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Answers: Problem set IV

1. (a) From Ehrenfest’s theorem, the equation of motion for the spin is given
by −i!dŜm

dt = [Ĥ, Ŝm]. Making use of the spin commutation relation, we
have (summation on repeated spin indicies assumed)

−i!dŜβ
m

dt
= −J [Ŝα

m, Ŝβ
m](Ŝα

m+1 + Ŝα
m−1) = −i!Jεαβγ Ŝγ

m(Ŝα
m+1 + Ŝα

m−1) .

We thus obtain the required equation of motion.
(b) Since Sm+1+Sm−1 " 2S|x=m+∂2S|x=m and, for classical vectors, S×S =

0, we obtain the required equation of motion.
(c) Substituting the expression for S(x, t), we find that the equation is solved

with ω(k) = Jk2
√

S2 − c2. The corresponding spin configuration is shown
right.

(d) Substituting for the spin raising and lowering operators, the identity is
clear. Expanding to the spin raising and lowering operators to leading
order in a†a

2S about the ferromagnetic ground state (in which all spins are
aligned along êz, we obtain

Ĥ = −JNS2 + JS
∑

m

{
a†mam + a†m+1am+1 −

(
a†mam+1 + h.c.

)}
+ O(S0) ,

where h.c. denotes the Hermitian conjugate. Rearranging, we obtain the
required expression for the Hamiltonian.

(e) With the definitions given in the problem,

[ak, a†k′ ] =
1
N

∑

m,n

e−ikm+ik′n [am, a†n]︸ ︷︷ ︸
δmn

=
1
N

∑

m

e−i(k−k′)m = δkk′ .

Then subtituted into the Hamiltonian,

Ĥ = −JNS2 + S
∑

kk′

1
N

∑

m

ei(k−k′)m

︸ ︷︷ ︸
δkk′

(eik − 1)(e−ik′
− 1)a†kak′

= −JNS2 + S
∑

k

|eik − 1|2a†kak .

From this result we obtain the required dispersion relation.

2. Standard bookwork allows a derivation of the amplitude cn(t). In the present
case, with V (t) = eE0ze−t/τ , the matrix element 〈ψ2s|z|ψ1s〉 = 0 since the 1s
and 2s wavefunctions both have even parity while z has odd parity. Therefore
the probability of finding the atom in the 2s state is identically zero.
The matrix elements 〈ψ2p±1|z|ψ1s〉 = 0 since the φ part of the integral will
vanishes,

〈ψ2p±1|z|ψ1s〉 ∼
∫ 2π

0
dφe±iφ = 0 .

The only non-zero matrix element is:

〈ψ2p0 |z|ψ1s〉 =
(

1
32πa5

0

)1/2 (
1

πa3
0

)1/2 ∫
r2dr r2e−r/a0e−r/2a0

∫
2π sin θdθ cos2 θ

=
1

4
√

2πa4
0

· 4!
(3/2a0)5

· 4π

3
=

256a0

243
√

2
.

Taking the limit as t→∞, the t′ integral is given by,
∫ ∞

0
dt′e−t′/τei(E2p−E1s)t′/! =

1
1/τ − i∆E/! ,
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where ∆E = E2p − E1s = 3R∞/4. Putting all this together we obtain the
probability of being in the 2p0 state after a long time as

|c2p0(∞)|2 =
e2E2

0a2
0215

310
· 1
∆E2 + !2/τ2

.

3. From the lecture notes, the decay rate for unpolarized light is given by,

A =
ω3|dkj |2

3πε0c3! ,

and the lifetime is thus τ = 1/A. Take for example the 2p0 state of Hydrogen
decaying to 1s (the other 2p states must have the same lifetime, but this one
depends on the same matrix elements that we computed in in the previous
question. Only the z-component of d is non-zero for this transition, (the φ
integral yields zero if you compute the matrix elements of x or y) giving,

〈2p0| ez |1s〉 =
256ea0

243
√

2
= 6.31× 10−30 Cm .

The energy of the emitted photon is

!ω =
3
4
R∞ =

3
4

· me4

2(4πε0)2!2
⇒ ω = 1.56× 1016 Hz .

Hence, the lifetime of the state is τ = 1.56× 10−9 s.
The only lower lying state to which 3s can decay is 2p according to the selection
rules. We can expect the matrix element 〈3s| ez |2p〉 ∼ ea0 on dimensional
grounds, and thus not very different from 〈2p| ez |1s〉. The main difference
between the lifetimes of the 3s and 2p levels will arise from the difference in
ω3. For the 3s→2p transition,

!ω = (
1
4
− 1

9
)R∞ =

5
36

R∞ .

The ratio of the lifetimes is therefore approximately

τ(3s)
τ(2p)

∼
(

3
4

· 36
5

)3

∼ 150 .

The only state lying below 2s is 1s, but the decay 2s→1s is not allowed by
the electric dipole selection rules. The 2s state is “metastable”. The dominant
decay is actually via two-photon emission, a process which can arise through
second order perturbation theory, and occurs very slowly. In practice, atoms
may well make transitions from 2s to 2p (for example) before decay takes place
as a result of collision processes. Alternatively, decay of the 2s state may be
induced by the application of an external electric field, which mixes 2s and 2p
through the Stark effect.

4. From the lecture notes, the Born Approximation gives,

dσ

dΩ
=

( m

2π!2

)2
∣∣∣∣
∫

V (r)ei∆·rd3r

∣∣∣∣
2

,

where ∆ is the difference beweeen incoming and outgoing wave vectors, of
magnitude 2k sin2(θ/2). In the case where V (r) = V (r), i.e. where the potential
is centrally symmetric, it is convenient to take ∆ as the axis of polar coordinates
for the purpose of integration, so that ∆ · r = |∆|r cos θ′. The integral thus
becomes

∫
V (r)ei∆·rd3r =

∫
V (r)ei∆r cos θ′

2π sin θ′dθ′r2dr

= 2π

∫
V (r)r2dr

[
ei∆r cos θ′

i∆r

]π

0

=
4π

∆

∫
V (r)rdr sin(∆r) ,

Advanced Quantum Physics



16.4. PROBLEM SET IV 222

and hence

dσ

dΩ
=

(
2m

∆!2

)2 ∣∣∣∣
∫

V (r)rdr sin(∆r)
∣∣∣∣
2

.

Taking V (r) = −V0 for r ≤ a, and V (r) = 0 otherwise, the integral becomes
(integrating by parts),

−V0

∫ a

0
r sin(∆r)dr = −V0

{[
−r

cos(∆r)
∆

]a

0

+
∫ a

0

cos(∆r)
∆

dr

}

= − V0

∆2
(sin(∆a)−∆a cos(∆a)) ,

and thus

dσ

dΩ
=

[
2mV0

!2∆3
(sin(∆a)−∆a cos(∆a))

]2

.

In the low energy limit, ∆→ 0,

sin(∆a)−∆a cos(∆a) ≈ ∆a− 1
3!

(∆a)3 −∆a(1− (∆a)2/2) = (∆a)3/3 ,

and hence

dσ

dΩ
=

(
2mV0a3

3!2

)2

.

This is independent of ∆ and hence independent of θ, so isotropic, as required.
The total cross-section is obtained by integrating over solid angles, which simply
involves multiplying by 4π in this case

σtot = 4π

(
2mV0a3

3!2

)2

.

5. (a) When kR - 1, s-wave scattering dominates. In this case, the problem is
equivalent to a one-dimensional scattering problem with an infinite wall
at the origin and a δ-function repulsive potential at r = R.
The wavefunction has the solution,

u(r) =
{

C sin kr r < R
sin(kr + δ0) r > R

From the continuity condition on the wavefunction and the derivative, we
obtain

A sin(kR) = sin(KR + δ0)
kA cos(kR)− k cos(kR + δ0) = U0 sin(kR + δ0) .

From the first equation, we obtain A = sin(kR+δ0)
sin(kR) which substituted into

the second equation, leads to the relation

δ0 = tan−1

[
k tan(kR)

k − U0 tan(kR)

]
− kR .

The structure is similar to that obtained for the spherical square potential
but with different resonant behaviour.

(b) With U0 . 1/R, k, and U0 tan(kR) . k, we obtain the resonance condi-
tion

k tan(kR)
k − U0 tan(kR)

" k

−U0 tan(kR)
" 0 ,

i.e. δ0 " −kR, the value that it would have for a hard sphere.
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(c) Now supose that tan(kR) is small. In this case, we have a resonance when
k − U0 tan(kR) = 0, i.e. tan(kR) = k

U0
- 1, and

δ0 =
π

2
− kR " π

2
.

The cross-section σ0 = 4π
k2 sin2 δ0 " 4π

k2 . The resonance is near tan(kR) =
0, which implies that kR = (2n+1)π/2, the quasi-bound state of the well.

6. Substituting the definition of S(Λ) into the defining condition we obtain
(

1− i

4
Σαβωαβ

)
γµ

(
1 +

i

4
Σγδω

γδ

)
= γµ +

i

4
[γµ,Σαβ ]ωαβ + · · ·

= (gµ
ν − ωµ

ν) γν .

Rearranging the left and right hand sides, we obtain

i

4
[γµ,Σαβ ]ωαβ = −ωβαgµ

βγα ≡ ωαβgµ
βγα,

from which we obtain the required identity. The latter equation is shown to be
consistent with the solution Σαβ = (i/2)[γα, γβ ] by making use of the anticom-
mutation relation of the γ matrices.

7. Using the identity

[α · p̂,S · p̂] = p̂ip̂j

(
0 [σi, σj ]

[σi, σj ] 0

)
= 2iεijkp̂ip̂j

(
0 σk

σk 0

)
.

Therefore, since p̂ × p̂ = 0, we find that the Hamiltonian commutes with the
Helicity operator.
Turning to the angular momentum, taking each term separately,

[Ĥ, L̂i] = εijk[α · p̂, x̂j p̂k] = εijk (αlp̂lx̂j p̂k − x̂j p̂kαlp̂l)
= εijk (−iαlδlj p̂k) = −iα× p̂ .

[Ĥ,S] = [α · p̂,S] =
1
2
(αip̂iσj − σjαip̂i)

=
1
2

[(
0 σ · p̂

σ · p̂ 0

)
,

(
σ 0
0 σ

)]
=

1
2

(
0 1
1 0

)
[σ · p̂,σ]

= −i

(
0 1
1 0

)
p̂× σ = −ip̂×α.

Putting these terms together we find [Ĥ, Ĵ] = 0.

8. Applying the plane wave solution of the Dirac equation ψ(p) = e−p·xu(p) (de-
fined in this form for positive and negative energy states) to the two edges of
the potential step, we obtain the boundary conditions





1
0
p

E+m
0



 e−ipa/2 +r





1
0

− p
E+m
0



 eipa/2

= t′





1
0
p′

E′+m
0



 e−ip′a/2 + r′





1
0

− p′

E′+m
0



 eip′a/2

t′





1
0
p′

E′+m
0



 eip′a/2 + r′





1
0

− p′

E′+m
0



 e−ip′a/2 = t





1
0
p

E+m
0



 eipa/2,
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where the reflection and transmission coefficients are defined in the figure.
From these equations we obtain

2e−ipa/2 = t′(1 + ζ)e−ip′a/2 + r′(1− ζ)eip′a/2

2reipa/2 = t′(1− ζ)e−ip′a/2 + r′(1 + ζ)eip′a/2

teipa/2 = eip′a/2t′ + e−ip′a/2r′

teipa/2 = ζ
(
eip′a/2t′ − e−ip′a/2r′

)
.

Rearranging these equations we obtain

r′ =
2

1 + ζ

1
µe−ip′a − µ−1e−ip′a

e−i(p−p′)a/2,

where µ = (1− ζ)/(1 + ζ). Finally, with this result, we obtain

t = e−ipa 1
cos(p′a)− i sin(p′a)(1 + ζ2)/2ζ

From this result, we obtain the expression for the transmitted current shown
in the question.
For energies E′ > m, the particles traverse the barrier as a plane wave. In
particular, when p′a = nπ there is perfect transmission. For m > E′ > −m,
p′ is imaginary and exchange of particles occurs by resonant tunnelling across
the barrier. For energies E′ < −m, the Klein paradox regime, p′ is real and
positive, and there is again perfect transmission when p′a = nπ. Here the
transmission is mediated by negative energy states under the barrier.
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