
Chapter 8

Identical Particles

Until now, most of our focus has been on the quantum mechanical behaviour
of individual particles, or problems which can be “factorized” into independent
single-particle systems.1 However, most physical systems of interest involve
the interaction of large numbers of particles; electrons in a solid, atoms in a gas,
etc. In classical mechanics, particles are always distinguishable in the sense
that, at least formally, their “trajectories” through phase space can be traced
and their identity disclosed. However, in quantum mechanics, the intrinsic
uncertainty in position, embodied in Heisenberg’s principle, demands a careful
and separate consideration of distinguishable and indistinguishable particles.
In the present section, we will consider how to formulate the wavefunction of
many-particle systems, and adress some of the (sometimes striking and often
counter-intuitive) implications of particle indistinguishability.

8.1 Quantum statistics

Consider then two identical particles confined to a box in one-dimension. Here,
by identical, we mean that the particles can not be discriminated by some
internal quantum number. For example, we might have two electrons of the
same spin. The normalized two-particle wavefunction ψ(x1, x2), which gives
the probability |ψ(x1, x2)|2dx1dx2 of finding simultaneously one particle in
the interval x1 to x1 + dx1 and another between x2 to x2 + dx2, only makes
sense if |ψ(x1, x2)|2 = |ψ(x2, x1)|2, since we can’t know which of the two
indistinguishable particles we are finding where. It follows from this that the
wavefunction can exhibit two (and, generically, only two) possible symmetries
under exchange: ψ(x1, x2) = ψ(x2, x1) or ψ(x1, x2) = −ψ(x2, x1).2 If two
identical particles have a symmetric wavefunction in some state, particles of
that type always have symmetric wavefunctions, and are called bosons. (If
in some other state they had an antisymmetric wavefunction, then a linear

1For example, our treatment of the hydrogen atom involved the separation of the system
into centre of mass and relative motion. Each could be referred to an effective single-particle
dynamics.

2We could in principle have ψ(x1, x2) = eiαψ(x2, x1), with α a constant phase. However,
in this case we would not recover the original wavefunction on exchanging the particles twice.
Curiously, in some two-dimensional theories used to describe the fractional quantum Hall
effect, there exist collective excitations of the electron system — called anyons — that do
have this kind of property. For a discussion of this point, one may refer to the seminal
paper of J. M. Leinaas and J. Myrheim, On the theory of identical particles. Il Nuovo
Cimento B37, 1-23 (1977). Such anyonic systems have been proposed as a strong candidate
for the realization of quantum computation. For a pedagogical discussion, we refer to an
entertaining discussion by C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma,
Non-Abelian Anyons and Topological Quantum Computation, Rev. Mod. Phys. 80, 1083
(2008). However, all ordinary “fundamental” particles are either bosons or fermions.
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superposition of those states would be neither symmetric nor antisymmetric,
and so could not satisfy the relation |ψ(x1, x2)|2 = |ψ(x2, x1)|2.) Similarly,
particles having antisymmetric wavefunctions are called fermions.

To construct wavefunctions for three or more fermions, let first suppose
that the particles do not interact with each other, and are confined by a spin-
independent potential, such as the Coulomb field of a nucleus. In this case,
the Hamiltonian will be symmetric in the fermion degrees of freedom,

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+

p̂2
3

2m
· · · + V (r1) + V (r2) + V (r3) + · · · ,

and the solutions of the Schrödinger equation will be products of eigenfunc-
tions of the single-particle Hamiltonian Ĥs = p̂2/2m + V (r). However, sin-
gle products such as ψa(1)ψb(2)ψc(3) do not have the required antisymmetry
property under the exchange of any two particles. (Here a, b, c, ... label the
single-particle eigenstates of Ĥs, and 1, 2, 3,... denote both space and spin
coordinates of single particles, i.e. 1 stands for (r1, s1), etc.)

We could achieve the necessary antisymmetrization for particles 1 and
2 by subtracting the same product wavefunction with the particles 1 and 2
interchanged, i.e. ψa(1)ψb(2)ψc(3) "→ (ψa(1)ψb(2)−ψa(2)ψb(1))ψc(3), ignoring
the overall normalization for now. However, the wavefunction needs to be
antisymmetrized with respect to all possible particle exchanges. So, for 3
particles, we must add together all 3! permutations of 1, 2, 3 in the state a, b,
c, with a factor −1 for each particle exchange necessary to get to a particular
ordering from the original ordering of 1 in a, 2 in b, and 3 in c. In fact, such a
sum over permutations is precisely the definition of the determinant. So, with
the appropriate normalization factor:

ψabc(1, 2, 3) =
1√
3!

∣∣∣∣∣∣

ψa(1) ψb(1) ψc(1)
ψa(2) ψb(2) ψc(2)
ψa(3) ψb(3) ψc(3)

∣∣∣∣∣∣
.

The determinantal form makes clear the antisymmetry of the wavefunction
with respect to exchanging any two of the particles, since exchanging two
rows of a determinant multiplies it by −1. We also see from the determinantal
form that the three states a, b, c must all be different, for otherwise two
columns would be identical, and the determinant would be zero. This is just
the manifestation of Pauli’s exclusion principle: no two fermions can be in the
same state.

Although these determinantal wavefunctions (known as Slater determi-
nants), involving superpositions of single-particle states, are only strictly cor-
rect for non-interacting fermions, they provide a useful platform to describe
electrons in atoms (or in a metal), with the electron-electron repulsion ap-
proximated by a single-particle potential. For example, the Coulomb field in
an atom, as seen by the outer electrons, is partially shielded by the inner elec-
trons, and a suitable V (r) can be constructed self-consistently, by computing
the single-particle eigenstates and finding their associated charge densities (see
section 9.2.1).

In the bosonic system, the corresponding many-particle wavefunction must
be symmetric under particle exchange. We can obtain such a state by expand-
ing all of the contributing terms from the Slater determinant and setting all
of the signs to be positive. In other words, the bosonic wave function de-
scribes the uniform (equal phase) superposition of all possible permutations
of product states.
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8.2 Space and spin wavefunctions

Although the metholodology for constructing a basis of many-particle states
outlined above is generic, it is not particularly convenient when the Hamil-
tonian is spin-independent. In this case we can simplify the structure of
the wavefunction by factorizing the spin and spatial components. Suppose
we have two electrons (i.e. fermions) in some spin-independent potential
V (r). We know that the two-electron wavefunction must be antisymmetric
under particle exchange. Since the Hamiltonian has no spin-dependence, we
must be able to construct a set of common eigenstates of the Hamiltonian,
the total spin, and the z-component of the total spin. For two electrons,
there are four basis states in the spin space, the S = 0 spin singlet state,
|χS=0,Sz=0〉 = 1√

2
(| ↑1↓2〉 − | ↓1↑2〉), and the three S = 1 spin triplet states,

|χ11〉 = | ↑1↑2〉, |χ10〉 =
1√
2

(| ↑1↓2〉+ | ↓1↑2〉) , |χ1,−1〉 = | ↓1↓2〉 .

Here the first arrow in the ket refers to the spin of particle 1, the second to
particle 2.

# Exercise. By way of revision, it is helpful to recapitulate the discussion of the Hint: begin by proving that, for
two spin s = 1/2 degree of free-
dom, S2 = S2

1 + S2
2 + 2S1 · S2 =

2×s(s+1)!2 +2Sz
1Sz

2 +S+
1 S−2 +

S−1 S+
2 .

addition of spin s = 1/2 angular momenta. By setting S = S1 +S2,3 where S1 and S2

are two spin 1/2 degrees of freedom, construct the matrix elements of the total spin
operator S2 for the four basis states, | ↑↑〉, | ↑↓〉, | ↓↑〉, and | ↓↓〉. From the matrix
representation of S2, determine the four eigenstates. Show that one corresponds to a
total spin zero state and three correspond to spin 1.

It is evident that the spin singlet wavefunction is antisymmetric under the
exchange of two particles, while the spin triplet wavefunction is symmetric.
For a general state, the total wavefunction for the two electrons in a common
eigenstate of S2, Sz and the Hamiltonian Ĥ then has the form:

Ψ(r1, s1; r2, s2) = ψ(r1, r2)χ(s1, s2) ,

where χ(s1, s2) = 〈s1, s2|χ〉. For two electron degrees of freedom, the to-
tal wavefunction, Ψ, must be antisymmetric under exchange. It follows that
a pair of electrons in the spin singlet state must have a symmetric spatial
wavefunction, ψ(r1, r2), whereas electrons in the spin triplet states must have
an antisymmetric spatial wavefunction. Before discussing the physical conse-
quences of this symmetry, let us mention how this scheme generalizes to more
particles.

# Info. Symmetry of three-electron wavefunctions: Unfortunately, in
seeking a factorization of the Slater determinant into a product of spin and spatial
components for three electrons, things become more challenging. There are now
23 = 8 basis states in the spin space. Four of these are accounted for by the spin 3/2
state with Sz = 3/2, 1/2, −1/2, −3/2. Since all spins are aligned, this is evidently
a symmetric state, so must be multiplied by an antisymmetric spatial wavefunction,
itself a determinant. So far so good. But the other four states involve two pairs of
total spin 1/2 states built up of a singlet and an unpaired spin. They are orthogonal
to the symmetric spin 3/2 state, so they can’t be symmetric. But they can’t be
antisymmetric either, since in each such state, two of the spins must be pointing
in the same direction! An example of such a state is presented by |χ〉 = | ↑1〉 ⊗
1√
2

(| ↑2↓3〉 − | ↓2↑3〉). Evidently, this must be multiplied by a spatial wavefunction

3Here, for simplicity, we have chosen not to include hats on the spin angular momentum
operators.
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symmetric in 2 and 3. But to recover a total wave function with overall antisymmetry
it is necessary to add more terms:

Ψ(1, 2, 3) = χ(s1, s2, s3)ψ(r1, r2, r3) + χ(s2, s3, s1)ψ(r2, r3, r1) + χ(s3, s1, s2)ψ(r3, r1, r2) .

Requiring the spatial wavefunction ψ(r1, r2, r3) to be symmetric in 2, 3 is sufficient
to guarantee the overall antisymmetry of the total wavefunction Ψ.4 For more than
three electrons, similar considerations hold. The mixed symmetries of the spatial
wavefunctions and the spin wavefunctions which together make a totally antisym-
metric wavefunction are quite complex, and are described by Young diagrams (or
tableaux).5 A discussion of this scheme reaches beyond the scope of these lectures.

# Exercise. A hydrogen atom consists of two fermions, the proton and the
electron. By considering the wavefunction of two non-interacting hydrogen atoms
under exchange, show that the atom transforms as a boson. In general, if the number
of fermions in a composite particle is odd, then it is a fermion, while if even it is
a boson. Quarks are fermions: baryons consist of three quarks and so translate to
fermions while mesons consist of two quarks and translate to bosons.

8.3 Physical consequences of particle statistics

The overall antisymmetry demanded by the many-fermion wavefunction has
important physical implications. In particular, it determines the magnetic
properties of atoms. The magnetic moment of the electron is aligned with its
spin, and even though the spin variables do not appear in the Hamiltonian,
the energy of the eigenstates depends on the relative spin orientation. This
arises from the electrostatic repulsion between electrons. In the spatially an-
tisymmetric state, the probability of electrons coinciding at the same position
necessarily vanishes. Moreover, the nodal structure demanded by the anti-
symmetry places the electrons further apart on average than in the spatially
symmetric state. Therefore, the electrostatic repulsion raises the energy of the
spatially symmetric state above that of the spatially antisymmetric state. It
therefore follows that the lower energy state has the electron spins pointing in
the same direction. This argument is still valid for more than two electrons,
and leads to Hund’s rule for the magnetization of incompletely filled inner
shells of electrons in transition metal and rare earths atoms (see chapter 9).
This is the first step in understanding ferromagnetism.

A gas of hydrogen molecules provides another manifestation of wavefunc-
tion antisymmetry. In particular, the specific heat depends sensitively on
whether the two protons (spin 1/2) in H2 have their spins parallel or antipar-
allel, even though that alignment involves only a very tiny interaction energy.
If the proton spins occupy a spin singlet configuration, the molecule is called
parahydrogen while the triplet states are called orthohydrogen. These two
distinct gases are remarkably stable - in the absence of magnetic impurities,
paraortho transitions take weeks.

The actual energy of interaction of the proton spins is of course completely
negligible in the specific heat. The important contributions to the specific heat

4Particle physics enthusiasts might be interested to note that functions exactly like this
arise in constructing the spin/flavour wavefunction for the proton in the quark model (Grif-
fiths, Introduction to Elementary Particles, page 179).

5For a simple introduction, see Sakurai’s textbook (section 6.5) or chapter 63 of the text
on quantum mechanics by Landau and Lifshitz.
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are the usual kinetic energy term, and the rotational energy of the molecule.
This is where the overall (space × spin) antisymmetric wavefunction for the
protons plays a role. Recall that the parity of a state with rotational angular
momentum $ is (−1)!. Therefore, parahydrogen, with an antisymmetric pro-
ton spin wavefunction, must have a symmetric proton spatial wavefunction,
and so can only have even values of the rotational angular momentum. Or-
thohydrogen can only have odd values. The energy of the rotational level with
angular momentum $ is Etot

! = !2$($ + 1)/I, where I denotes the moment of
inertia of the molecule. So the two kinds of hydrogen gas have different sets
of rotational energy levels, and consequently different specific heats.

# Exercise. Determine the degeneracy of ortho- and parahydrogen. By ex-
pressing the state occupancy of the rotational states through the Boltzmann factor,
determine the low temperature variation of the specific heat for the two species.

# Example: As a final example, and one that will feed into our discussion of
multielectron atoms in the next chapter, let us consider the implications of particle
statistics for the excited state spectrum of Helium. After Hydrogen, Helium is
the simplest atom having two protons and two neutrons in the nucleus (Z = 2), and
two bound electrons. As a complex many-body system, we have seen already that the
Schrödinger equation is analytically intractable and must be treated perturbatively.
Previously, in chapter 7, we have used the ground state properties of Helium as a
vehicle to practice perturbation theory. In the absence of direct electron-electron
interaction, the Hamiltonian

Ĥ0 =
2∑

n=1

[
p̂2

n

2m
+ V (rn)

]
, V (r) = − 1

4πε0

Ze2

r
,

is separable and the wavefunction can be expressed through the states of the hydrogen
atom, ψn!m. In this approximation, the ground state wavefunction involves both
electrons occupying the 1s state leading to an antisymmetric spin singlet wavefunction
for the spin degrees of freedom, |Ψg.s.〉 = (|100〉 ⊗ |100〉) ⊗ |χ00〉. In chapter 7, we
made use of both the perturbative series expansion and the variational method to
determine how the ground state energy is perturbed by the repulsive electron-electron
interaction,

Ĥ1 =
1

4πε0

e2

|r1 − r2|
.

Now let us consider the implications of particle statistics on the spectrum of the lowest
excited states.

From the symmetry perspective, the ground state wavefunction belongs to the
class of states with symmetric spatial wavefunctions, and antisymmetric spin (singlet)
wavefunctions. These states are known as parahelium. In the absence of electron-
electron interaction, the first excited states are degenerate and have the form,

|ψp〉 =
1√
2

(|100〉 ⊗ |2$m〉+ |2$m〉 ⊗ |100〉)⊗ |χ00〉 .

The second class of states involve an antisymmetric spatial wavefunction, and sym-
metric (triplet) spin wavefunction. These states are known as orthohelium. Once
again, in the absence of electron-electron interaction, the first excited states are de-
generate and have the form,

|ψo〉 =
1√
2

(|100〉 ⊗ |2$m〉 − |2$m〉 ⊗ |100〉)⊗ |χ1Sz 〉 .

The perturbative shift in the ground state energy has already been calculated
within the framework of first order perturbation theory. Let us now consider the shift
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in the excited states. Despite the degeneracy, since the off-diagonal matrix elements
vanish, we can make use of the first order of perturbation theory to compute the shift.
In doing so, we obtain

∆Ep,o
n! =

1
2

e2

4πε0

∫
d3r1d

3r2|ψ100(r1)ψn!0(r2) ± ψn!0(r1)ψ100(r2)|2
1

|r1 − r2|
,

with the plus sign refers to parahelium and the minus to orthohelium. Since the
matrix element is independent of m, the m = 0 value considered here applies to all
values of m. Rearranging this equation, we thus obtain ∆Ep,o

n! = Jn! ± Kn! where

Jn! =
e2

4πε0

∫
d3r1d

3r2
|ψ100(r1)|2|ψn!0(r2)|2

|r1 − r2|

Kn! =
e2

4πε0

∫
d3r1d

3r2
ψ∗100(r1)ψ∗n!0(r2)ψ100(r2)ψn!0(r1)

|r1 − r2|
.

Physically, the term Jn! represents the electrostatic interaction energy associated
with the two charge distributions |ψ100(r1)|2 and |ψn!0(r2)|2, and it is clearly posi-
tive. By contrast, the exchange term, which derives from the antisymmetry of the
wavefunction, leads to a shift with opposite signs for ortho and para states. In fact,
one may show that, in the present case, Kn! is positive leading to a positive energy
shift for parahelium and a negative shift for orthohelium. Moreover, noting that

2S1 · S2 = (S1 + S2)2 − S2
1 − S2

2 = !2

(
S(S + 1)− 2× 3

4

)
= !2

{
1/2 triplet
−3/2 singlet

the energy shift can be written as

∆Ep,o
n! = Jn! −

1
2

(
1 +

4
!2

S1 · S2

)
Kn! .

This result shows that the electron-electron interaction leads to an effective ferro-
magnetic interaction between spins – i.e. the spins want to be aligned.6

Energy level diagram for ortho-
and parahelium showing the first
order shift in energies due to
the Coulomb repulsion of elec-
trons. Here we assume that one
of the electrons stays close to the
ground state of the unperturbed
Hamiltonian.

In addition to the large energy shift between the singlet and triplet states, electric
dipole decay selection rules ∆$ = ±1, ∆s = 0 (whose origin is discussed later in the
course) cause decays from triplet to singlet states (or vice-versa) to be suppressed by
a large factor (compared to decays from singlet to singlet or from triplet to triplet).
This caused early researchers to think that there were two separate kinds of Helium.
The diagrams (right) shows the levels for parahelium (singlet) and for orthohelium
(triplet) along with the dominant decay modes.

8.4 Ideal quantum gases

An important and recurring example of a many-body system is provided by
the problem of free (i.e. non-interacting) non-relativistic quantum particles in
a closed system – a box. The many-body Hamiltonian is then given simply by

Ĥ0 =
N∑

i=1

p̂2
i

2m
,

where p̂i = −i!∇i and m denotes the particle mass. If we take the dimensions
of the box to be Ld, and the boundary conditions to be periodic7 (i.e. the box

6A similar phenomenology extends to the interacting metallic system where the exchange
interaction leads to the phenomenon of itinerant (i.e. mobile) ferromagnetism – Stoner
ferromagnetism.

7It may seem odd to consider such an unphysical geometry – in reality, we are invariably
dealing with a closed system in which the boundary conditions translate to “hard walls” –
think of electrons in a metallic sample. Here, we have taken the boundary conditions to be
periodic since it leads to a slightly more simple mathematical formulation. We could equally
well consider closed boundary conditions, but we would have to separately discriminate
between “even and odd” states and sum them accordingly. Ultimately, we would arrive to
the same qualitative conclusions!
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Figure 8.1: (Left) Schematic showing the phase space volume associated with each
plane wave state in a Fermi gas. (Right) Schematic showing the state occupancy of a
filled Fermi sea.

has the geometry of a d-torus) the normalised eigenstates of the single-particle
Hamiltonian are simply given by plane waves, φk(r) = 〈r|k〉 = 1

Ld/2 eik·r, with
wavevectors taking discrete values,8

k =
2π

L
(n1, n2, · · ·nd), ni integer .

To address the quantum mechanics of the system, we start with fermions.

8.4.1 Non-interacting Fermi gas

In the (spinless) Fermi system, Pauli exclusion inhibits the multiple oc-
cupancy of single-particle states. In this case, the many-body ground state
wavefunction is obtained by filling states sequentially up to the Fermi en-
ergy, EF = !2k2

F /2m, where the Fermi wavevector, kF , is fixed by the
number of particles. All the plane wave states φk with energies lower than
EF are filled, while all states with energies larger than EF remain empty.
Since each state is associated with a k-space volume (2π/L)d (see Fig. 8.1), in
the three-dimensional system, the total number of occupied states is given by
N = ( L

2π )3 4
3πk3

F , i.e. defining the particle density n = N/L3 = k3
F /6π2,

EF =
!2

2m
(6π2n)

2
3 .

The density of states per unit volume,

g(E) =
1
L3

dN

dE
=

1
6π2

d

dE

(
2mE

!2

)3/2

=
1

4π2

(
2m

!2

)3/2

E1/2 .

Note that the volume of a d-
dimensional sphere is given by
Sd = 2πd/2

Γ(d/2) .# Exercise. Obtain an expression for the density of states, g(E) in dimension
d. In particular, show that the density of states varies as g(E) ∼ E(d−2)/2.

8The quantization condition follows form the periodic boundary condition, φ[r+L(mxx̂+
myŷ + mz ẑ)] = φ(r), where m = (mx, my, mz) denotes an arbitrary vector of integers.
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We can also integrate to obtain the total energy density of all the fermions,

Etot

L3
=

1
L3

∫ kF

0

4πk2dk

(2π/L)3
!2k2

2m
=

!2

20π2m
(6π2n)5/3 =

3
5
nEF .

# Info. Degeneracy pressure: The pressure exerted by fermions squeezed
into a small box is what keeps cold stars from collapsing. A White dwarf is a
remnant of a normal star which has exhausted its fuel fusing light elements into
heavier ones (mostly 56Fe). As the star cools, it shrinks in size until it is arrested by
the degeneracy pressure of the electrons. If the white dwarf acquires more mass, the
Fermi energy EF rises until electrons and protons abruptly combine to form neutrons
and neutrinos, an event known as a supernova. The neutron star left behind is
supported by degeneracy pressure of the neutrons.

The image shows the crab pul-
sar, a magnetized neutron star
spinning at 30 times per second,
that resides at the centre of the
crab nebula. The pulsar pow-
ers the X-ray and optical emis-
sion from the nebula, accelerat-
ing charged particles and pro-
ducing the glowing X-ray jets.
Ring-like structures are X-ray
emitting regions where the high
energy particles slam into the
nebular material. The innermost
ring is about a light-year across.
With more mass than the Sun
and the density of an atomic nu-
cleus; the spinning pulsar is the
collapsed core of a massive star
that exploded, while the nebula
is the expanding remnant of the
star’s outer layers. The super-
nova explosion was witnessed in
the year 1054. The lower image
shows the typical size of a neu-
tron star against Manhattan!

We can compute the degeneracy pressure from analyzing the dependence of the
energy on volume for a fixed number of particles (fermions). From thermodynamics,
we have dE = F · ds = PdV , i.e. the pressure P = −∂V Etot. The expression
for Etot given above shows that the pressure depends on the volume and particle
number N only through the density, n. To determine the point of collapse of stars,
we must compare this to the pressure exerted by gravity. We can compute this
approximately, ignoring general relativity and, more significantly, the variation of
gravitational pressure with radius. The mass contained within a shell of width dr
at radius r is given by dm = 4πρr2 dr, where ρ denotes the density. This mass
experiences a gravitational force from the mass contained within the shell, M =
4
3πr3ρ. The resulting potential energy is given by

EG = −
∫

GMdm

r
= −

∫ R

0
d3r

G( 4
3πr3ρ)4πr2ρ

r
= − (4π)2

15
Gρ2R5 = −3GM2

5R
, .

The mass of the star is dominated by nucleons, M = NMN , where MN denotes the
nucleon mass and N their number. Substituting this expression into the formula for
the energy, we find EG = − 3

5G(NMN )2( 4π
3V ) 1

3 , from which we obtain the pressure,

PG = −∂V EG = −1
5
G(NMN )2

(
4π

3

)1/3

V −4/3 .

For the point of instability, this pressure must perfectly balance with the degener-
acy pressure. For a white dwarf, the degeneracy pressure is associated with electrons
and given by,

Pe = −∂V Etot =
!2

60π2me
(6π2Ne)5/3V −5/3 .

Comparing PG and Pe, we can infer the critical radius,

R ≈ !2N5/3
e

GmeM2
NN2

.

Since there are about two nucleons per electron, NN ≈ 2Ne, R . !2

GmeM2
N

N− 1
3 ,

showing that radius decreases as we add mass. For one solar mass, N = 1057, we get
a radius of ca. 7200 km, the size of the Earth while EF . 0.2 MeV.

During the cooling period, a white dwarf star will shrink in size approaching the
critical radius. Since the pressure from electron degeneracy grows faster than the
pressure of gravity, the star will stay at about Earth size even when it cools. If the
star is more massive, the Fermi energy goes up and it becomes possible to absorb
the electrons into the nucleons, converting protons into neutrons. If the electrons
disappear this way, the star collapses suddenly down to a size for which the Fermi
pressure of the neutrons stops the collapse. Some white dwarfs stay at Earth size for a
long time as they suck in mass from their surroundings. When they have just enough
mass, they collapse forming a neutron star and making a supernova. The supernovae
are all nearly identical since the dwarfs are gaining mass very slowly. The brightness
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of this type of supernova has been used to measure the accelerating expansion of the
universe. An estimate the neutron star radius using the formulae above leads to

Rneutron

Rwhite dwarf
. me

MN
. 10−3 ,

i.e. ca. 10 km. If the pressure at the center of a neutron star becomes too great, it
collapses to become a black hole.

8.4.2 Ideal Bose gas

Satyendra Nath Bose 1894-1974
An Indian physi-
cist who is best
known for his
work on quantum
mechanics in
the early 1920s,
providing the
foundation for
Bose-Einstein
statistics and the development of
the theory of the Bose-Einstein
condensate. He is honored as the
namesake of the boson.

In a system of N spinless non-interacting bosons, the ground state of
the many-body system is described simply by a wavefunction in which all
N particles occupy the lowest energy single-particle state, i.e. in this case,
the fully symmetrized wavefunction can be expressed as the product state,
ψB(r1, r2, · · · rN ) =

∏N
i=1 φk=0(ri). (More generally, for a confining potential

V (r), φk(r) denote the corresponding single-particle bound states with k the
associated quantum numbers.) However, in contrast to the Fermi system, the
transit to the ground state from non-zero temperatures has an interesting fea-
ture with intriguing experimental ramifications. To understand why, let us
address the thermodynamics of the system.

For independent bosons, the number of particles in plane wave state k with
energy εk is given by the Bose-Einstein distribution,

nk =
1

e(εk−µ)/kBT − 1
,

where the chemical potential, µ, is fixed by the condition N =
∑

k nk with
N the total number of particles. In a three-dimensional system, for N large,
we may approximate the sum by an integral over momentum space setting∑

k "→ ( L
2π )3

∫
d3k. As a result, we find that

N

L3
= n =

1
(2π)3

∫
d3k

1
e(εk−µ)/kBT − 1

.

For a free particle system, where εk = !2k2

2m , this means that

n =
1

λ3
T

Li3/2(µ/kBT ) , (8.1)

where Lin(z) =
∑∞

k=1
zk

kn denotes the polylogarithm, and λT = ( h2

2πmkBT )1/2

denotes the thermal wavelength, i.e. the length scale at which the corre-
sponding energy scale becomes comparable to temperature. As the density of
particles increase, or the temperature falls, µ increases from negative values
until, at some critical value of density, nc = λ−3

T ζ(3/2), µ becomes zero (note
that Lin(0) = ζ(n)). Equivalently, inverting, this occurs at a temperature,

kBTc = α
!2

m
n2/3, α =

2π

ζ2/3(3/2)
.

Clearly, since nk ≥ 0, the Bose distribution only makes sense for µ negative.
So what happens at this point?

Consider first what happens at zero temperature. Since the particles are
bosons, the ground state consists of every particle sitting in the lowest energy
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state (k = 0). But such a singular distribution was excluded by the replace-
ment of the sum by the integral. Suppose that, at T < Tc, we have a thermo-
dynamic fraction f(T ) of particles sitting in this state.9 Then the chemical
potential may stay equal to zero and Eq. (8.1) becomes n = 1

λ3
T
ζ(3/2)+f(T )n,

where f(T ) denotes the fraction of particles in the ground state. But, since
n = 1

λ3
Tc

ζ(3/2), we have

f(T ) = 1−
(

λTc

λT

)3

= 1−
(

T

Tc

)3/2

.

The unusual, highly quantum degenerate state emerging below Tc is known as
a Bose-Einstein condensate (BEC).10 Note that,

∫ ∞

0
dx

x2

ex − 1
= 2ζ(3) ∼ 2.404 .# Exercise. Ideal Bose gas in a harmonic trap: Show that, in an harmonic

trap, V (r) = 1
2mω2r2, the corresponding relation is given by f(T ) = N [1− ( T

TBEC
)3],

with kBTc = !ω(N/ζ(3))1/3.

# Info. Although solid state systems continue to provide the most “accessible”
arena in which to study the properties of quantum liquids and gases, in recent years, a
new platform has been realized through developments in atomic physics – in the field of
ultracold atom physics, dilute atomic vapours are maintained at temperatures close
to absolute zero, typically below some tenths of microkelvins, where their behaviour
are influenced by the effects of quantum degneracy. The method of cooling the gas
has a long history which it would be unwise to detail here. But in short, alkali atoms
can be cooled by a technique known as laser cooling. Laser beams, in addition to
carrying heat, also carry momentum. As a result, photons impart a pressure when
they collide with atoms. The acceleration of an atom due to photons can be some four
orders of magnitude larger than gravity. Consider then a geometry in which atoms
are placed inside two counterprogating laser beams. To slow down, an atom has to
absorb a photon coming towards it, and not from behind. This can be arranged by
use of the Doppler shift. By tuning the laser frequency a little bit towards the low-
frequency (“red”) side of a resonance, the laser beam opposing the atom is Doppler
shifted to a higher (more “blue”) frequency. Thus the atom is more likely to absorb
that photon. A photon coming from behind the atom is now a little bit redder, which
means the atom is less likely to absorb that photon. So in whichever direction the

Schematic of a Magneto-Optical
Trap (MOT). The invention of
the MOT in 1987 at Bell Labs
and optical molasses was the ba-
sis for the 1997 Nobel Prize in
Physics.

atom is moving, the laser beam opposing the motion seems stronger to the atom, and
it slows the atom down. If you multiply this by three and have laser beams coming
from the north, south, east, west, up, and down, you get an “optical molasse”. If
you walk around in a pot full of molasses, whichever direction you go, the molasses
somehow knows that is the direction to push against. It’s the same idea.

In the study of ultracold atomic gases, experimentalists are usually concerned
with addressing the properties of neutral alkali atoms. The number of atoms in a
typical experiment ranges from 104 to 107. The atoms are conned in a trapping
potential of magnetic or optical origin, with peak densities at the centre of the trap
ranging from 1013 cm3 to 1015 cm3. The development of quantum phenomena such as
Bose-Einstein condensation requires a phase-space density of order unity, or nλ3

T ∼ 1
where λT denotes the thermal de Broglie wavelength. These densities correspond to
temperatures,

T ∼ !2n2/3

mkB
∼ 100nK to a few µK .

9Here, by thermodynamic, we mean that the fraction scales in proportion to the density.
10The Bose-Einstein condensate was first predicted by Satyendra Nath Bose and Albert

Einstein in 1924-25. Bose first sent a paper to Einstein on the quantum statistics of light
quanta (now called photons). Einstein was impressed, translated the paper himself from
English to German and submitted it for Bose to the Zeitschrift fr Physik which published it.
Einstein then extended Bose’s ideas to material particles (or matter) in two other papers.
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Figure 8.2: (Left) Observation of BEC by absorption imaging. The top row shows
shadow pictures, which are rendered in a 3d plot below. The “sharp peak” is the
BEC, characterized by its slow expansion observed after 6ms time of flight. The total
number of atoms at the phase transition is about 7×105, and the temperature at the
transition point is 2µK. (Figure from Ketterle.) (right) Figure shows the shrinking of
the atom cloud in a magnetic as the temperature is reduced by evaporative cooling.
Comparison between bosonic 7Li (left) and fermionic 6Li (right) shows the distinctive
signature of quantum statistics. The fermionic cloud cannot shrink below a certain
size determined by the Pauli exclusion principle. This is the same phenomenon that
prevents white dwarf and neutron stars from shrinking into black holes. At the
highest temperature, the length of the clouds was about 0.5mm. (Figure from J. R.
Anglin and W. Ketterle, Bose-Einstein condensation of atomic gases, Nature 416,
211 (2002).)

At these temperatures the atoms move at speeds of ∼
√

kBT/m ∼ 1 cm s−1, which
should be compared with around 500 ms1 for molecules at room temperature, and
∼ 106 ms−1 for electrons in a metal at zero temperature. Achieving the regime n3

T ∼ 1,
through sufficient cooling, is the principle experimental advance that gave birth to
this new field of physics.

It should be noted that such low densities of atoms are in fact a necessity. We are
dealing with systems whose equilibrium state is a solid (that is, a lump of Sodium,
Rubidium, etc.). The rst stage in the formation of a solid would be the combination
of pairs of atoms into diatomic molecules, but this process is hardly possible without
the involvement of a third atom to carry away the excess energy. The rate per atom
of such three-body processes is 1029 − 10−30 cm6s−1, leading to a lifetime of several
seconds to several minutes. These relatively long timescales suggest that working
with equilibrium concepts may be a useful first approximation.

Bosons Fermions
7Li I=3/2

23Na I=3/2
87Rb I=3/2

6Li I=1
23K I=4

Since the alkali elements have odd atomic number Z, we readily see that alkali
atoms with odd mass number are bosons, and those with even mass number are
fermions. Thus bosonic and fermionic alkalis have half-integer and integer nuclear
spin respectively. Alkali atoms have a single valence electron in an ns state, so have
electronic spin J = S = 1/2. The experimental star players: are shown in the table
(right). The hyperfine coupling between electronic and nuclear spin splits the ground
state manifold into two multiplets with total spin F = I ± 1/2. The Zeeman splitting
of these multiplets by a magnetic field forms the basis of magnetic trapping.

So, based on our discussion above, what happens when a Bose or Fermi gas is
confined by an harmonic trapping potential, V (r) = 1

2mω2r2. At high temperatures,
Bose and Fermi gases behave classically and form a thermal (Gaussian) distribution,
P (r) . e−mω2r2/2kBT . As the system is cooled towards the point of quantum degen-
eracy, i.e. when the typical separation between particles, n−1/3, becomes comparable
to the thermal wavelength, λT , quantum statistics begin to impact. In the Fermi
system, Pauli exclusion leads to the development of a Fermi surface and the cloud
size becomes arrested. By contrast, the Bose system can form a BEC, with atoms
condensing into the ground state of the harmonic potential. Both features are shown
in Figure 8.2.
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