
Chapter 15

Relativistic Quantum
Mechanics

The aim of this chapter is to introduce and explore some of the simplest aspects
of relativistic quantum mechanics. Out of this analysis will emerge the Klein-
Gordon and Dirac equations, and the concept of quantum mechanical spin.
This introduction prepares the way for the construction of relativistic quantum
field theories, aspects touched upon in our study of the quantum mechanics
of the EM field. To prepare our discussion, we begin first with a survey of
the motivations to seek a relativistic formulation of quantum mechanics, and
some revision of the special theory of relativity.

Why study relativistic quantum mechanics? Firstly, there are many ex-
perimental phenomena which cannot be explained or understood within the
purely non-relativistic domain. Secondly, aesthetically and intellectually it
would be profoundly unsatisfactory if relativity and quantum mechanics could
not be united. Finally there are theoretical reasons why one would expect new
phenomena to appear at relativistic velocities.

When is a particle relativistic? Relativity impacts when the velocity ap-
proaches the speed of light, c or, more intrinsically, when its energy is large
compared to its rest mass energy, mc2. For instance, protons in the accelera-
tor at CERN are accelerated to energies of 300GeV (1GeV= 109eV) which is
considerably larger than their rest mass energy, 0.94 GeV. Electrons at LEP
are accelerated to even larger multiples of their energy (30GeV compared to
5× 10−4GeV for their rest mass energy). In fact we do not have to appeal to
such exotic machines to see relativistic effects – high resolution electron mi-
croscopes use relativistic electrons. More mundanely, photons have zero rest
mass and always travel at the speed of light – they are never non-relativistic.

What new phenomena occur? To mention a few:

! Particle production: One of the most striking new phenomena to
emerge is that of particle production – for example, the production of
electron-positron pairs by energetic γ-rays in matter. Obviously one
needs collisions involving energies of order twice the rest mass energy of
the electron to observe production.

Astrophysics presents us with several examples of pair production. Neu-
trinos have provided some of the most interesting data on the 1987 su-
pernova. They are believed to be massless, and hence inherently rela-
tivistic; moreover the method of their production is the annihilation of
electron-positron pairs in the hot plasma at the core of the supernova.
High temperatures, of the order of 1012K are also inferred to exist in the
nuclei of some galaxies (i.e. kBT " 2mc2). Thus electrons and positrons
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Figure 15.1: Anderson’s cloud chamber picture of cosmic radiation from 1932 show-
ing for the first time the existence of the positron. A cloud chamber contains a gas
supersaturated with water vapour (left). In the presence of a charged particle (such
as the positron), the water vapour condenses into droplets – these droplets mark out
the path of the particle. In the picture a charged particle is seen entering from the
bottom at high energy. It then looses some of the energy in passing through the 6mm
thick lead plate in the middle. The cloud chamber is placed in a magnetic field and
from the curvature of the track one can deduce that it is a positively charged particle.
From the energy loss in the lead and the length of the tracks after passing though the
lead, an upper limit of the mass of the particle can be made. In this case Anderson
deduces that the mass is less that two times the mass of the electron. Carl Anderson
(right) won the 1936 Nobel Prize for Physics for this discovery. (The cloud chamber
track is taken from C. D. Anderson, The positive electron, Phys. Rev. 43, 491 (1933).

are produced in thermal equilibrium like photons in a black-body cavity.
Again a relativistic analysis is required.

! Vacuum instability: Neglecting relativistic effects, we have shown that
the binding energy of the innermost electronic state of a nucleus of charge
Z is given by,

E = −
(

Ze2

4πε0

)2
m

2!2
.

If such a nucleus is created without electrons around it, a peculiar phe-
nomenon occurs if |E| > 2mc2. In that case, the total change in energy
of producing an electron-positron pair, subsequently binding the elec-
tron in the lowest state and letting the positron escape to infinity (it
is repelled by the nucleus), is negative. There is an instability! The
attractive electrostatic energy of binding the electron pays the price of
producing the pair. Nuclei with very high atomic mass spontaneously
“screen” themselves by polarising the vacuum via electron-positron pro-
duction until the they lower their charge below a critical value Zc. This
implies that objects with a charge greater than Zc are unobservable due
to screening.

! Info. An estimate based on the non-relativistic formula above gives Zc $
270. Taking into account relativistic effects, the result is renormalised down-
wards to 137, while taking into account the finite size of the nucleus one finally
obtains Zc ∼ 165. Of course, no such nuclei exist in nature, but they can be
manufactured, fleetingly, in uranium ion collisions where Z = 2 × 92 = 184.
Indeed, the production rate of positrons escaping from the nucleus is seen to
increase dramatically as the total Z of the pair of ions passes 160.

! Spin: Finally, while the phenomenon of electron spin has to be grafted
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artificially onto the non-relativistic Schrödinger equation, it emerges nat-
urally from a relativistic treatment of quantum mechanics.

When do we expect relativity to intrude into quantum mechanics? Accord-
ing to the uncertainty relation, ∆x∆p ≥ !/2, the length scale at which the
kinetic energy is comparable to the rest mass energy is set by the Compton
wavelength

∆x ≥ h

mc
≡ λc.

We may expect relativistic effects to be important if we examine the motion
of particles on length scales which are less than λc. Note that for particles of
zero mass, λc = ∞! Thus for photons, and neutrinos, relativity intrudes at
any length scale.

What is the relativistic analogue of the Schrödinger equation? Non-relativistic
quantum mechanics is based on the time-dependent Schrödinger equation
Ĥψ = i!∂tψ, where the wavefunction ψ contains all information about a given
system. In particular, |ψ(x, t)|2 represents the probability density to observe a
particle at position x and time t. Our aim will be to seek a relativistic version
of this equation which has an analogous form. The first goal, therefore, is to
find the relativistic Hamiltonian. To do so, we first need to revise results from
Einstein’s theory of special relativity:

! Info. Lorentz Transformations and the Lorentz Group: In the special
theory of relativity, a coordinate in space-time is specified by a 4-vector. A con-
travariant 4-vector x = (xµ) ≡ (x0, x1, x2, x3) ≡ (ct,x) is transformed into the
covariant 4-vector xµ = gµνxν by the Minkowskii metric

(gµν) =





1
−1

−1
−1



 , g ν
µ gνλ = δµλ ,

Here, by convention, summation is assumed over repeated indicies. Indeed, sum-
mation covention will be assumed throughout this chapter. The scalar product of
4-vectors is defined by

x · y = xµyµ = xµyνgµν = xµyµ .

The Lorentz group consists of linear Lorentz transformations, Λ, preserving x·y,
i.e. for xµ )→ x′µ = Λµ

νxν , we have the condition

gµνΛµ
αΛν

β = gαβ . (15.1)

Specifically, a Lorentz transformation along the x1 direction can be expressed in the
form

Λµ
ν =





γ −γv/c
−γv/c γ

1 0
0 1





where γ = (1− v2/c2)−1/2.1 With this definition, the Lorentz group splits up into
four components. Every Lorentz transformation maps time-like vectors (x2 > 0) into

1Equivalently the Lorentz transformation can be represented in the form

Λ = exp[ωK1], [K1]
µ
ν =

0

BB@

0 −1
−1 0

0 0
0 0

1

CCA ,

where ω = tanh−1(v/c) is known as the rapidity, and K1 is the generator of velocity
transformations along the x1-axis.
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time-like vectors. Time-like vectors can be divided into those pointing forwards in
time (x0 > 0) and those pointing backwards (x0 < 0). Lorentz transformations do
not always map forward time-like vectors into forward time-like vectors; indeed Λ
does so if and only if Λ0

0 > 0. Such transformations are called orthochronous.
(Since Λµ

0Λµ0 = 1, (Λ0
0)2 − (Λj

0)2 = 1, and so Λ0
0 += 0.) Thus the group splits

into two according to whether Λ0
0 > 0 or Λ0

0 < 0. Each of these two components
may be subdivided into two by considering those Λ for which det Λ = ±1. Those
transformations Λ for which det Λ = 1 are called proper.

Thus the subgroup of the Lorentz group for which det Λ = 1 and Λ0
0 > 0 is

called the proper orthochronous Lorentz group, sometimes denoted by L↑+. It
contains neither the time-reversal nor parity transformation,

T =





−1
1

1
1



 , P =





1
−1

−1
−1



 . (15.2)

We shall call it the Lorentz group for short and specify when we are including T or P .
In particular, L↑+, L↑ = L↑+ ∪ L

↑
− (the orthochronous Lorentz group), L+ = L↑+ ∪ L

↓
+

(the proper Lorentz group), and L0 = L↑+ ∪ L↓− are subgroups, while L↓− = PL↑+,
L↑− = TL↑+ and L↓+ = TPL↑+ are not.

Special relativity requires that theories should be invariant under Lorentz trans-
formations xµ )−→ Λµ

νxν , and, more generally, Poincaré transformations xµ →
Λµ

νxν + aµ. The proper orthochronous Lorentz transformations can be reached con-
tinuously from identity.2 Loosely speaking, we can form them by putting together
infinitesimal Lorentz transformations Λµ

ν = δµ
ν +ωµ

ν , where the elements of ωµ
ν - 1.

Applying the identity gαβ = Λµ
αΛµβ = gαβ + ωαβ + ωβα + O(ω2), we obtain the

relation ωαβ = −ωβα. ωαβ has six independent components: L↑+ is a six-dimensional
(Lie) group, i.e. it has six independent generators: three rotations and three boosts.

Finally, according to the definition of the 4-vectors, the covariant and contravari-
ant derivative are respectively defined by ∂µ = ∂

∂xµ = (1
c

∂
∂t ,∇), ∂µ = ∂

∂xµ
=

( 1
c

∂
∂t ,−∇). Applying the scalar product to the derivative we obtain the d’Alembertian

operator (sometimes denoted as !), ∂2 = ∂µ∂µ = 1
c2

∂2

∂t2 −∇
2.

15.1 Klein-Gordon equation

Historically, the first attempt to construct a relativistic version of the Schrödinger
equation began by applying the familiar quantization rules to the relativistic
energy-momentum invariant. In non-relativistic quantum mechanics the cor-
respondence principle dictates that the momentum operator is associated with
the spatial gradient, p̂ = −i!∇, and the energy operator with the time deriva-
tive, Ê = i!∂t. Since (pµ ≡ (E/c,p) transforms like a 4-vector under Lorentz
transformations, the operator p̂µ = i!∂µ is relativistically covariant.

Oskar Benjamin Klein 1894-
1977
A Swedish theo-
retical physicist,
Klein is credited
for inventing
the idea, part
of Kaluza-Klein
theory, that extra
dimensions may
be physically real
but curled up
and very small, an idea essential to
string theory/M-theory.

Non-relativistically, the Schrödinger equation is obtained by quantizing
the classical Hamiltonian. To obtain a relativistic version of this equation,
one might apply the quantization relation to the dispersion relation obtained
from the energy-momentum invariant p2 = (E/c)2 − p2 = (mc)2, i.e.

E(p) = +
(
m2c4 + p2c2

)1/2 ⇒ i!∂tψ =
[
m2c4 − !2c2∇2

]1/2
ψ

where m denotes the rest mass of the particle. However, this proposal poses
a dilemma: how can one make sense of the square root of an operator? Inter-
preting the square root as the Taylor expansion,

i!∂t = mc2ψ − !2∇2

2m
ψ − !4(∇2)2

8m3c2
ψ + · · ·

2They are said to form the path component of the identity.
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we find that an infinite number of boundary conditions are required to specify
the time evolution of ψ.3 It is this effective “non-locality” together with the
asymmetry (with respect to space and time) that suggests this equation may
be a poor starting point.

A second approach, and one which circumvents these difficulties, is to apply
the quantization procedure directly to the energy-momentum invariant:

E2 = p2c2 + m2c4, −!2∂2
t ψ =

(
−!2c2∇2 + m2c4

)
ψ.

Recast in the Lorentz invariant form of the d’Alembertian operator, we obtain
the Klein-Gordon equation

(
∂2 + k2

c

)
ψ = 0 , (15.3)

where kc = 2π/λc = mc/!. Thus, at the expense of keeping terms of second
order in the time derivative, we have obtained a local and manifestly covariant
equation. However, invariance of ψ under global spatial rotations implies that,
if applicable at all, the Klein-Gordon equation is limited to the consideration of
spin-zero particles. Moreover, if ψ is the wavefunction, can |ψ|2 be interpreted
as a probability density?

To associate |ψ|2 with the probability density, we can draw intuition from
the consideration of the non-relativistic Schrödinger equation. Applying the
identity ψ∗(i!∂tψ + !2∇2

2m ψ) = 0, together with the complex conjugate of this
equation, we obtain

∂t|ψ|2 − i
!

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0 .

Conservation of probability means that density ρ and current j must satisfy
the continuity relation, ∂tρ + ∇ · j = 0, which states simply that the rate of
decrease of density in any volume element is equal to the net current flowing
out of that element. Thus, for the Schrödinger equation, we can consistently
define ρ = |ψ|2, and j = −i !

2m(ψ∗∇ψ − ψ∇ψ∗).
Applied to the Klein-Gordon equation (15.3), the same consideration im-

plies

!2∂t (ψ∗∂tψ − ψ∂tψ
∗)− !2c2∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0 ,

from which we deduce the correspondence,

ρ = i
!

2mc2
(ψ∗∂tψ − ψ∂tψ

∗) , j = −i
!

2m
(ψ∗∇ψ − ψ∇ψ∗) .

The continuity equation associated with the conservation of probability can
be expressed covariantly in the form

∂µjµ = 0 , (15.4)

where jµ = (ρc, j) is the 4-current. Thus, the Klein-Gordon density is the
time-like component of a 4-vector.

From this association it is possible to identify three aspects which (at least
initially) eliminate the Klein-Gordon equation as a wholey suitable candidate
for the relativistic version of the wave equation:

3You may recognize that the leading correction to the free particle Schrödinger equation
is precisely the relativistic correction to the kinetic energy that we considered in chapter 9.
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! The first disturbing feature of the Klein-Gordon equation is that the
density ρ is not a positive definite quantity, so it can not represent a
probability. Indeed, this led to the rejection of the equation in the early
years of relativistic quantum mechanics, 1926 to 1934.

! Secondly, the Klein-Gordon equation is not first order in time; it is
necessary to specify ψ and ∂tψ everywhere at t = 0 to solve for later
times. Thus, there is an extra constraint absent in the Schrödinger
formulation.

! Finally, the equation on which the Klein-Gordon equation is based,
E2 = m2c4 + p2c2, has both positive and negative solutions. In fact
the apparently unphysical negative energy solutions are the origin of the
preceding two problems.

To circumvent these difficulties one might consider dropping the negative
energy solutions altogether. For a free particle, whose energy is thereby con-
stant, we can simply supplement the Klein-Gordon equation with the condition
p0 > 0. However, such a definition becomes inconsistent in the presence of
local interactions, e.g.

(
∂2 + k2

c

)
ψ = F (ψ) self − interaction

[
(∂ + iqA/!c)2 + k2

c

]
ψ = 0 interaction with EM field.

The latter generate transitions between positive and negative energy states.
Thus, merely excluding the negative energy states does not solve the problem.
Later we will see that the interpretation of ψ as a quantum field leads to a
resolution of the problems raised above. Historically, the intrinsic problems
confronting the Klein-Gordon equation led Dirac to introduce another equa-
tion.4 However, as we will see, although the new formulation implied a positive
norm, it did not circumvent the need to interpret negative energy solutions.

Paul A. M. Dirac 1902-1984
Dirac was born
on 8th August,
1902, at Bristol,
England, his fa-
ther being Swiss
and his mother
English. He was
educated at the Merchant Venturer’s
Secondary School, Bristol, then went
on to Bristol University. Here, he
studied electrical engineering, obtain-
ing the B.Sc. (Engineering) degree
in 1921. He then studied mathemat-
ics for two years at Bristol University,
later going on to St. John’s Col-
lege, Cambridge, as a research stu-
dent in mathematics. He received his
Ph.D. degree in 1926. The following
year he became a Fellow of St.John’s
College and, in 1932, Lucasian Pro-
fessor of Mathematics at Cambridge.
Dirac’s work was concerned with the
mathematical and theoretical aspects
of quantum mechanics. He began
work on the new quantum mechan-
ics as soon as it was introduced by
Heisenberg in 1928 – independently
producing a mathematical equivalent
which consisted essentially of a non-
commutative algebra for calculating
atomic properties – and wrote a series
of papers on the subject, leading up
to his relativistic theory of the elec-
tron (1928) and the theory of holes
(1930). This latter theory required
the existence of a positive particle
having the same mass and charge as
the known (negative) electron. This,
the positron was discovered experi-
mentally at a later date (1932) by
C. D. Anderson, while its existence
was likewise proved by Blackett and
Occhialini (1933) in the phenomena
of “pair production” and “annihila-
tion”. Dirac was made the 1933 No-
bel Laureate in Physics (with Erwin
Schrödinger) for the discovery of new
productive forms of atomic theory.

15.2 Dirac Equation

Dirac attached great significance to the fact that Schrödinger’s equation of
motion was first order in the time derivative. If this holds true in relativistic
quantum mechanics, it must also be linear in ∂. On the other hand, for
free particles, the equation must imply p̂2 = (mc)2, i.e. the wave equation
must be consistent with the Klein-Gordon equation (15.3). At the expense of
introducing vector wavefunctions, Dirac’s approach was to try to factorise this
equation:

(γµp̂µ −m)ψ = 0 . (15.5)

(Following the usual convention we have, and will henceforth, adopt the short-
hand convention and set ! = c = 1.) For this equation to be admissible, the
following conditions must be enforced:

! The components of ψ must satisfy the Klein-Gordon equation.
4The original references are P. A. M. Dirac, The Quantum theory of the electron, Proc.

R. Soc. A117, 610 (1928); Quantum theory of the electron, Part II, Proc. R. Soc. A118,
351 (1928). Further historical insights can be obtained from Dirac’s book on Principles of
Quantum mechanics, 4th edition, Oxford University Press, 1982.
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! There must exist a 4-vector current density which is conserved and whose
time-like component is a positive density.

! The components of ψ do not have to satisfy any auxiliary condition. At
any given time they are independent functions of x.

Beginning with the first of these requirements, by imposing the condition
[γµ, p̂ν ] = γµp̂ν − p̂νγµ = 0, (and symmetrizing)

(γν p̂ν + m) (γµp̂µ −m) ψ =
(

1
2
{γν , γµ} p̂ν p̂µ −m2

)
ψ = 0 ,

the latter recovers the Klein-Gordon equation if we define the elements γµ such
that they obey the anticommutation relation,5 {γν , γµ} ≡ γνγµ +γµγν = 2gµν

– thus γµ, and therefore ψ, can not be scalar. Then, from the expansion of
Eq. (15.5), γ0(γ0p̂0 − γ · p̂ −m)ψ = i∂tψ − γ0γ · p̂ψ −mγ0ψ = 0, the Dirac
equation can be brought to the form

i∂tψ = Ĥψ, Ĥ = α · p̂ + βm, (15.6)

where the elements of the vector α = γ0γ and β = γ0 obey the commutation
relations,

{αi, αj} = 2δij , β2 = 1, {αi, β} = 0 . (15.7)

Ĥ is Hermitian if, and only if, α† = α, and β† = β. Expressed in terms of
γ, this requirement translates to the condition (γ0γ)† ≡ γ†γ0† = γ0γ, and
γ0† = γ0. Altogether, we thus obtain the defining properties of Dirac’s γ
matrices,

γµ† = γ0γµγ0, {γµ, γν} = 2gµν . (15.8)

Given that space-time is four-dimensional, the matrices γ must have dimen-
sion of at least 4× 4, which means that ψ has at least four components. It is
not, however, a 4-vector; it does not transform like xµ under Lorentz trans-
formations. It is called a spinor, or more correctly, a bispinor with special
Lorentz transformations which we will shall discuss presently.

! Info. An explicit representation of the γ matrices which most easily captures
the non-relativistic limit is the following,

γ0 =
(

I2 0
0 −I2

)
, γ =

(
0 σ
−σ 0

)
, (15.9)

where σ denote the familiar 2 × 2 Pauli spin matrices which satisfy the relations,
σiσj = δij + iεijkσk, σ† = σ. The latter is known in the literature as the Dirac-
Pauli representation. We will adopt the particular representation,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that with this definition, the matrices α and β take the form,

α =
(

0 σ
σ 0

)
, β =

(
I2 0
0 −I2

)
.

5Note that, in some of the literature, you will see the convention [ , ]+ for the anticom-
mutator.
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15.2.1 Density and Current

Turning to the second of the requirements placed on the Dirac equation, we
now seek the probability density ρ = j0. Since ψ is a complex spinor, ρ has
to be of the form ψ†Mψ in order to be real and positive. Applying hermitian
conjugation to the Dirac equation, we obtain

[(γµp̂µ −m)ψ]† = ψ†(−iγ†µ←−∂ µ −m) = 0 ,

where ψ†←−∂ µ ≡ (∂µψ)†. Making use of (15.8), and defining ψ̄ ≡ ψ†γ0, the
Dirac equation takes the form ψ̄(i←−+∂ + m) = 0, where we have introduced
the Feynman ‘slash’ notation +a ≡ aµγµ. Combined with Eq. (15.5) (i.e.
(i−→+∂ −m)ψ = 0), we obtain

ψ̄
(←−+∂ +−→+∂

)
ψ = ∂µ

(
ψ̄γµψ

)
= 0 .

From this result and the continuity relation (15.4) we can identify

jµ = ψ̄γµψ , (15.10)

(or, equivalently, (ρ, j) = (ψ†ψ,ψ†αψ)) as the 4-current. In particular, the
density ρ = j0 = ψ†ψ is, as required, positive definite.

15.2.2 Relativistic Covariance

To complete our derivation, we must verify that the Dirac equation remains
invariant under Lorentz transformations. More precisely, if a wavefunction
ψ(x) obeys the Dirac equation in one frame, its counterpart ψ′(x′) in a Lorentz
transformed frame x′ = Λx, must obey the Dirac equation,

(
iγµ∂′µ −m

)
ψ′(x′) = 0 . (15.11)

In order that an observer in the second frame can reconstruct ψ′ from ψ there
must exist a local transformation between the wavefunctions. Taking this
relation to be linear, we therefore must have,

ψ′(x′) = S(Λ)ψ(x) ,

where S(Λ) represents a non-singular 4 × 4 matrix. Now, using the identity,
∂′µ ≡ ∂

∂x′µ = ∂xν

∂x′µ
∂

∂xν = (Λ−1)ν
µ

∂
∂xν = (Λ−1)ν

µ∂ν , the Dirac equation (15.11)
in the transformed frame takes the form,

(
iγµ(Λ−1)ν

µ∂ν −m
)
S(Λ)ψ(x) = 0 .

The latter is compatible with the Dirac equation in the original frame if

S(Λ)γνS−1(Λ) = γµ(Λ−1)ν
µ . (15.12)

To define an explicit form for S(Λ) we must now draw upon some of the
defining properties of the Lorentz group discussed earlier. For an infinitesi-
mal proper Lorentz transformation we have Λν

µ = gν
µ + ων

µ and (Λ−1)ν
µ =

gν
µ − ων

µ + · · ·, where the matrix ωµν is antisymmetric and gν
µ ≡ δν

µ. Corre-
spondingly, by Taylor expansion in ω, we can define

S(Λ) = I− i

4
Σµνω

µν + · · · , S−1(Λ) = I +
i

4
Σµνω

µν + · · · ,
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where the matrices Σµν are also antisymmetric in µν. To first order in ω,
Eq. (15.12) yields (a somewhat unrewarding exercise!)

[γν ,Σαβ ] = 2i
(
gν

αγβ − gν
βγα

)
. (15.13)

The latter is satisfied by the set of matrices (another exercise!)6

Σαβ =
i

2
[γα, γβ] . (15.14)

In summary, if ψ(x) obeys the Dirac equation in one frame, the wavefunction
can be obtained in the Lorentz transformed frame by applying the transforma-
tion ψ′(x′) = S(Λ)ψ(Λ−1x′). Let us now consider the physical consequences
of this Lorentz covariance.

15.2.3 Angular momentum and spin

To explore the physical manifestations of Lorentz covariance, it is instructive
to consider the class of spatial rotations. For an anticlockwise spatial rotation
by an infinitesimal angle θ about a fixed axis n, x )→ x′ = x − θx × n. In
terms of the “Lorentz transformation”, Λ, one has

x′i = [Λx]i ≡ xi − ωijxj

where ωij = εijknkθ, and the remaining elements Λµ
0 = Λ0

µ = 0. Applied to
the argument of the wavefunction we obtain a familiar result,7

ψ(x) = ψ(Λ−1x′) = ψ(x′0,x
′ + x′ × nθ) = (1− θn · x′ ×∇+ · · ·)ψ(x′)

= (1− iθn · L̂ + · · ·)ψ(x′),

where L̂ = x̂× p̂ represents the non-relativistic angular momentum operator.
Formally, the angular momentum operators represent the generators of spatial
rotations.8

However, we have seen above that Lorentz covariance demands that the
transformed wavefunction be multiplied by S(Λ). Using the definition of ωij

above, one finds that

S(Λ) ≡ S(I + ω) = I− i

4
εijknkΣijθ + · · ·

Then drawing on the Dirac/Pauli representation,

Σij =
i

2
[γi, γj ] =

i

2

[(
0 σi

−σi 0

)
,

(
0 σj

−σj 0

)]
= − i

2
[σi, σj ]⊗ I2 = εijkσk ⊗ I2,

one obtains

S(Λ) = I− in · Sθ + · · · , S =
1
2

(
σ 0
0 σ

)
.

Combining both contributions, we thus obtain

ψ′(x′) = S(Λ)ψ(Λ−1x′) = (1− iθn · Ĵ + · · ·)ψ(x′) ,

6Since finite transformations are of the form S(Λ) = exp[−(i/4)Σαβωαβ ], one may show
that S(Λ) is unitary for spatial rotations, while it is Hermitian for Lorentz boosts.

7Recall that spatial rotataions are generated by the unitary operator, Û(θ) = exp(−iθn ·
L̂).

8For finite transformations, the generator takes the form exp[−iθn · L̂].
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where Ĵ = L̂ + S can be identified as a total effective angular momentum of
the particle being made up of the orbital component, together with an intrin-
sic contribution known as spin. The latter is characterised by the defining
condition:

[Si, Sj ] = iεijkSk, (Si)2 =
1
4

for each i . (15.15)

Therefore, in contrast to non-relativistic quantum mechanics, the concept of
spin does not need to be grafted onto the Schrödinger equation, but emerges
naturally from the fundamental invariance of the Dirac equation under Lorentz
transformations. As a corollary, we can say that the Dirac equation is a
relativistic wave equation for particles of spin 1/2.

15.2.4 Parity

So far, our discussion of the covariance properties of the Dirac equation have
only dealt with the subgroup of proper orthochronous Lorentz transformations,
L↑+ – i.e. those that can be reached from Λ = I by a sequence of infinites-
imal transformations. Taking the parity operation into account, relativistic
covariance demands

S−1(P )γ0S(P ) = γ0, S−1(P )γiS(P ) = −γi.

This is achieved if S(P ) = γ0eiφ, where φ denotes some arbitrary phase.
Taking into account the fact that P 2 = I, φ = 0 or π, and we find

ψ′(x′) = S(P )ψ(x) = ηγ0ψ(P−1x′) = ηγ0ψ(ct′,−x′) , (15.16)

where η = ±1 represents the intrinsic parity of the particle.

15.3 Free Particle Solution of the Dirac Equation

Having laid the foundation we will now apply the Dirac equation to the prob-
lem of a free relativistic quantum particle. For a free particle, the plane wave

ψ(x) = exp[−ip · x]u(p) ,

with energy E ≡ p0 = ±
√

p2 + m2 will be a solution of the Dirac equation
if the components of the spinor u(p) are chosen to satisfy the equation (+p −
m)u(p) = 0. Evidently, as with the Klein-Gordon equation, we see that the
Dirac equation therefore admits negative as well as positive energy solutions!
Soon, having attached a physical significance to the former, we will see that
it is convenient to reverse the sign of p for the negative energy solutions.
However, for now, let us continue without worrying about the dilemma posed
by the negative energy states.

In the Dirac-Pauli block representation,

γµpµ −m =
(

p0 −m −σ · p
σ · p −p0 −m

)
.

Thus, defining the spin elements u(p) = (ξ, η), where ξ and η represent two-
component spinors, we find the conditions, (p0 −m)ξ = σ · p η and σ · p ξ =
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(p0 +m)η. With (p0)2 = p2 +m2, these equations are consistent if η = σ·p
p0+mξ.

We therefore obtain the bispinor solution

u(r)(p) = N(p)




χ(r)

σ · p
p0 + m

χ(r)



 ,

where χ(r) represents any pair of orthogonal two-component vectors, and N(p)
is the normalisation.

Concerning the choice of χ(r), in many situations, the most convenient basis
is the eigenbasis of helicity – eigenstates of the component of spin resolved
in the direction of motion,

S · p
|p|χ

(±) ≡ σ

2
· p
|p|χ

(±) = ±1
2
χ(±) ,

e.g., for p = p3ê3, χ(+) = (1, 0) and χ(−) = (0, 1). Then, for the positive
energy states, the two spinor plane wave solutions can be written in the form

ψ(±)
p (x) = N(p)e−ip·x




χ(±)

± |p|
p0 + m

χ(±)





Thus, according to the discussion above, the Dirac equation for a free particle
admits four solutions, two states with positive energy, and two with negative.

15.3.1 Klein paradox: anti-particles

While the Dirac equation has been shown to have positive definite density,
as with the Klein-Gordon equation, it still exhibits negative energy states!
To make sense of these states it is illuminating to consider the scattering
of a plane wave from a potential step. To be precise, consider a beam of
relativistic particles with unit amplitude, energy E, momentum pê3, and spin
↑ (i.e. χ = (1, 0)), incident upon a potential V (x) = V θ(x3) (see figure).
At the potential barrier, spin is conserved, while a component of the beam
with amplitude r is reflected (with energy E and momentum −pê3), and a
component t is transmitted with energy E′ = E − V and momentum p′ê3.
According to the energy-momentum invariant, conservation of energy across
the interface dictates that E2 = p2 + m2 and E′2 = p′2 + m2.

Being first order, the boundary conditions on the Dirac equation require
only continuity of ψ (cf. the Schrödinger equation). Therefore, matching ψ at
the step, we obtain the relations





1
0
p

E+m
0



 + r





1
0

− p
E+m
0



 = t





1
0
p′

E′+m
0



 ,

from which we find 1+r = t, and p
p0+m(1−r) = p′

p′0+m t. Setting ζ = p′

p
(E+m)
(E′+m) ,

these equations lead to

t =
2

1 + ζ
,

1 + r

1− r
=

1
ζ
, r =

1− ζ

1 + ζ
.

To interpret these solutions, let us consider the current associated with
the reflected and transmitted components. Making use of the equation for the
current density, j = ψ†αψ, and using the Dirac/Pauli representation wherein

α3 = γ0γ3 =
(

I2
−I2

) (
σ3

−σ3

)
=

(
σ3

σ3

)
,
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the current along ê3-direction is given by

j3 = ψ†
(

σ3

σ3

)
ψ, j1 = j2 = 0 .

Therefore, up to an overall constant of normalisation, the current densities are
given by

j(i)
3 =

2p

p0 + m
, j(t)

3 =
2(p′ + p′∗)
p′0 + m

|t|2, j(r)
3 = − 2p

p0 + m
|r|2.

From these relations we obtain

j(t)
3

j(i)
3

= |t|2 (p′ + p′∗)
2p

p0 + m

p′0 + m
=

4
|1 + ζ|2

1
2
(ζ + ζ∗)

j(r)
3

j(i)
3

= −|r|2 = −
∣∣∣∣
1− ζ

1 + ζ

∣∣∣∣
2

from which current conservation can be confirmed:

1 +
j(r)
3

j(i)
3

=
|1 + ζ|2 − |1− ζ|2

|1 + ζ|2 =
2(ζ + ζ∗)
|1 + ζ|2 =

j(t)
3

j(i)
3

.

Interpreting these results, it is convenient to separate our consideration
into three distinct regimes of energy:

! E′ ≡ (E − V ) > m: In this case, from the Klein-Gordon condition (the
energy-momentum invariant) p′2 ≡ E′2 − m2 > 0, and (taking p′ > 0
– i.e. beam propagates to the right) ζ > 0 and real. From this result
we find |j(r)

3 | < |j(i)
3 | – as expected, within this interval of energy, a

component of the beam is transmitted and the remainder is reflected
(cf. non-relativistic quantum mechanics).

! −m < E′ < m: In this case p′2 ≡ E′2 − m2 < 0 and p′ is purely
imaginary. From this result it follows that ζ is also pure imaginary and
|j(r)

3 | = |j(i)
3 |. In this regime the under barrier solutions are evanescent

and quickly decay to the right of the barrier. All of the beam is reflected
(cf. non-relativistic quantum mechanics).

! E′ < −m: Finally, in this case p′2 ≡ E′2−m2 > 0 and, depending on the
sign of p′, j(r)

3 can be greater or less than j(i)
3 . But the solution has the

form e−i(p′x−E′t). Since we presume the beam to be propagating to the
right, we require E′ < 0 and p′ > 0. From this result it follows that ζ < 0
and we are drawn to the surprising conclusion that |j(r)

3 | > |j(i)
3 | – more

current is reflected that is incident! Since we have already confirmed
current conservation, we can deduce that j(t)

3 < 0. It is as if a beam of
particles were incident from the right.

The resolution of this last seeming unphysical result, known as the Klein
paradox,9 in fact gives a natural interpretation of the negative energy solu-
tions that plague both the Dirac and Klein-Gordon equations: Dirac particles
are fermionic in nature. If we regard the vacuum as comprised of a filled Fermi
sea of negative energy states or antiparticles (of negative charge), the Klein
Paradox can be resolved as the stimulated emission of particle/antiparticle

9Indeed one would reach the same conclusion were one to examine the Klein-Gordon
equation.

Advanced Quantum Physics



15.3. FREE PARTICLE SOLUTION OF THE DIRAC EQUATION 179

Figure 15.2: The photograph shows a
small part of a complicated high energy
neutrino event produced in the Fermi-
lab bubble chamber filled with a neon
hydrogen mixture. A positron (red)
emerging from an electron-positron
pair, produced by a gamma ray, curves
round through about 180 degrees.
Then it seems to change charge: it be-
gins to curve in the opposite direction
(blue). What has happened is that the
positron has run head-on into a (more-
or-less from the point of view of particle
physics) stationary electron – transfer-
ring all its momentum. This tells us
that the mass of the positron equals the
mass of the electron.

pairs, the particles moving off towards x3 = −∞ and the antiparticles towards
x3 =∞. What about energy conservation? One might worry that the energy
for these pairs is coming from nowhere. However, the electrostatic energy re-
covered by the antiparticle when its created is sufficient to outweigh the rest
mass energy of the particle and antiparticle pair (remember that a repulsive
potential for particles is attractive for antiparticles). Taking into account the
fact that the minimum energy to create a particle/antiparticle pair is twice
the rest mass energy 2 ×m, the regime where stimulated emission is seen to
occur can be understood.

Negative energy states: With this conclusion, it is appropriate to revisit
the definition of the free particle plane wave state. In particular, for energies
E < 0, it is more sensible to set p0 = +

√
(p2 + m2), and redefine the plane

wave solution as ψ(x) = v(p)eip·x, where the spinor satisfies the condition
(+p + m)v(p) = 0. Accordingly we find,

v(r)(p) = N(p)

( σ · p
p0 + m

χ(r)

χ(r)

)
.

So, to conclude, two relativistic wave equations have been proposed. The
first of these, the Klein-Gordon equation was dismissed on the grounds that
it exhibited negative probability densities and negative energy states. By
contrast, the states of the Dirac equation were found to exhibit a positive
definite probability density, and the negative energy states were argued to
have a natural interpretation in terms of antiparticles: the vacuum state does
not correspond to all states unoccupied but to a state in which all the negative
energy states are occupied – the negative energy states are filled up by a Fermi
sea of negative energy Fermi particles. For electron degrees of freedom, if a
positive energy state is occupied we observe it as a (positive energy) electron
of charge q = −e. If a negative energy state is unoccupied we observe it as a
(positive energy) antiparticle of charge q = +e, a positron, the antiparticle
of the electron. If a very energetic electron interacts with the sea causing a
transition from a negative energy state to positive one (by communicating an
energy of at least 2m) this is observed as the production of a pair of particles,
an electron and a positron from the vacuum (pair production) (see Fig. 15.2).

However, the interpretation attached to the negative energy states provides
grounds to reconsider the status of the Klein-Gordon equation. Evidently, the
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Dirac equation is not a relativistic wave equation for a single particle. If it
were, pair production would not appear. Instead, the interpretation above
forces us to consider the wavefunction of the Dirac equation as a quantum
field able to host any number of particles – cf. the continuum theory of the
quantum harmonic chain. In the next section, we will find that the consid-
eration of the wavefunction as a field revives the Klein-Gordon equation as a
theory of scalar (interger spin) particles.

15.4 Quantization of relativistic fields

15.4.1 Info: Scalar field: Klein-Gordon equation revisited

Previously, the Klein-Gordon equation was abandoned as a candidate for a relativis-
tic theory on the basis that (i) it admitted negative energy solutions, and (ii) that
the probability density associated with the wavefunction was not positive definite.
Yet, having associated the negative energy solutions of the Dirac equation with an-
tiparticles, and identified ψ as a quantum field, it is appropriate that we revisit the
Klein-Gordon equation and attempt to revive it as a theory of relativistic particles of
spin zero.

If φ were a classical field, the Klein-Gordon equation would represent the equation
of motion associated with the Lagrangian density (exercise)

L =
1
2
∂µφ ∂µφ− 1

2
m2φ2 ,

(cf. our discussion of the low energy modes of the classical harmonic chain and the
Maxwell field of the waveguide in chapter 11). Defining the canonical momentum
π(x) = ∂φ̇L(x) = φ̇(x) ≡ ∂0φ(x), the corresponding Hamiltonian density takes the
form

H = πφ̇− L =
1
2

[
π2 + (∇φ)2 + m2φ2

]
.

Evidently, the Hamiltonian density is explicitly positive definite. Thus, the scalar
field is not plagued by the negative energy problem which beset the single-particle
theory. Similarly, the quantization of the classical field will lead to a theory in which
the states have positive energy.

Following on from our discussion of the harmonic chain in chapter 11, we are
already equipped to quantise the classical field theory. However, there we worked ex-
plicitly in the Schrödinger representation, in which the dynamics was contained within
the time-dependent wavefunction ψ(t), and the operators were time-independent. Al-
ternatively, one may implement quantum mechanics in a representation where the
time dependence is transferred to the operators instead of the wavefunction — the
Heisenberg representation. In this representation, the Schrödinger state vector ψS(t)
is related to the Heisenberg state vector ψH by the relation,

ψS(t) = e−iĤtψH , ψH = ψS(0) .

Similarly, Schrödinger operators ÔS are related to the Heisenberg operators ÔH(t) by

ÔH(t) = eiĤtÔSe−iĤt .

One can easily check that the matrix elements 〈ψ′
S |ÔS |ψS〉 and 〈ψ′

H |ÔH |ψH〉 are
equivalent in the two representations, and which to use in non-relativistic quantum
mechanics is largely a matter of taste and convenience. However, in relativistic quan-
tum field theory, the Heisenberg representation is often preferable to the Schrödinger
representation. The main reason for this is that by using the former, the Lorentz
covariance of the field operators is made manifest.
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In the Heisenberg representation, the quantisation of the fields is still enforced by
promoting the classical fields to operators, π )→ π̂ and φ )→ φ̂, but in this case, we
impose the equal time commutation relations,

[
φ̂(x, t), π̂(x′, t)

]
= iδ3(x− x′),

[
φ̂(x, t), φ̂(x′, t)

]
= [π̂(x, t), π̂(x′, t)] = 0 ,

with π̂ = ∂0φ̂. In doing so, the Hamiltonian density takes the form

Ĥ =
1
2

[
π̂2 + (∇φ̂)2 + m2φ̂2

]
.

To see the connection between the quantized field and particles we need to Fourier
transform the field operators to obtain the normal modes of the Hamiltonian,

φ̂(x) =
∫

d4k

(2π)4
φ̂(k)e−ik·x .

However the form of the Fourier elements φ̂(k) is constrained by the following con-
ditions. Firstly to maintain Hermiticity of the field operator φ̂(x) we must choose
Fourier coefficients such that φ̂†(k) = φ̂(−k). Secondly, to ensure that the field op-
erator φ̂(x) obeys the Klein-Gordon equation,10 we require φ̂(k) ∼ 2πδ(k2 − m2).
Taking these conditions together, we require

φ̂(k) = 2πδ(k2 −m2)
(
θ(k0)a(k) + θ(−k0)a†(−k)

)
,

where k0 ≡ ωk ≡ +
√

k2 + m2, and a(k) represent the operator valued Fourier co-
efficients. Rearranging the momentum integration, we obtain the Lorentz covariant
expansion

φ̂(x) =
∫

d4k

(2π)4
2πδ(k2 −m2)θ(k0)

[
a(k)e−ik·x + a†(k)eik·x]

.

Integrating over k0, and making use of the identity
∫

d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

∫
d4k

(2π)3
δ(k2

0 − ω2
k)θ(k0)

=
∫

d4k

(2π)3
δ [(k0 − ωk)(k0 + ωk)] θ(k0) =

∫
d4k

(2π)3
1

2k0
[δ(k0 − ωk) + δ(k0 + ωk)] θ(k0)

=
∫

d3k
(2π)3

∫
dk0

2k0
δ(k0 − ωk)θ(k0) =

∫
d3k

(2π)32ωk
,

one obtains

φ̂(x) =
∫

d3k
(2π)32ωk

(
a(k)e−ik·x + a†(k)eik·x)

.

More compactly, making use of the orthonormality of the basis

fk =
1√

(2π)32ωk

e−ik·x,

∫
f∗k (x)i

↔
∂ 0 fk′(x)d3x = δ3(k− k′),

where A
↔
∂0 B ≡ A∂tB − (∂tA)B, we obtain

φ̂(x) =
∫

d3k√
(2π)32ωk

[
a(k)fk(x) + a†(k)f∗k (x)

]
.

10Note that the field operators obey the equation of motion,

π̇(x, t) = − ∂H
∂φ(x, t)

= ∇2φ−m2φ .

Together with the relation π = φ̇, one finds (∂2 + m2)φ = 0.
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Similarly,

π̂(x) ≡ ∂0φ̂(x) =
∫

d3k√
(2π)32ωk

iωk

[
−a(k)fk(x) + a†(k)f∗k (x)

]
.

Making use of the orthogonality relations, the latter can be inverted to give

a(k) =
√

(2π)32ωk

∫
d3xf∗k (x)i

↔
∂0 φ̂(x), a†(k) =

√
(2π)32ωk

∫
d3xφ̂(x)i

↔
∂0 fk(x) ,

or, equivalently,

a(k) =
∫

d3x
(
ωkφ̂(x)− iπ̂(x)

)
e−ik·x, a†(k) =

∫
d3x

(
ωkφ̂(x) + iπ̂(x)

)
eik·x .

With these definitions, it is left as an exercise to show

[
a(k), a†(k′)

]
= (2π)32ωkδ3(k− k′), [a(k), a(k′)] =

[
a†(k), a†(k′)

]
= 0 .

The field operators a† and a can therefore be identified as operators that create and
annihilate bosonic particles. Although it would be tempting to adopt a different
normalisation wherein [a, a†] = 1 (as is done in many texts), we chose to adopt the
convention above where the covariance of the normalisation is manifest. Using this
representation, the Hamiltonian is brought to the diagonal form

Ĥ =
∫

d3k
(2π)32ωk

ωk

2
[
a†(k)a(k) + a(k)a†(k)

]
,

a result which can be confirmed by direct substitution.
Defining the vacuum state |Ω〉 as the state which is annhiliated by a(k), a single

particle state is obtained by operating the creation operator on the vacuum,

|k〉 = a†(k)|Ω〉 .

Then 〈k′|k〉 = 〈Ω|a(k′)a†(k)|Ω〉 = 〈Ω|[a(k′), a†(k)]|Ω〉 = (2π)32ωkδ3(k′ − k). Many-
particle states are defined by |k1 · · ·kn〉 = a†(k1) · · · a†(kn)|Ω〉 where the bosonic
statistics of the particles is assured by the commutation relations.

Associated with these field operators, one can define the total particle number
operator

N̂ =
∫

d3k√
(2π)32ωk

a†(k)a(k) .

Similarly, the total energy-momentum operator for the system is given by

P̂µ =
∫

d3k√
(2π)32ωk

kµa†(k)a(k) .

The time component P̂ 0 of this result can be compared with the Hamiltonian above.
In fact, commuting the field operators, the latter is seen to differ from P̂ 0 by an infinite
constant,

∫
d3kωk/2. Yet, had we simply normal ordered11 the operators from the

outset, this problem would not have arisen. We therefore discard this infinite constant.

15.4.2 Info: Charged Scalar Field

A generalization of the analysis above to the complex scalar field leads to the La-
grangian,

L =
1
2
∂µφ∂µφ̄− 1

2
m2|φ|2 .

11Recall that normal ordering entails the construction of an operator with all the annihi-
lation operators moved to the right and creation operators moved to the left.
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The latter can be interpreted as the superposition of two independent scalar fields
φ = (φ1+iφ2)/

√
2, where, for each (real) component φ†

r(x) = φr(x). (In fact, we could
as easily consider a field with n components.) In this case, the canonical quantisation
of the classical fields is achieved by defining (exercise)

φ̂(x) =
∫

d3k√
(2π)32ωk

[
a(k)fk(x) + b†(k)f∗k (x)

]
.

(similarly φ†(x)) where both a and b obey bosonic commutation relations,
[
a(k), a†(k′)

]
=

[
b(k), b†(k′)

]
= (2π)32ωkδ3(k− k′),

[a(k), a(k′)] = [b(k), b(k′)] =
[
a(k), b†(k′)

]
= [a(k), b(k′)] = 0 .

With this definition, the total number operator is given by

N̂ =
∫

d3k√
(2π)32ωk

[
a†(k)a(k) + b†(k)b(k)

]
≡ N̂a + N̂b ,

while the energy-momentum operator is defined by

P̂µ =
∫

d3k√
(2π)32ωk

kµ
[
a†(k)a(k) + b†(k)b(k)

]
.

Thus the complex scalar field has the interpretation of creating different sorts of
particles, corresponding to operators a† and b†. To understand the physical interpre-
tation of this difference, let us consider the corresponding charge density operator,
ĵ0 = φ̂†(x)i

↔
∂ 0 φ(x). Once normal ordered, the total charge Q =

∫
d3xj0(x) is given

by

Q̂ =
∫

d3k√
(2π)32ωk

[
a†(k)a(k)− b†(k)b(k)

]
= N̂a − N̂b .

From this result we can interpret the particles as carrying an electric charge, equal
in magnitude, and opposite in sign. The complex scalar field is a theory of charged
particles. The negative density that plagued the Klein-Gordon field is simply a man-
ifestation of particles with negative charge.

15.4.3 Info: Dirac Field

The quantisation of the Klein-Gordon field leads to a theory of relativistic spin zero
particles which obey boson statistics. From the quantisation of the Dirac field, we
expect a theory of Fermionic spin 1/2 particles. Following on from our consideration
of the Klein-Gordon theory, we introduce the Lagrangian density associated with the
Dirac equation (exercise)

L = ψ̄ (iγµ∂µ −m) ψ ,

(or, equivalently, L = ψ̄( 1
2 iγµ

↔
∂ µ −m)ψ). With this definition, the corresponding

canonical momentum is given by ∂ψ̇L = iψ̄γ0 = iψ†. From the Lagrangian density,
we thus obtain the Hamiltonian density,

H = ψ̄ (−iγ ·∇+ m) ψ ,

which, making use of the Dirac equation, is equivalent to H = ψ̄iγ0∂0ψ = ψ†i∂tψ.
For the Dirac theory, we postulate the equal time anticommutation relations

{
ψα(x, t), iψ†

β(x′, t)
}

= iδ3(x− x′)δαβ ,

(or, equivalently {ψα(x, t), iψ̄β(x′, t)} = γ0
αβδ3(x− x′)), together with

{ψα(x, t), ψβ(x′, t)} =
{
ψ̄α(x, t), ψ̄β(x′, t)

}
= 0 .
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Using the general solution of the Dirac equation for a free particle as a basis set,
together with the intuition drawn from the study of the complex scalar field, we may
with no more ado, introduce the field operators which diagonalise the Hamiltonian
density

ψ(x) =
2∑

r=1

∫
d3k

(2π)32ωk

[
ar(k)u(r)(k)e−ik·x + b†r(k)v(r)(k)eik·x

]

ψ̄(x) =
2∑

r=1

∫
d3k

(2π)32ωk

[
a†

r(k)ū(r)(k)eik·x + br(k)v̄(r)(k)e−ik·x
]

,

where the annihilation and creation operators also obey the anticommutation rela-
tions,

{
ar(k), a†

s(k
′)

}
=

{
br(k), b†s(k

′)
}

= (2π)32ωkδrsδ
3(k− k′)

{ar(k), as(k′)} =
{
a†

r(k), a†
s(k

′)
}

= {br(k), bs(k′)} =
{
b†r(k), b†s(k

′)
}

= 0 .

The latter condition implies the Pauli exclusion principle a†(k)2 = 0. With this
definition, a(k)u(k)e−ik·x annilihates a postive energy electron, and b†(k)v(k)eik·x

creates a positive energy positron.
From these results, making use of the expression for the Hamiltonian density

operator, one obtains

Ĥ =
2∑

r=1

∫
d3k

(2π)32ωk
ωk

[
a†

r(k)ar(k)− br(k)b†r(k)
]

.

Were the commutation relations chosen as bosonic, one would conclude the existence
of negative energy solutions. However, making use of the anticommutation relations,
and dropping the infinite constant (or, rather, normal ordering) one obtains a positive
definite result. Expressed as one element of the total energy-momentum operator, one
finds

P̂µ =
2∑

r=1

∫
d3k

(2π)32ωk
kµ

[
a†

r(k)ar(k) + b†r(k)br(k)
]

.

Finally, the total charge is given by

Q̂ =
∫

ĵ0d3x =
∫

d3xψ†ψ = N̂a − N̂b .

where N̂ represents the total number operator. Na =
∫

d3k a†(k)a(k) is the number
of the particles and Nb =

∫
d3k b†(k)b(k) is the number of antiparticles with opposite

charge.

15.5 The low energy limit of the Dirac equation

To conclude our abridged exploration of the foundations of relativistic quan-
tum mechanics, we turn to the interaction of a relativistic spin 1/2 particle
with an electromagnetic field. Suppose that ψ represents a particle of charge
q (q = −e for the electron). From non-relativistic quantum mechanics, we ex-
pect to obtain the equation describing its interaction with an EM field given
by the potential Aµ by the minimal substitution

pµ )−→ pµ − qAµ ,

where A0 ≡ ϕ. Applied to the Dirac equation, we obtain for the interaction of
a particle with a given (non-quantized) EM field, [γµ (pµ − qAµ) −m]ψ = 0,
or compactly

(+p− q +A−m)ψ = 0 .
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Previously, in chapter 9, we explored the relativistic (fine-structure) cor-
rections to the hydrogen atom. At the time, we alluded to these as the leading
relativistic contributions to the Dirac theory. In the following section, we will
explore how these corrections are derived.

In the Dirac-Pauli representation,

α =
(

0 σ
σ 0

)
, β =

(
I2 0
0 −I2

)
.

we have seen that the plane-wave solution to the Dirac equation for particles
can be written in the form

ψp(x) = N

(
χ

cσ·p̂
mc2+E χ

)
ei(px−Et)/! ,

where we have restored the parameters ! and c. From this expression, we can
see that, at low energies, where |E −mc2| - mc2, the second component of
the bispinor is smaller than the first by a factor of order v/c. To obtain the
non-relavistic limit, we can exploit this asymmetry to develop a perturbative
expansion of the coefficients in v/c.

Consider then the Dirac equation for a particle moving in a potential
(φ,A). Expressed in matrix form, the Dirac equation H = cα · (−i!∇ −
e
cA) + mc2β + eφ is expressed as

H =
(

mc2 + eφ cσ · (−i!∇− e
cA)

cσ · (p̂− q
cA) −mc2 + qφ

)
.

Defining the bispinor ψT (x) = (ψa(x), ψb(x)), the Dirac equation translates to
the coupled equations,

(mc2 + eφ)ψa + cσ · (p̂− q

c
A)ψb = Eψa

cσ · (p̂− q

c
A)ψa − (mc2 − qφ)ψb = Eψb .

Then, if we define W = E − mc2, a rearrangement of the second equation
obtains

ψb =
1

2mc2 + W − qφ
cσ · (p̂− q

c
A)ψa .

Then, at zeroth order in v/c, we have ψb $ 1
2mc2 cσ ·(p̂− q

cA)ψa. Substi-
tuted into the first equation, we thus obtain the Pauli equation Hnon−relψa =
Wψa, where

Hnonrel =
1

2m

[
σ · (p̂− q

c
A)

]2
+ qφ .

Making use of the Pauli matrix identity σiσj = δij + iεijkσk, we thus obtain
the familiar non-relativistic Schrödinger Hamiltonian,

Hnon rel =
1

2m
(p̂− q

c
A)2 − q!

2mc
σ · (∇×A) + qφ .

As a result, we can identify the spin magnetic moment

µS =
q!

2mc
σ =

q!
mc

Ŝ ,
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with the gyromagnetic ratio, g = 2. This compares to the measured value
of g = 2 × (1.0011596567 ± 0.0000000035), the descrepency form 2 being at-
tributed to small radiative corrections.

Let us now consider the expansion to first order in v/c. Here, for sim-
plicity, let us suppose that A = 0. In this case, taking into account the next
order term, we obtain

ψb $
1

2mc2

(
1 +

V −W

2mc2

)
cσ · p̂ψa

where V = qφ. Then substituted into the second equation, we obtain
[

1
2m

(σ · p̂)2 +
1

4m2c2
(σ · p̂)(V −W )(σ · p̂) + V

]
ψa = Wψa .

At this stage, we must be cautious in interpreting ψa as a complete non-
relavistic wavefunction with leading relativistic corrections. To find the true
wavefunction, we have to consider the normalization. If we suppose that the
original wavefunction is normalized, we can conclude that,

∫
d3xψ†(x, t)ψ(x, t) =

∫
d3x

(
ψ†

a(x, t)ψa(x, t) + ψ†
b(x, t)ψb(x, t)

)

$
∫

d3xψ†
a(x, t)ψa(x, t) +

1
(2mc)2

∫
d3xψ†

a(x, t)p̂2ψa(x, t) .

Therefore, at this order, the normalized wavefunction is set by, ψs = (1 +
1

8m2c2 p̂
2)ψa or, inverted,

ψa =
(

1− 1
8m2c2

p̂2

)
ψs .

Substituting, then rearranging the equation for ψs, and retaining terms of
order (v/c)2, one ontains (exercise) Ĥnon−relψs = Wψs, where

Ĥnon−rel =
p̂2

2m
− p̂4

8m3c2
+

1
4m2c2

(σ · p̂)V (σ · p̂) + V − 1
8m2c2

(V p̂2 + p̂2V ) .

Then, making use of the identities,

[V, p̂2] = !2(∇2V ) + 2i!(∇V ) · p̂
(σ · p̂)V = V (σ · p̂) + σ · [p̂, V ]
(σ · p̂)V (σ · p̂) = V p̂2 − i!(∇V ) · p̂ + !σ · (∇V )× p̂ ,

we obtain the final expression (exercise),

Ĥnon−rel =
p̂2

2m
− p̂4

8m3c2
+

!
4m2c2

σ · (∇V )× p̂
︸ ︷︷ ︸

spin−orbit coupling

+
!2

8m2c2
(∇2V )

︸ ︷︷ ︸
Darwin term

.

The second term on the right hand side represents the relativistic correction
to the kinetic energy, the third term denotes the spin-orbit interaction and
the final term is the Darwin term. For atoms, with a central potential, the
spin-orbit term can be recast as

ĤS.O. =
!2

4m2c2
σ · 1

r
(∂rV )r× p̂ =

!2

4m2c2

1
r
(∂rV )σ · L̂ .

To address the effects of these relativistic contributions, we refer back to chap-
ter 9.

Advanced Quantum Physics


