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Answers: Problem set III

1. (a) Using the relation, 〈ψ| Ĥ1 |ψ〉 ∼
∫

r2drψ∗p̂4ψ ∼
∫

r2dr|∇2ψ|2, consider
the change of variables u = Zr/a0. Since ∂x = Z

a0
∂ux , ∇2 = ( Z

a0
)2∇2

u and

〈ψ| Ĥ1 |ψ〉 ∼ Z3

∫
u2du

Z3

(
Z

a0

)4 ∣∣∣∇2
uG(u)e−u/n

∣∣∣
2
∼ Z4 .

(b) For the Coulomb interaction, V = − Ze2

4πε0r , so ∂rV = Ze2

4πε0r2 and

〈ψ| Ĥ2 |ψ〉 ∼
∫

r2dr|ψ|2 Z

r3
∼ Z4

∫
dr

r
Gn#

(
Zr

a0

)
e−2Zr/na0 .

The integral is independent of Z, as can easily be seen by making a change
of variables u = Zr/a0, and hence 〈ψ| Ĥ2 |ψ〉 ∝ Z4.

(c) Making the usual substitution u = Zr/a0, we have δ3(r) = ( Z
a0

)3δ3(u) and
thus the expectation value of this term in the Hamiltonian is

〈ψ| Ĥ3 |ψ〉 ∼
∫

r2 dr Zδ(3)(r)|ψ|2 ∼
∫

u2du

Z3
Z

(
Z

a0

)3

δ3(u)
(

Z

a0

)3

G2(u)e−2u/n ,

which is proportional to Z4 again.

2. (2s)(3p) The allowed values of L and S are S = 0, 1, L = 1. Since the electrons
are inequivalent, all combinations of L and S are allowed, i.e. 1P1, 3P0,1,2.

(2p)2 Since the electrons are equivalent, we may take S = 0 (antisymmetric)
with symmetric spatial wavefunction L = 0, 2, or alternatively S = 1
(symmetric) with antisymmetric spatial wavefunction L = 1, i.e. 1S0,
1D2, 3P0,1,2.

(3d)2 Since the electrons are equivalent, we may take S = 0 (antisymmetric)
with symmetric spatial wavefunction L = 0, 2, 4, or alternatively S = 1
(symmetric) with antisymmetric spatial wavefunction L = 1, 3, i.e. 1S0,
1D2, 1G4, 3P0,1,2, 3F2,3,4.

(3d)10 This is a completely filled shell, so L = S = J = 0, i.e. 1S0.
(3d)9 The shell has just one unoccupied state, so the values of L, S and J are

just those for a single electron in the shell, i.e. L = 2, S = 1/2 and the
terms are 2D3/2,5/2.

(4f)6 Applying Hund’s first rule, the maximum S = 3. Being maximal, this
spin state is symmetric with respect to interchange of electrons, so the
spatial state must be totally antisymmetric. Hence the six electrons must
occupy six different m# values out of the seven (2$ + 1) available. As
a result, the ML of the atom can take one of seven possible values,
ML = ±3, ±2, ±1, 0. As a result, we can deduce that L = 3 is the only
possibility. The shell is less than half full, so Hund’s third rule requires
J = |L− S| = 0, i.e. 7F0.

3. The 3P0 notation signifies the total angular momentum quantum numbers in
the form 2S+1LJ , hence S = 1, L = 1 and J = 0 in this case. The notation
implies that the LS coupling approximation is appropriate, so that L and S are
good quantum numbers, which will be valid if the residual Coulomb interaction
is much greater than the spin-orbit interaction.
Considering the (3p)1(4s)1 configuration:

(i) In LS coupling, the allowed values of S and L are S = 0, 1 and L = 1.
According to Hund’s first rule, S = 1 lies lower in energy. The S = 1,
L = 1 state can take three values of J = 0, 1, 2, which are split by the
spin-orbit interaction, with J = 0 lying lowest in energy by Hund’s rules.
The energy levels therefore form a triplet 3P0,1,2 and a higher lying singlet
1P1.
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(ii) In jj coupling, the spin-orbit interaction makes a larger contribution that
the Coulomb term. In this scheme, we must first find the j values for
the two electrons, i.e. j = 1/2, 3/2 for the 3p state and j = 1/2 for
the 4s. These j values will be separated by the spin-orbit interaction.
The smaller Coulomb term will then differentiate between the different
values of J which can be formed by combining the values of j, giving the
following terms,

(j1, j2)J = (1/2, 1/2)0,1, (3/2, 1/2)2,1 .

The states thus form two doublets in this case.

The given energy levels clearly form two doublets (a,b) and (c,d), so the jj
coupling scheme is the better approximation in this case. The electric dipole
selection rules (∆J = ±1, 0; but 0 → 0 forbidden) tell us than only the J = 1
levels can decay to the ground state. We also expect the (1/2, 1/2) level to
lie lower, since 〈L̂ · Ŝ〉 ∝ (J(J + 1) − L(L + 1) − S(S + 1)), so this suffices to
identify the levels: (a) is (1/2, 1/2)0; (b) is (1/2, 1/2)1; (c) is (3/2, 1/2)2; (d) is
(3/2, 1/2)1.

4. Firstly, in answer to the introductory questions:

(i) As an alkali atom, sodium has a single electron outside closed shells.
The low energy excited states involve excitation of this electron. The
appropriate quantum numbers are $, s and j (the quantum numbers for
the whole atom being the same as for the unpaired electron). The al-
lowed states for the electron are [3s(ground state), 3p, 3d], [4s, 4p, 4d, 4f ],
[5s, 5p, 5d, 5f, 5g], etc.

(ii) The spin-orbit interaction splits each level into a doublet according to
j = $±1/2, except for the s-states for which j = 1/2 is the only possibility.

(iii) The strength of the spin-orbit interaction decreases with n, since the
electrons in higher energy levels experience a smaller magnetic field as
the nucleus is better screened.

(iv) Finally, the dipole selection rules require ∆J = ±1, 0, parity change, and
∆$ = ±1.

Since the ns states are singlets with term 2S1/2 while the np states are doublets
with terms 2P3/2,1/2, we can deduce that all the doublets must involve s ↔ p
type transitions. Since those in group II involve the same doublet spacing, they
must all involve the same p state. They are therefore likely to involve 4s → 3p,
5s → 3p, 6s → 3p and 7s → 3p transitions respectively.
By contrast, those in group I are likely to involve p states decaying to the same
s state. Noting that the first one has the same splitting as group II, we can
deduce that the they are likely to involve 3p → 3s, 4p → 3s, 5p → 3s and
6p → 3s transitions respectively, with the spin-orbit splitting decreasing with
n as expected.

The Grotrian diagram for
sodium showing (some) of
the dipole allowed transitions.
The two sodium D-lines are
emphasized.

The nd states have terms 2D5/2,3/2. However, since the selection rules prohibit
transitions between J = 5/2 and J = 1/2, we can deduce that the transitions
between d ↔ p states must involve triplets, as observed in group III. Since the
splittings are the same as in group II, we can deduce that 3p is involved again.
They must be 3d → 3p, 4d → 3p, 5d → 3p and 6d → 3p transitions respectively.
We can compare these predictions with the diagram (right) showing the spectra
of sodium (known as a Grotrian diagram).

(a) The 5p5/2 and 5p3/2 states are involved in the transitions of frequency
1.05086 and 1.05079× 1015 Hz, which differ by 7× 1010 Hz. The energy
splitting is thus 7× 1010h = 4.6× 10−23 J = 0.29 meV.
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(b) We expect the sodium energy levels to converge to the hydrogen levels
for large n, and thus to scale like 1/n2. To test this, note that the ratio
of the energy differences (6s − 5s)/(7s − 6s) = 1.9, compared with the
expected ratio ( 1

25−
1
36 )/( 1

36−
1
49 ) = 1.65, which is not too bad. The energy

difference between the 7s state and the ionisation energy may be estimated
as the energy difference between 7s and 6s (Planck’s constant h times
0.049×1015 Hz) times ( 1

49−
1
∞ )/( 1

36−
1
49 ), which yields h×0.135×1015 Hz.

We add this to the energy difference between 7s and 3s, inferred fron the
sum of the 0.63142× 1015 Hz (7s → 3p) and 0.50899× 1015 Hz (3p → 3s)
transitions to obtain h× 1.27× 1015 Hz, i.e. 5.2 eV. You could use other
states instead in a similar way.

(c) The spin-orbit energy in the p-states can be estimated from the splittings
of the corresponding doublets in group I. The Coulomb effect is given by
the difference between the p- and s-levels for a given n. The ratios in the
n = 3 and n = 6 cases are:

n = 3 :
spin− orbit

coulomb
=

0.00052
0.51

= 1.02 10−3

n = 6 :
spin− orbit

coulomb
=

0.00003
0.028

= 1.07 10−3

i.e. both effects decrease with n at about equal rates.

5. The derivation of the Landé g-factor is standard bookwork. The 3S1 level
has g = 2 and 3P1 level has g = 3/2. Bearing in mind the selection rules,
∆MJ = ±1, 0, the shifts in the energy levels are given by,

3S1






MJ ∆E
1 2µBB
0 0
−1 −2µBB

3P1






MJ ∆E
1 3

2µBB
0 0
−1 − 3

2µBB

and thus the shifts in the energies of the allowed transitions are as given right.
The line therefore splits into seven components.

MJ ∆E
1 → 1 + 1

2µBB
1 → 0 +2µBB
0 → 1 − 3

2µBB
0 → 0 0

0 → −1 + 3
2µBB

−1 → 0 −2µBB
−1 → −1 − 1

2µBB

Viewing perpendicular to the magnetic field, all seven lines will be seen. The
∆MJ = 0 lines corespond to dipoles parallel to the field, and thus the light will
be plane polarised in the direction of the field; these will have energy shifts of
± 1

2µBB and zero. The ∆MJ = ±1 lines corespond to dipoles perpendicular to
the field, and thus the light will be plane polarised perpendicular to the field;
these will have energy shifts of ± 3

2µBB and ±2µBB.

6. (i) First two terms represent interaction between the magnetic moments of
electron and proton respectively with the external field B; the final term
represents the spin-spin (hyperfine) interaction between the electron and
proton.

(ii) Neglecting the term in µp, and making use of the identity σ(e) · σ(p) =
σ(e)

z σ(p)
z + 1

2 (σ(e)
+ σ(p)

− + σ(e)
+ σ(p)

− ), where

σz =
(

0 1
1 0

)
, σ+ =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
.

We therefore have

σ(e) · σ(p)| ↑e〉 ⊗ | ↑p〉 = | ↑e〉 ⊗ | ↑p〉
σ(e) · σ(p)| ↑e〉 ⊗ | ↓p〉 = −| ↑e〉 ⊗ | ↓p〉+ 2| ↓e〉 ⊗ | ↑p〉 ,

etc. From these results, we can deduce the matrix elements of the Hamil-
tonian and confirm the expression given in the problem.
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(iii) By inspection, the states | ↑e〉 ⊗ | ↑p〉 and | ↓e〉 ⊗ | ↓p〉 are energy eigen-
states with energies W + b and W − b respectively. The other two energy
eigenvalues are given by the solutions of

∣∣∣∣
b−W − E 2W

2W −b−W − E

∣∣∣∣ = 0 ,

which leads to E = −W ±
√

4W 2 + b2. In the case where b . W , i.e.
where the external magnetic field is very weak, these reduce to W +b2/2W
and −3W − b2/2W , so there is a triplet of S = 1 states with energy close
to W , and the singlet S = 0 state with energy close to −3W . In the other
limit where b / W , i.e. where the external magnetic field is very strong,
this expression reduces to ±b, so we have two states with energy close to
+b and two close to −b, corresponding to the two possible orientations of
the electron spin.

7. Taking the 1s hydrogen wavefunctions as our basis, the matrix elements of the
Hamiltonian are defined in the question. Neglecting the overlap integrals, the
upper bound E on the energy levels is given, according to the Rayleigh-Ritz
variational method, by setting the determinant of the matrix Hij − Eδij to
zero. Multiplying out, and factorizing, this condition translates to the relation

(α− E − γβ)
[
(α− E)2 + γβ(α− E)− 2β2

]
= 0 .

This has three solutions:

E = α− γβ, α +
1
2
β

(
γ ±

√
γ2 + 8

)
.

As θ → 60◦ we expect γ → 1, as all the bond lengths become equal. The
solutions in this limit are: E = α − β, α − β, and α + 2β. As θ → 180◦ we
expect γ → 0, as atoms 1 and 3 become separated. The solutions in this limit
are: E = α, and α ±

√
2β. Noting that β < 0, the lowest energy is α + 2β

corresponding to θ = 60◦, so the stable configuration should be an equilateral
triangle. Since this state is non-degenerate, it can only accommodate the two
electrons of the H+

3 ion if they are in an antisymmetric singlet (S = 0) spin
state.

8. Defining (with obvious notation) |VB〉 = C[|a1〉 ⊗ |b2〉+ |b1〉 ⊗ |a2〉], we have:

(i) the normalization |VB〉: 〈VB|VB〉 = C2 [〈a1|a1〉〈b2|b2〉+ 2〈a1|b1〉〈b2|a2〉+ 〈b1|b1〉〈a2|a2〉] =
C2(2 + 2SS∗), and hence C2 = 1

2 (1 + SS∗).
(ii) Defining the normalized bonding and antibonding orbitals, |g〉 = (|a〉 +

|b〉)/
√

2(1 + S) and |u〉 = (|a〉 − |b〉)/
√

2(1− S), we have

|a〉 =
√

1 + S

2
|g〉+

√
1− S

2
|u〉, |b〉 =

√
1 + S

2
|g〉 −

√
1− S

2
|u〉 .

As a result, we find that |VB〉 = C[(1+S)|g1〉⊗ |g2〉− (1−S)|u1〉⊗ |u2〉].
(iii) The state orthogonal to |VB〉 is then given by |ψ⊥〉 = C[(1 − S)|g1〉 ⊗

|g2〉 + (1 + S)|u1〉 ⊗ |u2〉]. Rewriting this in the |a〉 and |b〉 basis, after a
little algebra we arrive at:

|ψ⊥〉 =
C(1 + S2)
(1− S2)

{|a1〉 ⊗ |a2〉+ |b1〉 ⊗ |b2〉} −
2CS

(1− S2)
{|a1〉 ⊗ |b2〉+ |b1〉 ⊗ |a2〉} ,

of which the first term represents the ionic component and the second the
covalent, i.e.

|ψ⊥〉 =
(1 + S2)
(1− S2)

|IB〉 − 2S

(1− S2)
|VB〉 .
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(iv) Inserting the given value of ρ gives S = 0.697, and hence the ratio of
IB/VB in the state |ψ⊥〉: IB/VB = [ (1−S2)

2S ]2 = 0.14.

9. For the rotation/vibration system, the energy levels have the form

E = E0 + (n + 1/2)!ω +
!2J(J + 1)

2I
,

and the selection rules are ∆n = ±1 and ∆J = ±1. Thus, neglecting any
change in the moment of inertia, we have the following energy changes:

R branch J → J + 1 J = 0, 1, 2 · · · ∆E = !ω +
!2

I
(J + 1)

P branch J → J − 1 J = 1, 2 · · · ∆E = !ω − !2

I
J

(i) The above formulae imply equally spaced lines above and below !ω, but
the transition at !ω (∆J = 0, the Q-branch) is not permitted by the
parity change selection rule.

(ii) The double peaks are an isotope effect. Cl has two isotopes 35Cl and
37Cl with abundances in the ratio of roughly 3:1. The less abundant 37Cl
will have a larger reduced mass (by about 1 part in 1000) and thus a
lower vibration frequency. Thus there are two separate spectra slightly
displaced in frequency.

(iii) The uneven spacing results from the change in moment of inertia. If
!2/2I ≡ B initially and B + δB finally (with δB < 0), the formulae for
the energy changes become:

R− branch J → J + 1 ∆E = !ω + 2B(J + 1) + δB(J + 1)(J + 2)
P− branch J → J − 1 ∆E = !ω − 2BJ + δBJ(J − 1)

So the spacing in the R-branch above !ω decreases with increasing J while
that in the P-branch increases with J .

(iv) The intensity of absorption depends on the population of the states, which
is given by the product of the degeneracy of the rotational wavefunction
and the Boltzmann factor, i.e. (2J + 1) exp (−J(J + 1)!2/2IkBT ), which
exhibits first a rise and then a fall with increasing J , as observed.

From the central vibrational frequency ω we can infer the force constant of the
bond k: ω = 2πν 1 5.4 × 1014Hz. Then, ω =

√
k/µ, where µ is the reduced

mass (approximately equal the mass of the Hydrogen atom in this case), so we
deduce that k = 490 Nm−1.
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