
Chapter 4

Quantum mechanics in more
than one-dimension

Previously, we have explored the manifestations of quantum mechanics in one
spatial dimension and discussed the properties of bound and unbound states.
The concepts developed there apply equally to higher dimension. However,
for a general two or three-dimensional potential, without any symmetry, the
solutions of the Schrödinger equation are often inaccessible. In such situations,
we may develop approximation methods to address the properties of the states
(see chapter 7). However, in systems where there is a high degree of symmetry,
the quantum mechanics of the system can often be reduced to a tractable low-
dimensional theory.

4.1 Rigid diatomic molecule

As a pilot example let us consider the quantum mechanics of a rigid diatomic
molecule with nuclear masses m1 and m2, and (equilibrium) bond length, Re

(see figure). Since the molecule is rigid, its coordinates can be specified by
its centre of mass, R = m1r1+m2r2

m1+m2
, and internal orientation, r = r2 − r1

(with |r| = Re). Defining the total mass M = m1 + m2, and moment of
inertia, I = µR2

e, where µ = m1m2/(m1 + m2) denotes the reduced mass,
the corresponding Hamiltonian can be then separated into the kinetic energy
associated with the centre of mass motion and the rotational kinetic energy,

Ĥ =
P̂2

2M
+

L̂2

2I
, (4.1)

where P̂ = −i!∇R and L̂ = r× p̂ denotes the angular momentum associated
with the internal degrees of freedom. Since the internal and centre of mass
degrees of freedom separate, the wavefunction can be factorized as ψ(r,R) =
eiK·RY (r), where the first factor accounts for the free particle motion of the
body, and the second factor relates to the internal angular degrees of freedom.

As a result of the coordinate separation, we have reduced the problem
of the rigid diatomic molecule to the study of the quantum mechanics of a
particle moving on a sphere – the rigid rotor,

Ĥrot =
L̂2

2I
.

The eigenstates of this component of the Hamiltonian are simply the states of
the angular momentum operator. Indeed, in any quantum mechanical system
involving a radial potential, the angular momentum will be conserved, i.e.
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[Ĥ, L̂] = 0 meaning that the angular component of the wavefunction can be
indexed by the states of the angular momentum operator. We therefore now
digress to discuss the quantum mechanics of angular momentum.

4.2 Angular momentum

4.2.1 Commutation relations

Following the usual canonical quantization procedure, the angular momentum
operator is defined by L̂ = r×p̂ where, as usual, r and p̂ obey the commutation
relations, [p̂i, rj ] = −i!δij .1 Using this relation, one may then show that
the angular momentum operators obey the spin commutation relations,
(exercise)

[L̂i, L̂j ] = i!εijkL̂k . (4.2)

where, as usual, εijk denotes the totally antisymmetric tensor — the Levi-
Civita symbol.2

$ Exercise. Show that the angular momentum operator commutes with the
Hamiltonian of a particle moving in a central potential, Ĥ = p̂2

2m + V (r). Show that
the Hamiltonian of a free particle of mass m confined to a sphere of radius R is given
by Ĥ = L̂2

2mR2 .

4.2.2 Eigenvalues of angular momentum

In the following, we will construct a basis set of angular momentum states.
Since the angular momentum is a vector quantity, it may be characterized
by its magnitude and direction. For the former, let us define the operator
L̂2 = L̂2

x + L̂2
y + L̂2

z. With the latter, since the separate components of the
angular momentum are all mutually non-commuting, we cannot construct a
common set of eigenstates for any two of them. They do, however, commute
with L̂2 (exercise). Therefore, in the following, we will look for an eigenbasis
of L̂2 and one direction, say L̂z,

L̂2|a, b〉 = a|a, b〉, L̂z|a, b〉 = b|a, b〉 .

To find |a, b〉, we could simply proceed by looking for a suitable coordinate
basis to represent L̂2 and L̂z in terms of differential operators. However,
although we will undertake such a programme in due course, before getting
to this formalism, we can make substantial progress without resorting to an
explicit coordinate representation.

$ Info. Raising and lowering operators for angular momentum: The set
of eigenvalues a and b can be obtained by making use of a trick based on a “ladder
operator” formalism which parallels that used in the study of the quantum harmonic
oscillator in section 3.4. Specifically, let us define the raising and lowering operators,

L̂± = L̂x ± iL̂y .

1In this chapter, we will index the angular momentum operators with a ‘hat’. Later, we
will become lazy and the hat may well disappear.

2Recall that εijk = 1 if (i, j, k) is an even permutation of (1,2,3), −1 if it is an odd
permutation, and 0 if any index is repeated.
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With this definition, one may then show that (exercise)

[L̂z, L̂±] = ±!L̂± .

Since each component of the angular momentum commutes with L̂2, we can deduce
that the action of L̂± on |a, b〉 cannot affect the value of a relating to the magnitude
of the angular momentum. However, they do effect the projection:

L̂zL̂±|a, b〉 = L̂±L̂z|a, b〉+ [L̂z, L̂±]|a, b〉 = (b ± !)L̂±|a, b〉 .

Therefore, if |a, b〉 is an eigenstate of L̂z with eigenvalue b, L̂±|a, b〉 is either zero,
or an eigenstate of L̂z with eigenvalue b ± !, i.e. L̂±|a, b〉 = C±(a, b)|a, b ± !〉 where
C±(a, b) is a normalisation constant.

To fix the normalisation, we may note that the norm,
∣∣∣
∣∣∣L̂±|a, b〉

∣∣∣
∣∣∣
2

= 〈a, b|L̂†±L̂±|a, b〉 = 〈a, b|L̂∓L̂±|a, b〉 ,

where we have used the identity L̂†± = L̂∓. Then, making use of the relation L̂∓L̂± =
L̂2

x + L̂2
y ± i[L̂xL̂y] = L̂2 − L̂2

z ± !L̂z, and the presumed normalisation, 〈a, b|a, b〉 = 1,
one finds

∣∣∣
∣∣∣L̂±|a, b〉

∣∣∣
∣∣∣
2

= 〈a, b|
(
L̂2 − L̂2

z ± !L̂z

)
|a, b〉 = a− b2 ∓ !b . (4.3)

As a represents the eigenvalue of a sum of squares of Hermitian operators, it is
necessarily non-negative. Moreover, b is real. Therefore, for a given a, b must be
bounded: there must be a bmax and a (negative or zero) bmin. In particular,

∣∣∣
∣∣∣L̂+|a, bmax〉

∣∣∣
∣∣∣
2

= a− b2
max − !bmax

∣∣∣
∣∣∣L̂−|a, bmin〉

∣∣∣
∣∣∣
2

= a− b2
min + !bmin ,

For a given a, bmax and bmin are determined uniquely — there cannot be two states
with the same a but different b annihilated by L̂+. It also follows immediately that
a = bmax(bmax+!) and bmin = −bmax. Furthermore, we know that if we keep operating
on |a, bmin〉 with L̂+, we generate a sequence of states with L̂z eigenvalues bmin + !,
bmin + 2!, bmin + 3!, · · ·. This series must terminate, and the only possible way for
that to happen is for bmax to be equal to bmin + n! with n integer, from which it
follows that bmax is either an integer or half an odd integer times !

At this point, we switch to the standard notation. We have established that the
eigenvalues of L̂z form a finite ladder, with spacing !. We write them as m!, and %

is used to denote the maximum value of m, so the eigenvalue of L̂2, a = %(% + 1)!2.
Both % and m will be integers or half odd integers, but the spacing of the ladder of
m values is always unity. Although we have been writing |a, b〉 with a = %(% + 1)!2,
b = m! we shall henceforth follow convention and write |%, m〉.

Figure 4.1: The following is a
schematic showing the angular
momentum scheme for % = 2
with L2 =

√
2(2 + 1)! =

√
6!

and the five possible values for
the Lz projection.

In summary, the operators L̂2 and L̂z have a common set of orthonormal
eigenstates |%, m〉 with

L̂2|%, m〉 = %(% + 1)!2|%, m〉, L̂z|%, m〉 = m!|%, m〉 , (4.4)

where %, m are integers or half-integers. The allowed quantum numbers m
form a ladder with step spacing unity, the maximum value of m is %, and
the minimum value is −%. With these results, we may then return to the
normalization of the raising and lowering operators. In particular, making use
of Eq. (4.3), we have

L̂+|%, m〉 =
√

%(% + 1)−m(m + 1)!|l,m + 1〉
L̂−|%, m〉 =

√
%(% + 1)−m(m− 1)!|l,m− 1〉

. (4.5)
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The use of m to denote the component of angular momentum in one direc-
tion came about because a Bohr-type electron in orbit is a current loop, with
a magnetic moment parallel to its angular momentum. So the m measured
the component of magnetic moment in a chosen direction, usually along an
external magnetic field. For this reason, m is often termed the magnetic
quantum number.

4.2.3 Representation of the angular momentum states

Having established expressions for the eigenvalues of the angular momentum
operators, it is now necessary to establish coordinate representations for the
corresponding eigenstates, Y!m(θ,φ) = 〈θ, φ|%, m〉. Here the angles θ and φ
denote the spherical coordinates parameterising the unit sphere (see figure).
Previously, we obtained the eigenvalues of the angular momentum operator by
making use of the raising and lowering operators in a manner that parallelled
the study of the quantum harmonic oscillator. Similarly, to obtain explicit
expressions for the eigenstates, we must make use of the coordinate represen-
tation of these operators. With r = rêr, the gradient operator can be written
in spherical polar coordinates as

∇ = êr∂r + êθ
1
r
∂θ + êφ

1
r sin θ

∂φ .

From this result, we thus obtain

L̂z = −i!∂φ, L̂± = !e±iφ (±∂θ + i cot θ∂φ) , (4.6)

and, at least formally,

L̂2 = −!2

[
1

sin θ
∂θ(sin θ∂θ) +

1
sin2 θ

∂2
φ

]
.

Beginning with the eigenstates of L̂z, the eigenvalue equation (4.4), and
making use of the expression above, we have

−i!∂φY!m(θ,φ) = m!Y!m(θ,φ) .

Since the left hand side depends only on φ, the solution is separable and takes
the form Y!m(θ,φ) = F (θ)eimφ. Note that, since m is integer, the continuity
of the wavefunction, Y!m(θ,φ + 2π) = Y!m(θ,φ), is ensured.

To determine the second component of the eigenstates, F (θ), we could
immediately turn to the eigenvalue equation involving the differential operator
for L̂2,

[
1

sin θ
∂θ(sin θ∂θ)−

m2

sin2 θ
∂2

φ

]
F (θ) = %(% + 1)F (θ) .

However, to construct the states, it is easier to draw upon the properties of
the angular momentum raising and lowering operators (much in the same way
that the Hermite polynomials are generated by the action of ladder operators
in the harmonic oscillator problem).

Consider then the state of maximal m, |%, %〉, for which L̂+|%, %〉 = 0. Mak-
ing use of the coordinate representation of the raising operator above together
with the separability of the wavefunction, this relation implies that

0 = 〈θ,φ|L̂+|%, %〉 = !eiφ (∂θ + i cot θ∂φ)Y!!(θ,φ) = !ei(!+1)φ (∂θ − % cot θ) F (θ) .
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From this result it follows that ∂θF (θ) = % cot θF (θ) with the solution F (θ) =
C sin! θ, and C a constant of normalization. States with values of m lower
than % can then be obtained simply by repeated application of the angular
momentum lowering operator L̂− to the state |%, %〉. This amounts to the
relation

Y!m(θ,φ) = C(L̂−)!−m
[
sin! θei!φ

]

= C (−∂θ + i cot θ∂φ)!−m
[
sin! θei!φ

]
.

The eigenfunctions produced by this procedure are well known and referred
to as the spherical harmonics. In particular, one finds that the normalized
eigenstates take the form,

Y!m(θ,φ) = (−1)m+|m|
[
2% + 1

4π

(%− |m|)!
(% + |m|)!

]1/2

P |m|
! (cos θ)eimφ , (4.7)

where

Pm
! (ξ) =

(1− ξ2)m/2

2!%!
dm+!

dξm+!
(ξ2 − 1)! ,

represent the associated Legendre polynomials. In particular, for the first
few angular momentum states, we have

Y00 = 1√
4π

Y10 =
√

3
4π cos θ, Y11 = −

√
3
8πeiφ sin θ

Y20 =
√

5
16π (3 cos2 θ − 1), Y21 = −

√
15
8πeiφ sin θ cos θ, Y22 =

√
15
32πe2iφ sin2 θ

Figure 4.2 shows a graphical representation of the states for the lowest spher-
ical harmonics. From the colour coding of the states, the symmetry, Y!,−m =
(−1)mY ∗

!m is manifest.
As a complete basis set, the spherical harmonics can be used as a resolution

of the identity

∞∑

!=0

!∑

m=−!

|%, m〉〈%, m| = I .

Equivalently, expressed in the coordinate basis, we have

∞∑

!=0

!∑

m=−!

Y ∗
!,m(θ′, φ′)Y!,m(θ,φ) =

1
sin θ

δ(θ − θ′)δ(φ− φ′) ,

where the prefactor sin θ derives from the measure. Similarly, we have the
orthogonality condition,

∫ π

0
dθ sin θ

∫ 2π

0
Y ∗

!,m(θ,φ)Y!′,m′(θ,φ) = δ!!′δmm′ .

After this lengthy digression, we may now return to the problem of the
quantum mechanical rotor Hamiltonian and the rigid diatomic molecule. From
the analysis above, we have found that the eigenstates of the Hamiltonian (4.1)
are given by ψ(R, r) = 1√

2π
eiK·RY!,m(θ, φ) with eigenvalues

EK,! =
!2K2

2M
+

!2

2I
%(% + 1) ,
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Figure 4.2: First four groups of spherical harmonics, Y!m(θ,φ) shown as a function
of spherical angular coordinates. Specifically, the plots show the surface generated by
|Re Y!m(θ, φ)| to fix the radial coordinate and the colours indicate the relative sign of
the real part.

where each K, % value has a 2% + 1-fold degeneracy.

$ Exercise. Using this result, determine the dependence of the heat capacity
of a gas of rigid diatomic molcules on the angular degrees of freedom. How would
this result change if the diatomic gas was constrained to just two spatial dimensions,
i.e. the axis of rotation was always perpendicular to the plane in which the molecules
can move?

4.3 The central potential

In a system where the central force field is entirely radial, the potential energy
depends only on r ≡ |r|. In this case, a general non-relativistic Hamiltonian
for a single particle is given by

Ĥ =
p̂2

2m
+ V (r) .

In the classical system, L2 = (r × p)2 = r2p2 − (r · p)2. As a result, we can
set p2 = L2

r2 + p2
r , where pr ≡ er · p denotes the radial component of the

momentum. In the quantum system, since the space and position coordinates
do not commute, we have (exercise)

L̂2 = r2p̂2 − (r · p̂)2 + i!r · p̂ .

In spherical coordinates, since r · p̂ = −i!r · ∇ = −i!r∂r, it follows that
p̂2 = L̂2

r2 − !2

r2 [(r∂r)2 + r∂r]. Equivalently, noting that (r∂r)2 + r∂r = ∂2
r + 2

r∂r,
we can set

p̂2 =
L̂2

r2
− !2

[
∂2

r +
2
r
∂r

]
.
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Finally, substituted into the Schrödinger equation, we obtain the eigenvalue
equation

[
− !2

2m

(
∂2

r +
2
r
∂r

)
+

L̂2

2mr2
+ V (r)

]
ψ(r) = Eψ(r) . (4.8)

Since we already know the eigenstates of L̂2, we can immediately take ad-
vantage of the separability of the Hamiltonian to find that ψ(r) = R(r)Y!,m(θ,φ),
where the radial part of the wavefunction is set by

[
− !2

2m

(
∂2

r +
2
r
∂r

)
+

!2

2mr2
%(% + 1) + V (r)

]
R(r) = ER(r) .

Finally, we can further simplify this expression by setting R(r) = u(r)/r,
whereupon we obtain the “one-dimensional” equation

[
−!2∂2

r

2m
+ Veff(r)

]
u(r) = u(r) , (4.9)

where the effective potential, Veff(r) = !2

2mr2 %(% + 1) + V (r), acquires an ad-
ditional component due to the centrifugal component of the force. Here the
equation must be solved subject to the boundary condition u(0) = 0. From
the normalization condition,

∫
d3r |ψ(r)|2 =

∫ ∞

0
drr2 1

r2
|u(r)|2 = 1 ,

for a bound state to exist, limr→∞ |u(r)| ≤ a/r1/2+ε with ε > 0.
From this one-dimensional form of the Hamiltonian, the question of the

existence of bound states in higher dimension becomes clear. Since the wave-
function u(r) vanishes at the origin, we may map the Hamiltonian from the
half-line to the full line with the condition that we admit only antisymmetric
wavefunctions. The question of bound states can then be related back to the
one-dimensional case. Previously, we have seen that a symmetric attractive
potential always leads to a bound state in one-dimension. However, odd parity
states become bound only at a critical strength of the interaction.

4.4 Atomic hydrogen

The Hydrogen atom consists of an electron bound to a proton by the Coulomb
potential,

V (r) = − 1
4πε0

e2

r
.

We can generalize the potential to a nucleus of charge Ze without complica-
tion of the problem. Since we are interested in finding bound states of the
proton-electron system, we are looking for solutions with E negative. At large
separations, the wave equation (4.9) simplifies to

−!2∂2
r

2m
u(r) * Eu(r) ,

having approximate solutions eκr and e−κr, where !κ =
√
−2mE. (Here,

strictly speaking, m should denote the reduced mass of electron-proton sys-
tem.) The bound states we are looking for, of course, have exponentially
decreasing wavefunctions at large distances.
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To further simplify the wave equation, it is convenient to introduce the
dimensionless variable ρ = κr, leading to the equation

∂2
ρu(ρ) =

(
1− 2ν

ρ
+

%(% + 1)
ρ2

)
u(ρ) ,

where (for reasons which will become apparent shortly) we have introduced
the dimensionless parameter ν = Ze2

4πε0
κ

2E . Notice that in transforming from r
to the dimensionless variable ρ, the scaling factor depends on energy, so will
be different for different energy bound states! Consider now the behaviour of
the wavefunction near the origin. The dominant term for sufficiently small ρ
is the centrifugal component, so

∂2
ρu(ρ) * %(% + 1)

ρ2
u(ρ) ,

for which the solutions are u(ρ) ∼ ρ−! and u(ρ) ∼ ρ!+1. Since the wavefunction
cannot be singular, we must choose the second solution.

We have established that the wavefunction decays as e−κr = e−ρ at large
distances, and goes as ρ!+1 close to the origin. Factoring out these two asymp-
totic behaviours, let us then define w(ρ) such that u(ρ) = e−ρρ!+1w(ρ). We
leave it as a tedious but straightforward exercise to show that

ρ∂2
ρw(ρ) + 2(% + 1− ρ)∂ρw(ρ) + 2(ν − (% + 1))w(ρ) = 0 .

Substituting the trial series solution, w(ρ) =
∑∞

k=0 wkρk, we obtain a recur-
rence relation between successive coefficients:

wk+1

wk
=

2(k + % + 1− ν)
(k + 1)(k + 2(% + 1))

.

For large values of k, wk+1/wk → 2/k, so wk ∼ 2k/k! and therefore w(ρ) ∼ e2ρ.
This means we have found the diverging radial wavefunction, u(ρ) ∼ eρ, which
is in fact the correct behaviour for general values of the energy.

To find the bound states, we must choose energies such that the series is not
an infinite one. As long as the series stops somewhere, the exponential decrease
will eventually take over, and yield a finite (bound state) wavefunction. Just
as for the simple harmonic oscillator, this can only happen if for some k,
wk+1 = 0. Inspecting the ratio wk+1/wk, evidently the condition for a bound
state is that

ν = n, integer ,

in which case the series for w(ρ) terminates at k = n − % − 1. From now on,
since we know that for the functions we’re interested in ν is an integer, we
replace ν by n.

Finally, making use of the definitions of ν and κ above, we obtain the
bound state energies,

En = −
(

Ze2

4πε0

)2
m

2!2

1
n2
≡ −Z2

n2
Ry .

Remarkably, this is the very same series of bound state energies found by
Bohr from his model! Of course, this had better be the case, since the series of
energies Bohr found correctly accounted for the spectral lines emitted by hot
hydrogen atoms. Notice, though, that there are some important differences
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with the Bohr model: the energy here is determined entirely by n, called the
principal quantum number, but, in contrast to Bohr’s model, n is not the
angular momentum. The true ground state of the hydrogen atom, n = 1, has
zero angular momentum: since n = k + % + 1, n = 1 means both l = 0 and
k = 0. The ground state wavefunction is therefore spherically symmetric, and
the function w(ρ) = w0 is just a constant. Hence u(ρ) = ρe−ρw0 and the actual
radial wavefunction is this divided by r, and of course suitably normalized.

To write the wavefunction in terms of r, we need to find κ. Putting together
ρ = κnr, κn =

√
−2mEn/!2 and the expression for En, we find that κn =

Ze2

4πε0
m

!2n = Z
na0

, where

a0 =
4πε0!2

me2
= 0.529× 10−10 m

denotes the Bohr radius – the radius of the lowest orbit in Bohr’s model.
With this definition, the energy levels can then be expressed as En = − 1

4πε0
(Ze)2

2a0

1
n2 .

Moving on to the excited states: for n = 2, we have a choice: either
the radial function w(ρ) can have one term, as before, but now the angular
momentum % = 1 (since n = k+ %+1); or w(ρ) can have two terms (so k = 1),
and % = 0. Both options give the same energy, 0.25 Ry, since n is the same,
and the energy only depends on n. In fact, there are four states at this energy,
since % = 1 has states with m = 1, m = 0 and m = 1, and % = 0 has the one
state m = 0. For n = 3, there are 9 states altogether: % = 0 gives one, % = 1
gives 3 and % = 2 gives 5 different m values. In fact, for principal quantum
number n there are n2 degenerate states (n2 being the sum of the first n odd
integers).

From now on, we label the wavefunctions with the quantum numbers,
ψn!m(r, θ,φ), so the ground state is the spherically symmetric ψ100(r). For
this state R(r) = u(r)/r, where u(ρ) = e−ρρ!+1w(ρ) = e−ρρw0, with w0 a
constant and ρ = κ1r = Zr/a0. So, as a function of r, R10(r) = Ne−Zr/a0

with N the normalization constant:

R10 = 2
(

Z

a0

) 3
2

e−Zr/a0 .

For n = 2, % = 1 the function w(ρ) is still a single term, a constant, but
now u(ρ) = e−ρρ!+1w(ρ) = e−ρρ2w0, and, for n = 2, ρ = κ2r = Zr/2a0,
remembering the energy-dependence of κ. After normalization, we find

R21 =
1

2
√

6

(
Z

a0

)3/2 (
Zr

a0

)
e−Zr/2a0 .

The other n = 2 state has % = 0. So from n = k + % + 1, we have k = 1 and
the series for w has two terms, k = 0 and k = 1, the ratio being

wk+1

wk
=

2(k + % + 1− n)
(k + 1)(k + 2(% + 1))

= −1 ,

for the relevant values: k = 0, % = 0, n = 2. So w1 = −w0, w(ρ) = w0(1− ρ).
For n = 2, ρ = r/2a0, the normalized wavefunction is given by

R20 =
1√
2

(
Z

a0

)3/2 (
1− 1

2
Zr

a0

)
e−Zr/2a0 .

Note that the zero angular momentum wavefunctions are non-zero and have
non-zero slope at the origin. This means that the full three-dimensional wave-
functions have a slope discontinuity there! But this is fine - the potential is
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infinite at the origin. (Actually, the proton is not a point charge, so really the
kink will be smoothed out over a volume of the size of the proton - a very tiny
effect.)

In practice, the first few radial functions w(ρ) can be constructed fairly
easily using the method presented above, but it should be noted that the
differential equation for w(ρ),

ρ∂2
ρw(ρ) + 2(% + 1− ρ)∂ρw(ρ) + 2(n− (% + 1))w(ρ) = 0 ,

is in fact Laplace’s equation, usually written

(z∂2
z + (k − 1− z)∂z + p)Lk

p(z) = 0 ,

where k, p are integers, and Lk
p(z) is a Laguerre polynomial. The two

equations are the same if z = 2ρ, and the solution to the radial equation is
therefore,

wn!(ρ) = L2!+1
n−!−1(2ρ) .

The Laguerre polynomials L0
p(z), and associated Laguerre polynomials

Lk
p(z) are given by:

L0
p(z) = ez dp

dzp
(e−zzp), Lk

p(z) = (−1)k dp

dzp
L0

p+k(z) .

(These representations can be found neatly by solving Laplace’s equation using
- surprise - a Laplace transform.) The polynomials satisfy the orthonormality
relations (with the mathematicians’ normalization convention)

∫ ∞

0
e−zzkLk

pL
k
qdz =

[(p + k)!]3

p!
δpq .

But what do the polynomials look like? The function e−zzp is zero at
the origin (apart from the trivial case p = 0) and zero at infinity, always
positive and having non-zero slope except at its maximum value, z = p. The p
derivatives bring in p separated zeroes, easily checked by sketching the curves
generated by successive differentiation. Therefore, L0

p(z), a polynomial of
degree p, has p real positive zeroes, and value at the origin L0

p(0) = p!, since
the only non-zero term at z = 0 is that generated by all p differential operators
acting on zp.

The associated Laguerre polynomial Lk
p(z) is generated by differentiating

L0
p+k(z) k times. Now L0

p+k(z) has p + k real positive zeroes, differentiating
it gives a polynomial one degree lower, with zeroes which must be one in
each interval between the zeroes of L0

p+k(z). This argument remains valid for
successive derivatives, so Lk

p(z) must have p real separate zeroes.
Putting all this together, and translating back from ρ to r, the radial

solutions are given by,

Rn!(r) = Ne−Zr/na0

(
Zr

na0

)!

L2!+1
n−!−1(2Zr/na0) ,

with N the normalization constant. For a given principle quantum number
n,the largest % radial wavefunction is given by Rn,n−1 ∝ rn−1 e−Zr/na0 .

$ Info. The eigenvalues of the Hamiltonian for the hydrogen exhibit an unex-
pectedly high degeneracy. The fact that En!m is independent of m is common to all
central potentials – it is just a reflection of rotational invariance of the Hamiltonian.
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However, the degeneracy of different % values with the same principle quantum num-
ber is considered “accidental”, a peculiarity of the 1/r potential. To understand the
origin of the degeneracy for atomic hydrogen, it is helpful to reflect first on
the classical dynamics.

In classical mechanics, central forces also lead to conservation of angular momen-
tum leaving orbits restricted to lie in a plane. However, for 1/r type potentials, these
orbits are also closed, i.e. they do not precess. In classical mechanics, this implies
that there is an additional conserved vector, since the direction of the major axis of
the elliptical orbit is a constant of the motion. This direction is determined by the
Runge-Lenz vector,

R =
1
m

p× L− e2

4πε0

r
r

.

In quantum theory, up to an operator ordering prescription, R becomes an operator,

R̂ =
1

2m
(p̂× L̂− L̂× p̂)− e2

4πε0

r
r

.

With this definition, one may confirm that [Ĥ, R̂] = 0 (exercise).
As a vector operator, R̂ exhibits the following commutation relations, [R̂i, L̂j ] =

i!εijkR̂k. Similarly, [R̂i, N̂j ] = i! (−2Ĥ)
m εijkL̂k (exercise). Moreover, one may confirm

that

R̂2 =
(

e2

4πε0

)2

+
2Ĥ

m
(L̂2 + !2) ,

showing that Ĥ can be written in terms of the two constants of motion, L̂2 and R̂2.
Focussing on the bound states, if we consider the Hermitian operator, K̂ =

√
−m
2Ĥ

R̂,

which fulfil the following commutation relations, [K̂i, K̂j ] = i!εijkL̂k, [K̂i, L̂j ] =
i!εijkK̂k, and [L̂i, L̂j ] = i!εijkL̂k, we find that

Ĥ = −
(

e2

4πε0

)2
m

2(K̂2 + L̂2 + !2)
.

If we now define the “raising and lowering” operators, M̂ = L̂+K̂
2 , N̂ = L̂−K̂

2 the
following commutation relations emerge (exercise),

[M̂i, M̂j ] = i!εijkL̂k

[N̂i, N̂j ] = i!εijkK̂k

[N̂i, M̂j ] = 0 ,

i.e. we have obtained two commuting angular momentum algebras(!) and

Ĥ = −
(

e2

4πε0

)2
m

2(2M̂2 + 2N̂2 + !2)
.

We can simultaneously diagonalize the operators, M̂2, M̂z, N̂2 and N̂z,

M̂2|m, n, µ, ν〉 = !2m(m + 1)|m, n, µ, ν〉, M̂z|m, n, µ, ν〉 = !µ|m, n, µ, ν〉
N̂2|m, n, µ, ν〉 = !2m(m + 1)|m, n, µ, ν〉, N̂z|m, n, µ, ν〉 = !ν|m, n, µ, ν〉 .

where m, n = 0, 1/2, 1, 3/2, · · ·, µ = −m,−m + 1, · · ·m and ν = −n,−n + 1, · · ·n.
Since R̂ · L̂ = L̂ · R̂ = 0, then K̂ · L̂ = L̂ · R̂ = 0 and the only relevant states are those
for which M̂2 − N̂2 = 0, i.e. m = n. Therefore,

Ĥ|m, m, µ, ν〉 = −
(

e2

4πε0

)2
m

2!2(4m(m + 1) + 1)
|m, m, µ, ν〉

= −
(

e2

4πε0

)2
m

2!2(2m + 1)2
|m, m, µ, ν〉 .

From this result, we can identify 2m + 1 = 1, 2, · · · as the principle quantum number.
For a given (2m + 1) value, the degeneracy of the state is (2m + 1)2 as expected.
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