
with wavevector ±k, while the influence of the potential are encoded in the
amplitude of the reflected and transmitted beams, and a potential phase shift.
Both amplitudes and phase shifts are then determined by solving the time-
independent Schrödinger equation subject to the boundary conditions which
ensure energy and flux conservation. In the three-dimensional system, the
phenomenology is similar: In this case, the wavefunction well outside the
localized target region will involve a superposition of the incident plane wave
and the scattered (spherical wave),2

ψ(r) $ eik·r + f(θ,φ)
eikr

r
,

2Here, by localized, we mean a potential which is sufficiently short-ranged. At this stage,
it is not altogether clear what constraint this implies. But it will turn out that it excludes
the Coulomb potential!
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where the function f(θ, φ) records the relative amplitude and phase of the
scattered components along the direction (θ,φ) relative to the incident beam.

To place these ideas on a more formal footing, consider the following: If
we define the direction of the incoming wave k to lie along the z-axis, a plane
wave can be recast in the form of an incoming and an outgoing spherical wave,

eik·r =
i

2k

∞∑

"=0

i"(2+ + 1)

[
e−i(kr−"π/2)

r
− ei(kr−"π/2)

r

]
P"(cos θ) ,

where P"(cos θ) = ( 4π
2"+1)1/2Y"0(θ) denote the Legendre polynomials. If we

assume that the potential perturbation, V (r) depends only on the radial coor-
dinate (i.e. that it is spherically symmetric) and that the number of particles
are conserved by the potential (the flux of incoming particles is matched by
the flux of outgoing),3 when the potential is sufficient short-ranged (decreasing
faster than 1/r), the scattering wavefunction takes the asymptotic form

ψ(r) $ i

2k

∞∑

"=0

i"(2+ + 1)

[
e−i(kr−"π/2)

r
− S"(k)

ei(kr−"π/2)

r

]
P"(cos θ) ,

subject to the constraint |S"(k)| = 1 following from the conservation of particle
flux (i.e. S"(k) = e2iδ!(k)). Physically, the incoming component of the spherical
wave is undisturbed by the potential while the separate components of the
outgoing spherical wave are subject to a set of phase shifts, δ"(k). Recast in
the form of a perturbation, the asymptotic form of the wavefunction can be
straightforwardly rewritten as

ψ(r) $ eik·r + f(θ)
eikr

r
,

where the second component of the wavefunction denotes the change in the
outgoing spherical wave due to the potential, and

f(θ) =
∞∑

"=0

(2+ + 1)f"(k)P"(cos θ) , (14.1)

with the coefficents f"(k) = 1
2ik (S"(k) − 1) defining the partial wave scat-

tering amplitudes.
The corresponding asymptotic flux is then given by

j = −i
!
m

Re

{[
eik·r + f(θ)

eikr

r

]∗
∇

[
eik·r + f(θ)

eikr

r

]}
.

In general, an expansion then leads to a formidible collection of contributing
terms. However, for most of these contributions, there remains an exponential
factor, e±ikr(1−cos θ) where θ denotes the angle between k and r. For r → ∞,
the small angular integration implied by any physical measurement leads to a
fast oscillation of this factor. As a result, such terms are strongly suppressed
and can be neglected. Retaining only those terms where the phase cancellation
is complete, one obtains,

j =
!k
m

+
!k

m
êr

|f(θ)|2

r2
+ O(1/r3) .

3Note that this assumption is not innocent. In a typical high energy physics experiment,
the collision energies are high enough to lead to particle production.
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The first term represents the incident flux, while the remainder describes the
radial flux of scattered particles. In particular, the number of particles crossing
the area that subtends a solid angle dΩ at the origin (the target) is given by

j · êrdA =
!k

m

|f(θ)|2

r2
r2dΩ + O(1/r) .

Dropping terms of order 1/r, negligible in the asymptotic limit, one thus
obtains the differential cross-section, the ratio of the scattered flux to the
incident flux, dσ = m

!k j · êrdA = |f(θ)|2 dΩ, i.e.

dσ

dΩ
= |f(θ)|2 .

The total cross-section is then given by σtot =
∫

dσ =
∫
|f(θ)|2dΩ. Then,

making use of the identity
∫

dΩP"(cos θ)P"′(cos θ) = 4π
2"+1δ""′ , and Eq. (14.1)

one obtains (exercise)

σtot =
4π

k2

∞∑

"=0

(2+ + 1) sin2 δ"(k) .

In particular, noting that P"(1) = 1, from Eq. (14.1) it follows that Im f(0) =
k
4πσtot, a relation known as the optical theorem.

14.2 Method of partial waves

Having established the basic concepts for the scattering problem, we turn now
to consider operationally how the scattering characteristics can be computed.
Here, for simplicity, we will focus on the properties of a centrally symmetric
potential, V (r), where the scattering wavefunction, ψ(r) (and indeed that scat-
tering amplitudes, f(θ)) must be symmetrical about the axis of incidence, and
hence independent of the azimuthal angle, φ. In this case, the wavefunction
can be expanded in a series of Legendre polynomials,

ψ(r, θ) =
∞∑

"=0

R"(r)P"(cos θ) .

Each term in the series is known as a partial wave, and is a simultaneous
eigenfunction of the angular momentum operators L̂2 and L̂z having eigenvalue
!2+(+ + 1) and 0 respectively. Following standard spectroscopic notation, + =
0, 1, 2, · · · are referred to as s, p, d, · · · waves. The partial wave amplitudes,
f" are determined by the radial functions, R"(r), defined by

[
∂2

r +
2
r
∂r −

+(+ + 1)
r2

− U(r) + k2

]
R"(r) = 0 ,

where U(r) = 2mV (r)/!2 represents the effective potential.

$ Example: To develop the partial wave scattering method, we will consider
the problem of quantum scattering from an attractive square well potential,
U(r) = −U0θ(R− r). In this case, the radial wave equation takes the form

[
∂2

r +
2
r
∂r −

+(+ + 1)
r2

+ U0θ(R− r) + k2

]
R"(r) = 0 .
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At high energies, many channels contribute to the total scattering amplitude. How-
ever, at low energies, the scattering is dominated by the s-wave (+ = 0) channel.
In this case, setting u(r) = rR0(r), the radial equation takes the simple form,
(∂2

r + U0θ(R − r) + k2)u(r) = 0, with the boundary condition that u(0) = 0. We
therefore obtain the solution

u(r) =
{

C sin Kr r < R
sin(kr + δ0) r > R

,

where K2 = k2 + U0 > k2. The continuity condition of the wavefunction and its
derivative at r = R translates to the relation K cot(KR) = k cot(kR + δ0). From this
expression, we obtain the + = 0 phase shift, δ0 = tan−1( k

K tan(KR))− kR,4 i.e.

Scattering wavefunction, u(r),
for three-dimensional square well
potential for kR = 0.1 and γ = 1
(top), π/2 (middle) and 2 (bot-
tom). Note that the scattering
length, a0 changes from nega-
tive to positive as system passes
through bound state.

Scattering phase shift for kR =
0.1 as a function of γ.

tan δ0(k) =
k tan(KR)−K tan(kR)
K + k tan(kR) tan(KR)

,

Then, unless tan(KR) =∞ (see below), an expansion at low energy (small k) obtains
δ0 $ kR( tan(KR)

KR − 1), and the + = 0 partial cross-section,

σ0 =
4π

k2
sin2 δ0(k) =

4π

k2

1
1 + cot2 δ0(k)

$ 4π

k2
δ2
0 = 4πR2

(
tan(KR)

KR
− 1

)2

.

From this result, we find that when tan(KR)
KR = 1, the scattering cross-section vanishes.

An expansion in small k obtains

k cot δ0 = − 1
a0

+
1
2
r0k

2 + · · · ,

where a0 = (1 − tan γ
γ )R, with γ = U1/2

0 R, defines the scattering length, and r0 is
the effective range of the interaction. At low energies, k → 0, the scattering cross-
section, σ0 = 4πa2

0 is fixed by the scattering length alone. If γ ' 1, a0 is negative.
As γ is increased, when γ = π/2, both a0 and σ0 diverge – there is said to be a zero
energy resonance. This condition corresponds to a potential well that is just able
to support an s-wave bound state. If γ is further increased, a0 turns positive – as
it would be for an effective repulsive interaction until γ = π when σ0 = 0 and the
process repeats with the appearance of a second bound state at γ = 3π/2, and so on.

More generally, the +-th partial cross-section

σ" =
4π

k2
(2+ + 1)

1
1 + cot2 δ"(k)

,

takes its maximum value is there is an energy at which cot δ" vanishes. If this occurs
as a result of δ"(k) increasing rapidly through an odd multiple of π/2, the cross-section
exhibits a narrow peak as a function of energy and there is said to be a resonance.
Near the resonance,

cot δ"(k) =
ER − E

Γ(E)/2
,

where ER is the resonance energy. If Γ(E) varies slowly in energy, the partial cross-
section in the vicinity of the resonance is given by the Breit-Wigner formula,

σ"(E) =
4π

k2
(2+ + 1)

Γ2(ER)/4
(E − ER)2 + Γ2(ER)/4

. (14.2)

4More generally, choosing the solution to be finite at the origin, we find that

R!(r) = N!(K)j!(Kr), r < R ,

where N!(K) is a normalization constant. In the exterior region, the general solution can
be written as R!(r) = B!(k)[j!(kr) − tan δ!(k)η!(kr)]. Continuity of R! and the derivative
∂rR! at the boundary, r = R, lead to the following expression for the phase shifts

tan δ!(k) =
kj′!(kR)j!(KR)−Kj!(kR)j′!(KR)
kη′!(kR)j!(KR)−Kη!(kR)j′!(KR)

.

Here j′!(x) = ∂xj!(x) and similarly η′!.
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$ Exercise. For a hard-core interaction, U(r) = U0θ(R − r), with U0 → ∞,
show that at low energy δ0 = −kR. As k → 0, show that the differential cross-section
is isotropic and given by dσ

dΩ = R2 and σtot
k→0→ 4πR2.

$ Info. Ultracold atomic gases provide a topical arena in which resonant scatter-
ing phenomena are exploited. In particular, experimentalists make use of Feshbach
resonance phenomena to tune the effective interaction between atoms. This tun-
ability arises from the coupling of free unbound atoms to a molecular state in which
the atoms are tightly bound. The closer this molecular level lies with respect to the
energy of two free atoms, the stronger the interaction between them. In the example
on the left, the two free atoms are both “spin up”, whereas the molecular state is a
“singlet”, in which the atoms have opposite spin, adding up to zero total magnetic
moment. Thus, a magnetic field shifts the energies of two free atoms relative to the
molecular state and thereby controls the interatomic interaction strength.

The interaction between two atoms can be described by the scattering length,
shown right as a function of magnetic field close to a Feshbach resonance. On the side
where the scattering length is positive, the molecular energy level is lower in energy
than the energy of two unbound atoms. The molecular state is thus “real” and stable,
and atoms tend to form molecules. If those atoms are fermions, the resulting molecule
is a boson. A gas of these molecules can thus undergo Bose-Einstein condensation
(BEC). This side of the resonance is therefore called “BEC-side”. On the side of the
resonance where the scattering length is negative, isolated molecules are unstable.
Nevertheless, when surrounded by the medium of others, two fermions can still form
a loosely bound pair, whose size can become comparable to or even larger than the
average distance between particles. A Bose-Einstein condensate of these fragile pairs
is called a “BCS-state”, after Bardeen, Cooper and Schrieffer. This is what occurs in
superconductors, in which current flows without resistance thanks to a condensate of
electron pairs (“Cooper pairs”).

14.3 The Born approximation

The partial wave expansion is tailored to the consideration of low-energy scat-
tering processes. At higher energies, when many partial waves contribute,
the expansion is not very convenient and it is helpful to develop a different
methodology. By developing a general expansion of the scattering wavefunc-
tion, ψk(r), in terms of the Green function of the scattering potential one may
show that,

ψk(r) = eik·r − 1
4π

∫
d3r′

eik|r−r′|

|r− r′| U(r′)ψk(r′) . (14.3)

Here the subscript k reminds us that the solution is for a particular incom-
ing plane wave. This integral representation of the scattering wavefunction,
known as the Lippmann-Schwinger equation, provides a more useful basis to
address situations where the energy of the incoming particles is large and the
scattering potential is weak. The elements of the derivation of this equation
are summarised in the info box below:

$ Info. Lippmann-Schwinger equation: For the time-independent Schrödinger
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equation (∇2 + k2)ψ(r) = U(r)ψ(r), the general solution can be written formally as

ψ(r) = φ(r) +
∫

d3r′G0(r, r′)U(r′)ψ(r′) ,

where φ(r) is a solution of the homogeneous (free particle) Schrödinger equation,
(∇2 + k2)φ(r) = 0, and G0(r, r′) is a Green function of the Laplace operator, (∇2 +
k2)G0(r, r′) = δ3(r− r′). From the asymptotic behaviour of the boundary condition,
it is evident that φ(r) = eik·r. In the Fourier basis, the Green function is diagonal
and given by G0(k,k′) = (2π)3δ3(k − k′) 1

k2 . Transformed back into real space, we
have

G0(r, r′) = − 1
4π

eik|r−r′|

|r− r′| .

Substituted back into the expression for the scattering wavefunction, we obtain the
Lippmann-Schwinger equation (14.3).

In the far-field region, |r− r′| $ r − r̂ · r′ + · · ·, i.e.

eik|r−r′|

|r− r′| $
eikr

r
e−ik′·r′ ,

where the vector k′ = kêr is oriented along the direction of the scattered
particle. We therefore find that the scattering wavefunction ψk(r) = eik·r +
f(θ,φ) eikr

r can be expressed in integral form, with the scattering amplitude
given by

f(θ,φ) = − 1
4π
〈φk′ |U |ψk〉 ≡ −

1
4π

∫
d3r′ e−ik′·rU(r′)ψk(r′) . (14.4)

The corresponding differential cross-section can then be expressed as

dσ

dΩ
= |f |2 =

m2

(2π)2!4
|Tk,k′ |2 ,

where, cast in terms of the original scattering potential, V (r) = !2U(r)/2m,
Tk,k′ = 〈φk′ |V |ψk〉 denotes the transition matrix element.

Eq. (14.3) provides a natural means to expand the scattering wavefunction
in powers of the interaction potential. At zeroth order in V , the scattering
wavefunction is specified by the unperturbed incident plane wave, φ(0)

k (r) =
φk(r). Using this approximation, Eq. (14.3) leads to the first order correction,

ψ(1)
k (r) = φk(r) +

∫
d3r′ G0(r, r′)U(r′)ψ(0)

k (r′) .

From this equation, we can use (14.3) to obtain the next term in the series,

ψ(2)
k (r) = φk(r) +

∫
d3r′ G0(r, r′)U(r′)ψ(1)

k (r′) ,

and so on, i.e.

f = − 1
4π
〈φk′ |U + UG0U + UG0UG0U + · · · |φk〉 .

Physically, an incoming particle undergoes a sequence of multiple scattering
events from the potential (see schematic on the right). This series expansion is
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known as the Born series, and the leading term in known as the first Born
approximation to the scattering amplitude,

fBorn = − 1
4π
〈φk′ |U |φk〉 . (14.5)

Setting ∆ = k − k′, where !∆ denotes the momentum transfer, the Born
scattering amplitude for a central potential is given by (exercise)

fBorn(∆) = − 1
4π

∫
d3r ei∆·rU(r) = −

∫ ∞

0
rdr

sin(∆r)
∆

U(r) ,

where, noting that |k′| = |k|, ∆ = 2k sin(θ/2).
Coulomb scattering: Due to the long range nature of the Coulomb

scattering potential, the boundary condition on the scattering wavefunction
does not apply. We can, however, address the problem by working with the
screened (Yukawa) potential, U(r) = U0

e−r/α

r , and taking α → ∞. For this
potential, one may show that (exercise) fBorn = −U0/(α−2 + ∆2). Therefore,
for α →∞, we obtain

σ(θ) = |f(θ)|2 =
U2

0

16k4 sin4 θ/2
,

which is just the Rutherford formula.

$ Info. Previously, we have used time-dependent perturbation theory to develop
an expression for the transition rate between states. In the leading order of pertur-
bation theory, we found that the transition rate between states and i and f induced
by a potential V is given by Fermi’s Golden rule,

Γi→f =
2π

! |〈f|V |i〉|2δ(E − (Ef − Ei)) .

In a three-dimensional scattering problem, we should consider the initial state as a
plane wave state of wavevector k and the final state as the continuum of states with
wavevectors k′. In this case, the total transition (or scattering) rate into a fixed solid
angle, dΩ, is given by

Γk→k′ =
∑

k′∈dΩ

2π

! |〈k′|V |k〉|2δ(E − (Ek′ − Ek)) =
2π

! |〈k′|V |k〉|2g(E) ,

where g(E) = dn
dE denotes the density of states and both states |k〉 and |k′〉 have

energy E = !2k2/2m = !2k′2/2m – they are said to be “on-shell”. As a result, we
obtain the density of states g(E) = dn

dk
dk
dE = k2dΩ

(2π/L)3
m

!2k while the incident flux per
unit volume is given by !k/mL3. As a result, we obtain the scattering cross-section,
dσ
dΩ = Γk→k′

!k/mL3

dσ

dΩ
=

1
(4π)2

|〈k′|2mV

!2
|k〉|2 .

We can therefore recognize that Fermi’s Golden rule is equivalent to the first
order Born approximation.

14.4 Info: Scattering of identical particles

Until now, we have assumed that the particles involved in the scattering process,
the incoming particle and the target, are distinguishable. However, very often we
are interested in the scattering of identical quantum particles. In such cases, we

Advanced Quantum Physics



14.5. SCATTERING BY AN ATOMIC LATTICE 165

have to consider the influence of quantum statistics on the scattering process. As a
preliminary exercise, consider the classical picture of scattering between two identical
positively charged particles, e.g. α-particles viewed in the center of mass frame. If an
outgoing α particle is detected at an angle θ to the path of the ingoing α-particle, it
could be (a) deflected through an angle θ, or (b) deflected through π− θ. Classically,
we could tell which one it was by watching the collision as it happened, and keeping
track. However, in a quantum mechanical scattering process, we cannot keep track of
the particles unless we bombard them with photons having wavelength substantially
less than the distance of closest approach. This is just like detecting an electron at a
particular place when there are two electrons in a one dimensional box: the probability
amplitude for finding an α particle coming out at angle θ to the ingoing direction of
one of them is the sum of the amplitudes (not the sum of the probabilities!) for
scattering through θ and π − θ.

Writing the asymptotic scattering wavefunction in the standard form for scatter-
ing from a fixed target, ψ(r) ≈ eikz + f(θ) eikr

r , the two-particle wavefunction in the
center of mass frame, in terms of the relative coordinate, is given by symmetrizing:

ψ(r) ≈ eikz + e−ikz + (f(θ) + f(π − θ))
eikr

r
.

How does the particle symmetry affect the actual scattering rate at an angle θ? If
the particles were distinguishable, the differential cross section would be ( dσ

dΩ )dist. =
|f(θ)|2 + |f(π − θ)|2, but quantum mechanically we must compute,

(
dσ

dΩ

)

indist.

= |f(θ) + f(π − θ)|2 .

This makes a big difference! For example, for scattering through 90o, where f(θ) =
f(π−θ), the quantum mechanical scattering rate is twice the classical (distinguishable)
prediction.

Furthermore, if we make the standard expansion of the scattering amplitude f(θ)
in terms of partial waves, f(θ) =

∑∞
"=0(2+ + 1)a"P"(cos θ), then

f(θ) + f(π − θ) =
∞∑

l=0

(2+ + 1)a" (P"(cos θ) + P"(cos(π − θ))) .

Since P"(−x) = (−1)"P"(x), the scattering only takes place in even partial wave
states. This is the same thing as saying that the overall wavefunction of two identical
bosons is symmetric. So, if they are in an eigenstate of total angular momentum,
from P"(−x) = (−1)"P"(x) it has to be a state of even +.

For fermions in an antisymmetric spin state, such as proton-proton scattering with
the two proton spins forming a singlet, the spatial wavefunction is symmetric, and the
argument is the same as for the boson case above. For parallel spin protons, however,
the spatial wavefunction has to be antisymmetric, and the scattering amplitude will
then be f(θ) − f(π − θ). In this case there is zero scattering at 90o! Note that for
(non-relativistic) equal mass particles, the scattering angle in the center of mass frame
is twice the scattering angle in the fixed target (lab) frame.

14.5 Scattering by an atomic lattice

Finally, to close this section, let us say a few words about scattering phenomena
in solid state systems. If we ignore spin degrees of freedom, so that we do not
have to worry whether an electron does or does not flip its spin during the
scattering process, then at low energies, the scattering amplitude of particles
from a crystal f(θ) becomes independent of angle (s-wave). In this case, the
solution of the Schrödinger equation by a single atom i located at a point Ri

has the asymptotic form,

ψ(r) = eik·(r−Ri) + f
eik|r−Ri|

|r−Ri|
.
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Now, since

k|r−Ri| = k
(
r2 − 2r · Ri + R2

i

)1/2 $ kr

(
1− 2r · Ri

r2

)1/2

$ kr − kêr · Ri ,

and kêr = k′, we have

ψ(r) = e−ikRi

[
eik·r + fe−i(k′−k)·Ri

eikr

r

]
.

As a result, we can deduce the effective scattering amplitude,

f(θ) = fe−i∆·Ri , ∆ = k′ − k .

X-ray diffraction pattern of a
quasi-crystal.

If we consider scattering from a crystal lattice, we must sum over all atoms.
In this case, the total differential scattering cross-section is given by

dσ

dΩ
=

∣∣∣∣∣∣
f

∑

Ri

e−i∆·Ri

∣∣∣∣∣∣

2

.

In the case of a periodic crystal, the sum over atoms translates to the Bragg
condition,

dσ

dΩ
= |f |2 (2π)3

L3
δ(3)(k′ − k− 2πn/L) ,

where L represents the size of the (cubic) lattice, and n denote a vector of
integers – the Miller indices of the Bragg planes. We therefore expect that
the differential cross-section is very small expect when k′−k = 2πn/L. These
relations can be generalised straightforwardly to address more complicated
crystal structures.
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