Synopsis: (mostly revision) Lectures 1-4ish

Foundations of quantum physics:

[†]Historical background; wave mechanics to Schrödinger equation.

Quantum mechanics in one dimension:

Unbound particles: potential step, barriers and tunneling; bound states: rectangular well, δ -function well; [†]Kronig-Penney model.

Operator methods:

Uncertainty principle; time evolution operator; Ehrenfest's theorem; [†]symmetries in quantum mechanics; Heisenberg representation; quantum harmonic oscillator; [†]coherent states.

Quantum mechanics in more than one dimension:

Rigid rotor; angular momentum; raising and lowering operators; representations; central potential; atomic hydrogen.

O Charged particle in an electromagnetic field:

Classical and quantum mechanics of particle in a field; normal Zeeman effect; gauge invariance and the Aharonov-Bohm effect; Landau levels, [†]Quantum Hall effect.

6 Spin:

Stern-Gerlach experiment; spinors, spin operators and Pauli matrices; spin precession in a magnetic field; parametric resonance; addition of angular momenta.

O Time-independent perturbation theory:

Perturbation series; first and second order expansion; degenerate perturbation theory; Stark effect; nearly free electron model.

Overational and WKB method:

Variational method: ground state energy and eigenfunctions; application to helium; [†]Semiclassics and the WKB method.

† non-examinable $\stackrel{*}{=}$ in this course $\stackrel{*}{=}$. $\mathcal{I}_{\mathcal{A}} \otimes \mathcal{A}$

Synopsis: Lectures 11-15

Identical particles:

Particle indistinguishability and quantum statistics; space and spin wavefunctions; consequences of particle statistics; ideal quantum gases; [†]degeneracy pressure in neutron stars; Bose-Einstein condensation in ultracold atomic gases.

O Atomic structure:

Relativistic corrections – spin-orbit coupling; Darwin term; Lamb shift; hyperfine structure. Multi-electron atoms; Helium; Hartree approximation [†]and beyond; Hund's rule; periodic table; LS and jj coupling schemes; atomic spectra; Zeeman effect.

Molecular structure:

Born-Oppenheimer approximation; H₂⁺ ion; H₂ molecule; ionic and covalent bonding; LCAO method; from molecules to solids; [†]application of LCAO method to graphene; molecular spectra; rotation and vibrational transitions.

† non-examinable $\underset{\frown}{*}$ in this course $\underset{\frown}{*}$.

Synopsis: Lectures 16-19

12 Field theory: from phonons to photons:

From particles to fields: classical field theory of harmonic atomic chain; quantization of atomic chain; phonons; classical theory of the EM field; [†]waveguide; quantization of the EM field and photons.

13 Time-dependent perturbation theory:

Rabi oscillations in two level systems; perturbation series; sudden approximation; harmonic perturbations and Fermi's Golden rule.

Radiative transitions:

Light-matter interaction; spontaneous emission; absorption and stimulated emission; Einstein's A and B coefficients; dipole approximation; selection rules; lasers.

† non-examinable *in this course*.

Synopsis: Lectures 20-24

1 Scattering theory

[†]Elastic and inelastic scattering; [†]method of particle waves; [†]Born series expansion; Born approximation from Fermi's Golden rule; [†]scattering of identical particles.

10 Relativistic quantum mechanics:

[†]Klein-Gordon equation; [†]Dirac equation; [†]relativistic covariance and spin; [†]free relativistic particles and the Klein paradox; [†]antiparticles; [†]coupling to EM field: [†]minimal coupling and the connection to non-relativistic quantum mechanics; [†]field quantization.

† non-examinable *in this course*.