
Chapter 3

Operator methods in
quantum mechanics

While the wave mechanical formulation has proved successful in describing
the quantum mechanics of bound and unbound particles, some properties can
not be represented through a wave-like description. For example, the electron
spin degree of freedom does not translate to the action of a gradient operator.
It is therefore useful to reformulate quantum mechanics in a framework that
involves only operators.

Before discussing properties of operators, it is helpful to introduce a further
simplification of notation. One advantage of the operator algebra is that it
does not rely upon a particular basis. For example, when one writes Ĥ = p̂2

2m ,
where the hat denotes an operator, we can equally represent the momentum
operator in the spatial coordinate basis, when it is described by the differential
operator, p̂ = −i!∂x, or in the momentum basis, when it is just a number
p̂ = p. Similarly, it would be useful to work with a basis for the wavefunction
which is coordinate independent. Such a representation was developed by
Dirac early in the formulation of quantum mechanics.

In the parlons of mathematics, square integrable functions (such as wave-
functions) are said form a vector space, much like the familiar three-dimensional
vector spaces. In the Dirac notation, a state vector or wavefunction, ψ, is
represented as a “ket”, |ψ〉. Just as we can express any three-dimensional
vector in terms of the basis vectors, r = xê1 + yê2 + zê3, so we can expand
any wavefunction as a superposition of basis state vectors,

|ψ〉 = λ1|ψ1〉+ λ2|ψ2〉+ · · · .

Alongside the ket, we can define the “bra”, 〈ψ|. Together, the bra and ket
define the scalar product

〈φ|ψ〉 ≡
∫ ∞

−∞
dx φ∗(x)ψ(x) ,

from which follows the identity, 〈φ|ψ〉∗ = 〈ψ|φ〉. In this formulation, the real
space representation of the wavefunction is recovered from the inner prod-
uct ψ(x) = 〈x|ψ〉 while the momentum space wavefunction is obtained from
ψ(p) = 〈p|ψ〉. As with a three-dimensional vector space where a · b ≤ |a| |b|,
the magnitude of the scalar product is limited by the magnitude of the vectors,

〈ψ|φ〉 ≤
√
〈ψ|ψ〉〈φ|φ〉 ,

a relation known as the Schwartz inequality.
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3.1 Operators

An operator Â is a “mathematical object” that maps one state vector, |ψ〉,
into another, |φ〉, i.e. Â|ψ〉 = |φ〉. If

Â|ψ〉 = a|ψ〉 ,

with a real, then |ψ〉 is said to be an eigenstate (or eigenfunction) of Â with
eigenvalue a. For example, the plane wave state ψp(x) = 〈x|ψp〉 = A eipx/! is
an eigenstate of the momentum operator, p̂ = −i!∂x, with eigenvalue p.
For a free particle, the plane wave is also an eigenstate of the Hamiltonian,
Ĥ = p̂2

2m with eigenvalue p2

2m .
In quantum mechanics, for any observable A, there is an operator Â which

acts on the wavefunction so that, if a system is in a state described by |ψ〉,
the expectation value of A is

〈A〉 = 〈ψ|Â|ψ〉 =
∫ ∞

−∞
dx ψ∗(x)Âψ(x) . (3.1)

Every operator corresponding to an observable is both linear and Hermitian:
That is, for any two wavefunctions |ψ〉 and |φ〉, and any two complex numbers
α and β, linearity implies that

Â(α|ψ〉+ β|φ〉) = α(Â|ψ〉) + β(Â|φ〉) .

Moreover, for any linear operator Â, the Hermitian conjugate operator
(also known as the adjoint) is defined by the relation

〈φ|Âψ〉 =
∫

dx φ∗(Âψ) =
∫

dx ψ(Â†φ)∗ = 〈Â†φ|ψ〉 . (3.2)

From the definition, 〈Â†φ|ψ〉 = 〈φ|Âψ〉, we can prove some useful rela-
tions: Taking the complex conjugate, 〈Â†φ|ψ〉∗ = 〈ψ|Â†φ〉 = 〈Âψ|φ〉, and
then finding the Hermitian conjugate of Â†, we have

〈ψ|Â†φ〉 = 〈(Â†)†ψ|φ〉 = 〈Âψ|φ〉, i.e. (Â†)† = Â .

Therefore, if we take the Hermitian conjugate twice, we get back to the same
operator. Its easy to show that (λÂ)† = λ∗Â† and (Â + B̂)† = Â† + B̂† just
from the properties of the dot product. We can also show that (ÂB̂)† = B̂†Â†

from the identity, 〈φ|ÂB̂ψ〉 = 〈Â†φ|B̂ψ〉 = 〈B̂†Â†φ|ψ〉. Note that operators
are associative but not (in general) commutative,

ÂB̂|ψ〉 = Â(B̂|ψ〉) = (ÂB̂)|ψ〉 &= B̂Â|ψ〉 .

A physical variable must have real expectation values (and eigenvalues).
This implies that the operators representing physical variables have some spe-
cial properties. By computing the complex conjugate of the expectation value
of a physical variable, we can easily show that physical operators are their own
Hermitian conjugate,

〈ψ|Ĥ|ψ〉∗ =
[∫ ∞

−∞
ψ∗(x)Ĥψ(x)dx

]∗
=

∫ ∞

−∞
ψ(x)(Ĥψ(x))∗dx = 〈Ĥψ|ψ〉 .

i.e. 〈Ĥψ|ψ〉 = 〈ψ|Ĥψ〉 = 〈Ĥ†ψ|ψ〉, and Ĥ† = Ĥ. Operators that are their
own Hermitian conjugate are called Hermitian (or self-adjoint).

Advanced Quantum Physics



3.1. OPERATORS 21

' Exercise. Prove that the momentum operator p̂ = −i!∇ is Hermitian. Fur-
ther show that the parity operator, defined by P̂ψ(x) = ψ(−x) is also Hermitian.

Eigenfunctions of Hermitian operators Ĥ|i〉 = Ei|i〉 form an orthonormal (i.e.
〈i|j〉 = δij) complete basis: For a complete set of states |i〉, we can expand
a state function |ψ〉 as |ψ〉 =

∑
i |i〉〈i|ψ〉. Equivalently, in a coordinate rep-

resentation, we have ψ(x) = 〈x|ψ〉 =
∑

i〈x|i〉〈i|ψ〉 =
∑

i〈i|ψ〉φi(x), where
φi(x) = 〈x|i〉.

' Info. Projection operators and completeness: A ‘ket’ state vector fol-
lowed by a ‘bra’ state vector is an example of an operator. The operator which
projects a vector onto the jth eigenstate is given by |j〉〈j|. First the bra vector dots
into the state, giving the coefficient of |j〉 in the state, then its multiplied by the unit
vector |j〉, turning it back into a vector, with the right length to be a projection. An
operator maps one vector into another vector, so this is an operator. If we sum over
a complete set of states, like the eigenstates of a Hermitian operator, we obtain the
(useful) resolution of identity

∑

i

|i〉〈i| = I .

Again, in coordinate form, we can write
∑

i φ∗i (x)φi(x′) = δ(x− x′). Indeed, we can
form a projection operator into a subspace, P̂ =

∑
subspace |i〉〈i|.

As in a three-dimensional vector space, the expansion of the vectors |φ〉 and
|ψ〉, as |φ〉 =

∑
i bi|i〉 and |ψ〉 =

∑
i ci|i〉, allows the dot product to be taken

by multiplying the components, 〈φ|ψ〉 =
∑

i b
∗
i ci.

' Example: The basis states can be formed from any complete set of orthogonal
states. In particular, they can be formed from the basis states of the position or
the momentum operator, i.e.

∫∞
−∞ dx|x〉〈x| =

∫∞
−∞ dp|p〉〈p| = I. If we apply these

definitions, we can then recover the familiar Fourier representation,

ψ(x) ≡ 〈x|ψ〉 =
∫ ∞

−∞
dp 〈x|p〉︸ ︷︷ ︸
eipx/!/

√
2π!

〈p|ψ〉 =
1√
2π!

∫ ∞

−∞
dp eipx/! ψ(p) ,

where 〈x|p〉 denotes the plane wave state |p〉 expressed in the real space basis.

3.1.1 Time-evolution operator

The ability to develop an eigenfunction expansion provides the means to ex-
plore the time evolution of a general wave packet, |ψ〉 under the action of
a Hamiltonian. Formally, we can evolve a wavefunction forward in time
by applying the time-evolution operator. For a Hamiltonian which is time-
indepenent, we have |ψ(t)〉 = Û |ψ(0)〉, where

Û = e−iĤt/! ,

denotes the time-evolution operator.1 By inserting the resolution of identity,
I =

∑
i |i〉〈i|, where the states |i〉 are eigenstates of the Hamiltonian with

eigenvalue Ei, we find that

|ψ(t)〉 = e−iĤt/! ∑

i

|i〉〈i|ψ(0)〉 =
∑

i

|i〉〈i|ψ(0)〉e−iEit/! .

1This equation follows from integrating the time-dependent Schrödinger equation, Ĥ|ψ〉 =
i!∂t|ψ〉.
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' Example: Consider the harmonic oscillator Hamiltonian Ĥ = p̂2

2m + 1
2mω2x2.

Later in this chapter, we will see that the eigenstates, |n〉, have equally-spaced eigen-
values, En = !ω(n + 1/2), for n = 0, 1, 2, · · ·. Let us then consider the time-evolution
of a general wavepacket, |ψ(0)〉, under the action of the Hamiltonian. From the equa-
tion above, we find that |ψ(t)〉 =

∑
n |n〉〈n|ψ(0)〉e−iEnt/!. Since the eigenvalues are

equally spaced, let us consider what happens when t = tr ≡ 2πr/ω, with r integer.
In this case, since e2πinr = 1, we have

|ψ(tr)〉 =
∑

n

|n〉〈n|ψ(0)〉e−iωtr/2 = (−1)r|ψ(0)〉 .

From this result, we can see that, up to an overall phase, the wave packet is perfectly
reconstructed at these times. This recurrence or “echo” is not generic, but is a
manifestation of the equal separation of eigenvalues in the harmonic oscillator.

' Exercise. Using the symmetry of the harmonic oscillator wavefunctions under
parity show that, at times tr = (2r + 1)π/ω, 〈x|ψ(tr)〉 = e−iωtr/2〈−x|ψ(0)〉. Explain
the origin of this recurrence.

The time-evolution operator is an example of a unitary operator. The
latter are defined as transformations which preserve the scalar product, 〈φ|ψ〉 =
〈Ûφ|Ûψ〉 = 〈φ|Û †Ûψ〉 != 〈φ|ψ〉, i.e.

Û †Û = I .

3.1.2 Uncertainty principle for non-commuting operators

For non-commuting Hermitian operators, [Â, B̂] &= 0, it is straightforward to
establish a bound on the uncertainty in their expectation values. Given a state
|ψ〉, the mean square uncertainty is defined as

(∆A)2 = 〈ψ|(Â− 〈Â〉)2ψ〉 = 〈ψ|Û2ψ〉
(∆B)2 = 〈ψ|(B̂ − 〈B̂〉)2ψ〉 = 〈ψ|V̂ 2ψ〉 ,

where we have defined the operators Û = Â− 〈ψ|Âψ〉 and V̂ = B̂ − 〈ψ|B̂ψ〉.
Since 〈Â〉 and 〈B̂〉 are just constants, [Û , V̂ ] = [Â, B̂]. Now let us take the
scalar product of Û |ψ〉+ iλV̂ |ψ〉 with itself to develop some information about
the uncertainties. As a modulus, the scalar product must be greater than or
equal to zero, i.e. expanding, we have 〈ψ|Û2ψ〉+ λ2〈ψ|V̂ 2ψ〉+ iλ〈Ûψ|V̂ ψ〉 −
iλ〈V̂ ψ|Ûψ〉 ≥ 0. Reorganising this equation in terms of the uncertainties, we
thus find

(∆A)2 + λ2(∆B)2 + iλ〈ψ|[Û , V̂ ]|ψ〉 ≥ 0 .

If we minimise this expression with respect to λ, we can determine when
the inequality becomes strongest. In doing so, we find

2λ(∆B)2 + i〈ψ|[Û , V̂ ]|ψ〉 = 0, λ = − i

2
〈ψ|[Û , V̂ ]|ψ〉

(∆B)2
.

Substiuting this value of λ back into the inequality, we then find,

(∆A)2(∆B)2 ≥ −1
4
〈ψ|[Û , V̂ ]|ψ〉2 .
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We therefore find that, for non-commuting operators, the uncertainties obey
the following inequality,

∆A ∆B ≥ i

2
〈[Â, B̂]〉 .

If the commutator is a constant, as in the case of the conjugate operators
[p̂, x] = −i!, the expectation values can be dropped, and we obtain the rela-
tion, (∆A)(∆B) ≥ i

2 [Â, B̂]. For momentum and position, this result recovers
Heisenberg’s uncertainty principle,

∆p ∆x ≥ i

2
〈[p̂, x]〉 =

!
2

.

Similarly, if we use the conjugate coordinates of time and energy, [Ê, t] = i!,
we have

∆E ∆t ≥ !
2

.

3.1.3 Time-evolution of expectation values

Finally, to close this section on operators, let us consider how their expectation
values evolve. To do so, let us consider a general operator Â which may itself
involve time. The time derivative of a general expectation value has three
terms.

d

dt
〈ψ|Â|ψ〉 = ∂t(〈ψ|)Â|ψ〉+ 〈ψ|∂tÂ|ψ〉+ 〈ψ|Â(∂t|ψ〉) .

If we then make use of the time-dependent Schrödinger equation, i!∂t|ψ〉 =
Ĥ|ψ〉, and the Hermiticity of the Hamiltonian, we obtain

d

dt
〈ψ|Â|ψ〉 =

i

!

(
〈ψ|ĤÂ|ψ〉 − 〈ψ|ÂĤ|ψ〉

)

︸ ︷︷ ︸
i

!〈ψ|[Ĥ, Â]|ψ〉

+〈ψ|∂tÂ|ψ〉 .

This is an important and general result for the time derivative of expectation
values which becomes simple if the operator itself does not explicitly depend
on time,

d

dt
〈ψ|Â|ψ〉 =

i

!〈ψ|[Ĥ, Â]|ψ〉 .

From this result, which is known as Ehrenfest’s theorem, we see that expec-
tation values of operators that commute with the Hamiltonian are constants
of the motion.

' Exercise. Applied to the non-relativistic Schrödinger operator for a single
particle moving in a potential, Ĥ = p̂2

2m + V (x), show that 〈ẋ〉 = 〈p̂〉
m , 〈 ˙̂p〉 = −〈∂xV 〉.

Show that these equations are consistent with the relations,

Paul Ehrenfest 1880-1933
An Austrian
physicist and
mathematician,
who obtained
Dutch citizenship
in 1922. He
made major
contributions
to the field
of statistical
mechanics and its relations with
quantum mechanics, including the
theory of phase transition and the
Ehrenfest theorem.

d

dt
〈x〉 =

〈
∂H

∂p

〉
,

d

dt
〈p̂〉 = −

〈
∂H

∂x

〉
,

the counterpart of Hamilton’s classical equations of motion.

Advanced Quantum Physics



3.2. SYMMETRY IN QUANTUM MECHANICS 24

3.2 Symmetry in quantum mechanics

Symmetry considerations are very important in quantum theory. The struc-
ture of eigenstates and the spectrum of energy levels of a quantum system
reflect the symmetry of its Hamiltonian. As we will see later, the transition
probabilities between different states under a perturbation, such as that im-
posed by an external electromagnetic field, depend in a crucial way on the
transformation properties of the perturbation and lead to “selection rules”.
Symmetries can be classified into two types, discrete and continuous, accord-
ing to the transformations that generate them. For example, a mirror symme-
try is an example of a discrete symmetry while a rotation in three-dimensional
space is continuous.

Formally, the symmetries of a quantum system can be represented by a
group of unitary transformations (or operators), Û , that act in the Hilbert
space.2 Under the action of such a unitary transformation, operators corre-
sponding to observables Â of the quantum model will then transform as,

Â → Û †ÂÛ .

For unitary transformations, we have seen that Û †Û = I, i.e. Û † = Û−1.
Under what circumstances does such a group of transformations represent a
symmetry group? Consider a Schrödinger particle in three dimensions:3

The basic observables are the position and momentum vectors, r̂ and p̂. We
can always define a transformation of the coordinate system, or the observ-
ables, such that a vector Â = r̂ or p̂ is mapped to R[Â].4 If R is an element
of the group of transformations, then this transformation will be represented
by a unitary operator Û(R), such that

Û †ÂÛ = R[Â] .

Such unitary transformations are said to be symmetries of a general op-
erator Ô(p̂, r̂) if

Û †ÔÛ = Ô, i.e. [Ô, Û ] = 0 .

If Ô(p̂, r̂) ≡ Ĥ, the quantum Hamiltonian, such unitary transformations are
said to be symmetries of the quantum system.

3.2.1 Observables as generators of transformations

The vector operators p̂ and r̂ for a Schrödinger particle are themselves genera-
tors of space-time transformations. From the standard commutation relations

2In quantum mechanics, the possible states of a system can be represented by unit vectors
(called “state vectors”) residing in “state space” known as the Hilbert space. The precise
nature of the Hilbert space is dependent on the system; for example, the state space for
position and momentum states is the space of square-integrable functions.

3In the following, we will focus our considerations on the realm of “low-energy” physics
where the relevant space-time transformations belong to the Galilei group, leaving our
discussion of Lorentz invariance to the chapter on relativistic quantum mechanics.

4e.g., for a clockwise spatial rotation by an angle θ around ez, we have,

R[r] = Rij x̂j , R =

0

@
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1

A .

Similarly, for a spatial translation by a vector a, R[r] = r + a. (Exercise: construct repre-
sentations for transformations corresponding to spatial reflections, and inversion.)
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one can show that, for a constant vector a, the unitary operator

Û(a) = exp
[
− i

!a · p̂
]

,

acting in the Hilbert space of a Schrödinger particle performs a spatial trans-
lation, Û †(a)f(r)Û(a) = f(r + a), where f(r) denotes a general algebraic
function of r.

' Info. The proof runs as follows: With p̂ = −i!∇,

Û†(a) = ea·∇ =
∞∑

n=0

1
n!

ai1 · · · ain∇i1 · · · ∇in ,

where summation on the repeated indicies, im is assumed. Then, making use of the
Baker-Hausdorff identity (exercise)

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2!

[Â, [Â, B̂]] + · · · , (3.3)

it follows that

Û†(a)f(r)Û(a) = f(r) + ai1(∇i1f(r)) +
1
2!

ai1ai2(∇i1∇i2f(r)) + · · · = f(r + a) ,

where the last identity follows from the Taylor expansion.

' Exercise. Prove the Baker-Hausdorff identity (3.3).

Therefore, a quantum system has spatial translation as an invariance group if
and only if the following condition holds,

Û(a)Ĥ = ĤÛ(a), i.e. p̂Ĥ = Ĥp̂ .

This demands that the Hamiltonian is independent of position, Ĥ = Ĥ(p̂),
as one might have expected! Similarly, the group of unitary transforma-
tions, Û(b) = exp[− i

!b · r̂], performs translations in momentum space.
Moreover, spatial rotations are generated by the transformation Û(b) =
exp[− i

!θen · L̂], where L̂ = r̂× p̂ denotes the angular momentum operator.

' Exercise. For an infinitesimal rotation by an angle θ by a fixed axis, ên,
construct R[r] and show that Û = I − i

!θên · L + O(θ2). Making use of the identity
limN→∞(1 − a

N )N = e−a, show that “large” rotations are indeed generated by the
unitary transformations Û = exp

[
− i

!θên · L
]
.

As we have seen, time translations are generated by the time evolution op-
erator, Û(t) = exp[− i

!Ĥt]. Therefore, every observable which commutes with
the Hamiltonian is a constant of the motion (invariant under time transla-
tions),

ĤÂ = ÂĤ ⇒ eiĤt/!Âe−iĤt/! = Â, ∀t .

We now turn to consider some examples of discrete symmetries. Amongst
these, perhaps the most important in low-energy physics are parity and time-
reversal. The parity operation, denoted P̂ , involves a reversal of sign on all
coordinates.

P̂ψ(r) = ψ(−r) .
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This is clearly a discrete transformation. Application of parity twice returns
the initial state implying that P̂ 2 = 1. Therefore, the eigenvalues of the parity
operation (if such exist) are ±1. A wavefunction will have a defined parity
if and only if it is an even or odd function. For example, for ψ(x) = cos(x),
P̂ψ = cos(−x) = cos(x) = ψ; thus ψ is even and P = 1. Similarly ψ =
sin(x) is odd with P = −1. Later, in the next chapter, we will encounter the
spherical harmonic functions which have the following important symmetry
under parity, P̂ Y!m = (−1)!Ylm. Parity will be conserved if the Hamiltonian
is invariant under the parity operation, i.e. if the Hamiltonian is invariant
under a reversal of sign of all the coordinates.5

In classical mechanics, the time-reversal operation involves simply “run-
ning the movie backwards”. The time-reversed state of the phase space
coordinates (x(t), p(t)) is defined by (xT (t), pT (t)) where xT (t) = x(t) and
pT (t) = −p(t). Hence, if the system evolved from (x(0), p(0)) to (x(t), p(t)) in
time t and at t we reverse the velocity, p(t) → −p(t) with x(t) → x(t), at time
2t the system would have returned to x(2t) = x(0) while p(2t) = −p(0). If this
happens, we say that the system is time-reversal invariant. Of course, this is
just the statement that Newton’s laws are the same if t → −t. A notable case
where this is not true is that of a charged particle in a magnetic field.

As with classical mechanics, time-reversal in quantum mechanics involves
the operation t → −t. However, referring to the time-dependent Schrödinger
equation, i!∂tψ(x, t) = Ĥψ(x, t), we can see that the operation t → −t is
equivalent to complex conjugation of the wavefunction, ψ → ψ∗ if Ĥ∗ = Ĥ.
Let us then consider the time-evolution of ψ(x, t),

ψ(x, 0) → e−
i
! Ĥ(x)tψ(x, 0) c.c.→ e+ i

! Ĥ∗(x)tψ∗(x, 0) evolve→ e−
i
! Ĥ(x)te+ i

! Ĥ∗(x)tψ∗(x, 0) .

If we require that ψ(x, 2t) = ψ∗(x, 0), we must have Ĥ∗(x) = Ĥ(x). Therefore,
Ĥ is invariant under time-reversal if and only if Ĥ is real.

' Info. Although the group of space-transformations covers the symmetries
that pertain to “low-energy” quantum physics, such as atomic physics, quantum op-
tics, and quantum chemistry, in nuclear physics and elementary particle physics new
observables come into play (e.g. the isospin quantum numbers and the other quark
charges in the standard model). They generate symmetry groups which lack a classical
counterpart, and they do not have any obvious relation with space-time transforma-
tions. These symmetries are often called internal symmetries in order to underline
this fact.

3.2.2 Consequences of symmetries: multiplets

Having established how to identify whether an operator belongs to a group
of symmetry transformations, we now consider the consequences. Consider
a single unitary transformation Û in the Hilbert space, and an observable Â
which commutes with Û , [Û , Â] = 0. If Â has an eigenvector |a〉, it follows
that Û |a〉 will be an eigenvector with the same eigenvalue, i.e.

Û Â|a〉 = ÂU |a〉 = aU |a〉 .

This means that either:
5In high energy physics, parity is a symmetry of the strong and electromagnetic forces, but

does not hold for the weak force. Therefore, parity is conserved in strong and electromagnetic
interactions, but is violated in weak interactions.
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1. |a〉 is an eigenvector of both Â and Û , or

2. the eigenvalue a is degenerate: the linear space spanned by the vectors
Ûn|a〉 (n integer) are eigenvectors with the same eigenvalue.

This mathematical argument leads to the conclusion that, given a group G of
unitary operators Û(x), x ∈ G, for any observable which is invariant under
these transformations, i.e.

[Û(x), Â] = 0 ∀x ∈ G ,

its discrete eigenvalues and eigenvectors will show a characteristic multiplet
structure: there will be a degeneracy due to the symmetry such that the
eigenvectors belonging to each eigenvalue form an invariant subspace under
the group of transformations.

' Example: For example, if the Hamiltonian commutes with the angular mo-
mentum operators, L̂i, i = x, y, z, i.e. it is invariant under three-dimensional rota-
tions, an energy level with a given orbital quantum number , is at least (2, + 1)-fold
degenerate. Such a degeneracy can be seen as the result of non-trivial actions of
the operator L̂x and L̂y on an energy (and L̂z) eigenstate |E, ,, m〉 (where m is the
magnetic quantum number asssociated with L̂z).

3.3 The Heisenberg Picture

Until now, the time dependence of an evolving quantum system has been
placed within the wavefunction while the operators have remained constant –
this is the Schrödinger picture or representation. However, it is some-
times useful to transfer the time-dependence to the operators. To see how, let
us consider the expectation value of some operator B̂,

〈ψ(t)|B̂|ψ(t)〉 = 〈e−iĤt/!ψ(0)|B̂|e−iĤt/!ψ(0)〉 = 〈ψ(0)|eiĤt/!B̂e−iĤt/!|ψ(0)〉 .

According to rules of associativity, we can multiply operators together be-
fore using them. If we define the operator B̂(t) = eiĤt/!B̂e−iĤt/!, the time-
dependence of the expectation values has been transferred from the wavefunc-
tion. This is called the Heisenberg picture or representation and in it,
the operators evolve with time while the wavefunctions remain constant. In
this representation, the time derivative of the operator itself is given by

∂tB̂(t) =
iĤ

! eiĤt/!B̂e−iĤt/!− eiĤt/!B̂
iĤ

! e−iĤt/!

=
i

!eiĤt/![Ĥ, B̂]e−iĤt/! =
i

! [Ĥ, B̂(t)] .

Werner Heisenberg 1901-76
A German physi-
cist and one of
the founders of
the quantum the-
ory, he is best
known for his un-
certainty princi-
ple which states
that it is impossi-
ble to determine
with arbitrarily high accuracy both
the position and momentum of a par-
ticle. In 1926, Heisenberg devel-
oped a form of the quantum theory
known as matrix mechanics, which
was quickly shown to be fully equiva-
lent to Erwin Schrödinger’s wave me-
chanics. His 1932 Nobel Prize in
Physics cited not only his work on
quantum theory but also work in nu-
clear physics in which he predicted
the subsequently verified existence of
two allotropic forms of molecular hy-
drogen, differing in their values of nu-
clear spin.

' Exercise. For the general Hamiltonian Ĥ = p̂2

2m + V (x), show that the posi-
tion and momentum operators obey Hamilton’s classical equation of motion.

3.4 Quantum harmonic oscillator

As we will see time and again in this course, the harmonic oscillator assumes a
priveledged position in quantum mechanics and quantum field theory finding
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numerous and somtimes unexpected applications. It is useful to us now in
that it provides a platform for us to implement some of the technology that
has been developed in this chapter. In the one-dimensional case, the quantum
harmonic oscillator Hamiltonian takes the form,

Ĥ =
p̂2

2m
+

1
2
mω2x2 ,

where p̂ = −i!∂x. To find the eigenstates of the Hamiltonian, we could
look for solutions of the linear second order differential equation correspond-
ing to the time-independent Schrödinger equation, Ĥψ = Eψ, where Ĥ =
− !2

2m∂2
x + 1

2mω2x2. The integrability of the Schrödinger operator in this case
allows the stationary states to be expressed in terms of a set of orthogonal
functions known as Hermite polynomials. However, the complexity of the ex-
act eigenstates obscure a number of special and useful features of the harmonic
oscillator system. To identify these features, we will instead follow a method
based on an operator formalism.

First few states of the quantum
harmonic oscillator. Not that the
parity of the state changes from
even to odd through consecutive
states.

The form of the Hamiltonian as the sum of the squares of momenta and
position suggests that it can be recast as the “square of an operator”. To this
end, let us introduce the operator

a =
√

mω

2!

(
x + i

p̂

mω

)
, a† =

√
mω

2!

(
x− i

p̂

mω

)
,

where, for notational convenience, we have not drawn hats on the operators a
and its Hermitian conjuate a†. Making use of the identity,

a†a =
mω

2! x2 +
p̂

2!mω
+

i

2! [x, p̂] =
Ĥ

!ω
− 1

2

and the parallel relation, aa† = Ĥ
!ω + 1

2 , we see that the operators fulfil the
commutation relations

[a, a†] ≡ aa† − a†a = 1 .

Then, setting n̂ = a†a, the Hamiltonian can be cast in the form

Ĥ = !ω(n̂ + 1/2) .

Since the operator n̂ = a†a must lead to a positive definite result, we see
that the eigenstates of the harmonic oscillator must have energies of !ω/2 or
higher. Moreover, the ground state |0〉 can be identified by finding the state
for which a|0〉 = 0. Expressed in the coordinate basis, this translates to the
equation,6

(
x +

!
mω

∂x

)
ψ0(x) = 0, ψ0(x) = 〈x|0〉 =

√
mω

π1/2!
e−mωx2/2! .

Since n̂|0〉 = a†a|0〉 = 0, this state is an eigenstate with energy !ω/2. The
higher lying states can be found by acting upon this state with the operator
a†. The proof runs as follows: If n̂|n〉 = n|n〉, we have

n̂(a†|n〉) = a† aa†
︸︷︷︸
a†a+1

|n〉 = (a† a†a︸︷︷︸
n̂

+a†)|n〉 = (n + 1)a†|n〉

6Formally, in coordinate basis, we have 〈x′|a|x〉 = δ(x′−x)(a+ !
mω ∂x) and 〈x|0〉 = ψ0(x).

Then making use of the resolution of identity
R

dx|x〉〈x| = I, we have

〈x|a|0〉 = 0 =

Z
dx 〈x|a|x′〉〈x′|0〉 =

„
x +

!
mω

∂x

«
ψ0(x) .
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or, equivalently, [n̂, a†] = a†. In other words, if |n〉 is an eigenstate of n̂ with
eigenvalue n, then a†|n〉 is an eigenstate with eigenvalue n + 1.

From this result, we can deduce that the eigenstates for a “tower” |0〉,
|1〉 = C1a†|0〉, |2〉 = C2(a†)2|0〉, etc., where Cn denotes the normalization. If
〈n|n〉 = 1 we have

〈n|aa†|n〉 = 〈n|(n̂ + 1)|n〉 = (n + 1) .

Therefore, with |n + 1〉 = 1√
n+1

a†|n〉 the state |n + 1〉 is also normalized,
〈n + 1|n + 1〉 = 1. By induction, we can deduce the general normalization,

|n〉 =
1√
n!

(a†)n|0〉 ,

with 〈n|n′〉 = δnn′ , Ĥ|n〉 = !ω(n + 1/2)|n〉 and

a†|n〉 =
√

n + 1|n + 1〉, a|n〉 =
√

n|n− 1〉 .

The operators a and a† represent ladder operators and have the effect of
lowering or raising the energy of the state.

In fact, the operator representation achieves something quite remarkable
and, as we will see, unexpectedly profound. The quantum harmonic oscillator
describes the motion of a single particle in a one-dimensional potential well.
It’s eigenvalues turn out to be equally spaced – a ladder of eigenvalues, sepa-
rated by a constant energy !ω. If we are energetic, we can of course translate
our results into a coordinate representation ψn(x) = 〈x|n〉.7 However, the
operator representation affords a second interpretation, one that lends itself
to further generalization in quantum field theory. We can instead interpret
the quantum harmonic oscillator as a simple system involving many fictitious
particles, each of energy !ω. In this representation, known as the Fock space,
the vacuum state |0〉 is one involving no particles, |1〉 involves a single particle,
|2〉 has two and so on. These fictitious particles are created and annihilated
by the action of the raising and lowering operators, a† and a with canoni-
cal commutation relations, [a, a†] = 1. Later in the course, we will find that
these commutation relations are the hallmark of bosonic quantum particles
and this representation, known as the second quantization underpins the
quantum field theory of the electromagnetic field.

' Info. There is evidently a huge difference between a stationary (Fock) state
of the harmonic oscillator and its classical counterpart. For the classical system, the
equations of motion are described by Hamilton’s equations of motion,

Ẋ = ∂P H =
P

m
, Ṗ = −∂XH = −∂xU = −mω2X ,

where we have used capital letters to distinguish them from the arguments used to de-
scribe the quantum system. In the phase space, {X(t), P (t)}, these equations describe
a clockwise rotation along an elliptic trajectory specified by the initial conditions
{X(0), P (0)}. (Normalization of momentum by mω makes the trajectory circular.)

7Expressed in real space, the harmonic oscillator wavefunctions are in fact described by
the Hermite polynomials,

ψn(x) = 〈x|n〉 =

r
1

2nn!
Hn

„r
mω
! x

«
exp

»
−mωx2

2!

–
,

where Hn(x) = (−1)nex2 dn

dxn e−x2
.
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On the other hand, the time dependence of the Fock space state, as of any sta-
tionary state, is exponential,

ψn(x, t) = 〈x|n〉e−iEnt/! ,

and, as a result, gives time-independent expectation values of x, p, or any function
thereof. The best classical image for such a state on the phase plane is a circle of
radius r = x0(2n + 1)1/2, where x0 = (!/mω)1/2, along which the wavefunction is
uniformly spread as a standing wave.

It is natural to ask how to form a wavepacket whose properties would be closer to
the classical trajectories. Such states, with the centre in the classical point {X(t), P (t)},
and the smallest possible product of quantum uncertainties of coordinate and momen-
tum, are called Glauber states.8 Conceptually the simplest way to present the
Glauber state |α〉 is as the Fock ground state |0〉 with the centre shifted from the
origin to the classical point {X(t), P (t)}. (After such a shift, the state automati-
cally rotates, following the classical motion.) Let us study how this shift may be
implemented in quantum mechanics. The mechanism for such shifts are called the
translation operators.

Previously, we have seen that the space and momentum translation operators are
given by

F̂X = exp
[
− i

! p̂X

]
, F̂P = exp

[
− i

!Px̂

]
.

A shift by both X and P is then given by

F̂α = exp
[

i

! (Px̂− p̂X)
]

= eαa†−α∗a, F̂†
α = eα∗a−αa† ,

where α is the (normalised) complex amplitude of the classical oscillations we are
trying to approximate, i.e. α = 1√

2x0
(X + i P

mω ). The Glauber state is then defined

by |α〉 = F̂α|0〉.
Working directly with the shift operator is not too convenient because of its

exponential form. However, it turns out that a much simpler representation for the
Glauber state is possible. To see this, let us start with the following general property
of exponential operators: if [Â, B̂] = µ (where Â and B̂ are operators, and µ is a
c-number), then (exercise – cf. Eq. (3.3)),

eÂB̂e−Â = B̂ + µ . (3.4)

If we define Â = α∗a− αa†, then F̂α = e−Â and F̂†
α = eÂ. If we then take B̂ = I, we

have µ = 0, and F̂†
αF̂α = I. This merely means that the shift operator is unitary -

not a big surprise, because if we shift the phase point by (+α) and then by (−α), we
certainly come back to the initial position.

If we take B̂ = a, using the commutation relations,

[Â, B̂] = [α∗a− αa†, a] = −α[a†, a] = α ,

so that µ = α, and F̂†
αaF̂α = a + α. Now let us consider the operator F̂αF̂†

αaF̂α.
From the unitarity condition, this must equal aF̂α, while application of Eq. (3.4)
yields F̂αa + αF̂α, i.e.

aF̂α = F̂αa + αF̂α .

Applying this equality to the ground state |0〉 and using the following identities,
a|0〉 = 0 and F̂α|0〉 = |α〉, we finally get a very simple and elegant result:

a|α〉 = α|α〉 .

8After R. J. Glauber who studied these states in detail in the mid-1960s, though they
were known to E. Schrödinger as early as in 1928. Another popular name, coherent states,
does not make much sense, because all the quantum states we have studied so far (including
the Fock states) may be presented as coherent superpositions.
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Thus the Glauber state is an eigenstate of the annihilation operator, corresponding to
the eigenvalue α, i.e. to the (normalized) complex amplitude of the classical process
approximated by the state. This fact makes the calculations of the Glauber state
properties much simpler.

Presented as a superposition of Fock states, the Glauber state takes the form
(exercise – try making use of the BCH identity (3.3).)

|α〉 =
∞∑

n=0

αn|n〉, αn = e−|α|2/2 αn

(n!)1/2
.

This means that the probability of finding the system in level n is given by the
Poisson distribution, Pn = |αn|2 = 〈n〉ne−〈n〉/n! where 〈n〉 = |α|2. More importantly,
δn = 〈n〉1/2 / 〈n〉 when 〈n〉 0 1 – the Poisson distribution approaches the Gaussian
distribution when 〈n〉 is large.

The time-evolution of Glauber states may be described most easily in the Schrödinger
representation when the time-dependence is transferred to the wavefunction. In this
case, α(t) ≡ 1√

2x0
(X(t) + iP (t)

mω ), where {X(t), P (t)} is the solution to the classical
equations of motion, α̇(t) = −iωα(t). From the solution, α(t) = α(0)e−iωt, one may
show that the average position and momentum evolve classically while their fluctua-
tions remain stationary,

∆x =
x0√

2
=

(
!

2mω

)1/2

, ∆p =
mωx0√

2
=

(
!mω

2m

)1/2

.

In the quantum theory of measurements these expressions are known as the “standard
quantum limit”. Notice that their product ∆x∆p = !/2 corresponds to the lower
bound of the Heisenberg’s uncertainty relation.

' Exercise. Show that, in position space, the Glauber state takes the form

〈x|α〉 = ψα(x) = C exp
[
−mω

2! (x−X)2 + i
Px

!

]
.

This completes our abridged survey of operator methods in quantum me-
chanics. With this background, we are now in a position to summarize the
basic postulates of quantum mechanics.

3.5 Postulates of quantum theory

Since there remains no “first principles” derivation of the quantum mechanical
equations of motion, the theory is underpinned by a set of “postulates” whose
validity rest on experimental verification. Needless to say, quantum mechanics
remains perhaps the most successful theory in physics.

' Postulate 1. The state of a quantum mechanical system is completely
specified by a function Ψ(r, t) that depends upon the coordinates of the
particle(s) and on time. This function, called the wavefunction or state
function, has the important property that |Ψ(r, t)|2 dr represents the
probability that the particle lies in the volume element dr ≡ ddr located
at position r at time t.
The wavefunction must satisfy certain mathematical conditions because
of this probabilistic interpretation. For the case of a single particle, the
net probability of finding it at some point in space must be unity leading
to the normalization condition,

∫∞
−∞ |Ψ(r, t)|2 dr = 1. It is customary to

also normalize many-particle wavefunctions to unity. The wavefunction
must also be single-valued, continuous, and finite.
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' Postulate 2. To every observable in classical mechanics there corre-
sponds a linear, Hermitian operator in quantum mechanics.

If we require that the expectation value of an operator Â is real, then
it follows that Â must be a Hermitian operator. If the result of a mea-
surement of an operator Â is the number a, then a must be one of the
eigenvalues, ÂΨ = aΨ, where Ψ is the corresponding eigenfunction. This
postulate captures a central point of quantum mechanics – the values
of dynamical variables can be quantized (although it is still possible to
have a continuum of eigenvalues in the case of unbound states).

' Postulate 3. If a system is in a state described by a normalized wave-
function Ψ, then the average value of the observable corresponding to Â
is given by

〈A〉 =
∫ ∞

−∞
Ψ∗ÂΨdr .

If the system is in an eigenstate of Â with eigenvalue a, then any mea-
surement of the quantity A will yield a. Although measurements must
always yield an eigenvalue, the state does not have to be an eigenstate
of Â initially. An arbitrary state can be expanded in the complete set
of eigenvectors of Â ( ÂΨi = aiΨi) as Ψ =

∑n
i ciΨi, where n may go to

infinity. In this case, the probability of obtaining the result ai from the
measurement of Â is given by P (ai) = |〈Ψi|Ψ〉|2 = |ci|2. The expecta-
tion value of Â for the state Ψ is the sum over all possible values of the
measurement and given by

〈A〉 =
∑

i

ai|〈Ψi|Ψ〉|2 =
∑

i

ai|ci|2 .

Finally, a measurement of Ψ which leads to the eigenvalue ai, causes the
wavefunction to “collapses” into the corresponding eigenstate Ψi. (In
the case that ai is degenerate, then Ψ becomes the projection of Ψ onto
the degenerate subspace). Thus, measurement affects the state of the
system.

' Postulate 4. The wavefunction or state function of a system evolves in
time according to the time-dependent Schrödinger equation

i!∂Ψ
∂t

= ĤΨ(r, t) ,

where Ĥ is the Hamiltonian of the system. If Ψ is an eigenstate of Ĥ,
it follows that Ψ(r, t) = Ψ(r, 0)e−iEt/!.
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