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Answers: Problem set II

1. (a) For λ > 0, the first order shift in ground state energy is given by

∆E0 =
∫ ∞

−∞
ψ∗

0λx4ψ0dx =
(mω

π!

)1/2
∫ ∞

−∞
dxλx4e−mωx2/! =

3!2λ

4m2ω2
.

Alternatively, using the identity x =
√

!
2mω (a + a†), we have

∆E0 = λ

(
!

2mω

)2

〈0|(a + a†)4|0〉

=
λ!2

4m2ω2
〈0|(a2(a†)2 + aa†aa† + a†a2a†)|0〉 =

3!2λ

4m2ω2
.

(b) For λ < 0, the situation becomes more subtle. The potential now takes the
form of an upturned double well potential with a metastable minimum
at zero. Here, as we will see, conventional perturbative approaches fail.
However, we can straightforwardly implement the WKB approach to com-
pute the tunneling amplitude from the well created by the perturbation
using the relation,

t ∼ e−S , S =
1
!

∫ b

a
dx

√
2m(V (x)− E0) .

To implement the WKB method, we have to first identify the classical
turning points.
If λ is small in magnitude, the ground state energy of the unperturbed
oscillator is neglible as compared to the barrier height and we may set
E0 = !ω/2 % 0. The classical turning points are determined by the
equation E0 = V (x) = 1

2mω2x2 − λx4. The latter has the solution at
x = a % 0 (with more care, we can show that it is simply the turning
point of the harmonic oscillator, x0 =

√
!/mω) and x = b

√
mω2/2λ.

(The reflection about x = 0 also gives another set of solutions.) We
therefore obtain

S %
√

2mλ

!

∫ b

0
dx x(b2 − x2)1/2

︸ ︷︷ ︸
b3/3

=
2m2ω3

3!λ
,

which leads to the transmission probability

|t|2 ∼ exp
[
−4m2ω3

3!λ

]
.

This result exposes the problem with perturbation theory: it assumes that
the ground state energy is an analytic function of λ for some sufficiently
small region around λ = 0. However, this result shows that the true
ground state solution has an essential singularity in λ and the radius of
convergence of the perturbation theory vanishes.

2. For a point-like nucleas, the hydrogen atom has a potential V (r) = − e2

4πε0r . A
hollow spherical shell will have the same potential for r > b, but V (r) = V (b)
for r < b, by Gauss theorem, and thus its effect can be regarded as adding a
perturbation,

Ĥ(1) =
e2

4πε0

(
1
r
− 1

b

)
,

to the Hamiltonian for r < b, and zero for r > b. For the 2s wavefunction, the
energy shift induced by the perturbation is

∆E = 〈ψ|Ĥ(1)|ψ〉 =
1

8πa3
0

e2

4πε0

∫ b

0
4πr2dr

(
1
r
− 1

b

) (
1− r

2a0

)2

e−r/a0 .
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Since b ' a0, the terms involving r/a0 are negligible in the region of integration,
so we can simplify the integral to

∆E =
e2

8πε0a3
0

∫ b

0
r2dr

(
1
r
− 1

b

)
=

b2

6a2
0

R∞, R∞ =
e2

8πε0a0
.

Likewise for the 2p0 wavefunction, making the same approximation, we obtain

∆E =
e2

128π2ε0a5
0

∫ b

0
r4

(
1
r
− 1

b

) ∫ π

0
dθ2π sin θ cos2 θ =

b4

240a4
0

R∞ .

Both energy shifts are very small, but that for the 2p state is much smaller,
because the 2p wavefunction vanishes at the origin.
This is not a good method to explore the nucleus because other effects, such
as spin-orbit interaction and other relativistic corrections would swamp the
nuclear size effect. It is more effective for heavy atoms, with larger nuclei and
smaller Bohr radii, and especially for “muonic” atoms, where the greater mass
of the muon again reduces the Bohr radius.

3. If, without loss of generality, we take the field to lie along z, the perturbation is
given by Ĥ ′ = −eEz. At first order in perturbation theory, ∆E = −〈0|eEz|0〉
vanishes since the ground state of the hydrogen atom |0〉 is an eigenstate parity.
The leading contribution to ∆E is therefore the second order term ∆E =∑

k %=0
|〈k|eEz|0〉|2

E0−Ek
. If the induced dipole moment is d = αε0E, its energy of

interaction with the electric field is given by ∆E = − 1
2d · E = − 1

2αε0E2. So,
by comparing with our perturbation theory result we obtain the required result.
An alternative derivation of this result starts from the first order perturbation
theory expression for the perturbed wavefunction: |ψ〉 = |0〉 +

∑
k %=0 ck|k〉,

where ck = 〈k|−eEz|0〉
E0−Ek

. The dipole moment operator for the electron is ez, and
its expectation value in this state is (neglecting small terms of order (c2

k)),

〈ψ|ez|ψ〉 = 〈0|ez|0〉︸ ︷︷ ︸
=0

+
∑

k %=0

[ck〈0|ez|k〉+ c∗k〈k|ez|0〉]

︸ ︷︷ ︸
2E

P
k !=0

|〈k|ez|0〉|2
Ek−E0

+O(c2
k) = αε0E

from which the value of α follows as before.
Since Ek ≥ E1 for all k, we obtain

α ≤ 2e2

ε0

∑

k %=0

|〈k|z|0〉|2

E1 − E0
=

2e2

ε0

∑

k %=0

〈0|z|k〉〈k|z|0〉
E1 − E0

=
2e2

ε0

〈0|z2|0〉
E1 − E0

,

where we have used the completeness relation I =
∑

k |k〉〈k|. Note that the
sum now includes the k = 0 term. Using the explicit form for the Hydrogen
ground state, |0〉 = ( 1

πa3
0
)1/2e−r/a0 , we evaluate the matrix element,

〈0|z2|0〉 = 〈0|r2 cos2 θ|0〉 =
∫ π

0
2π sin θ cos2 θdθ

∫ ∞

0
r2drr2e−2r/a0 = a2

0 .

We also need the energy difference, E1 − E0 = (1 − 1
4 )R∞ = 3

4
e2

8πε0a0
from

which we obtain α ≤ 64πa3
0

3 = 9.9× 10−30 m3, a figure that is not too far from
experiment.

4. From the trial wavefunction, we can obtained A from the normalization, 1 =∫∞
−∞ |ψ|2dx = A2

∫ a
−a(x4 − 2a2x2 + a4)dx = 16

15A2a5. Moreover, using the
identity,

Ĥψ =
(
− !2

2m
∂2

x +
1
2
mω2x2

)
ψ = A

[
!2

m
+

1
2
mω2(a2x2 − x4)

]
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the expectation value of the Hamiltonian is given by

〈ψ|Ĥ|ψ〉 = A2

∫ a

−a
(a2 − x2)

[
!2

m
+

1
2
mω2(a2x2 − x4)

]
dx =

15
8

[
2!2

3ma2
+

4mω2a2

105

]
.

Minimising with respect to a we obtain a2 = (35
2 )1/2 !

mω . Substituting this
value of a into our expression for 〈ψ|Ĥ|ψ〉, we obtain the upper bound on the
ground state energy, 〈ψ|Ĥ|ψ〉 =

√
5
14!ω = 0.598!ω, which is greater than the

true ground state energy (!ω/2) as expected.

5. From the normalization, 1 = A2
∫∞
0 4πr2e−2βrdr = 4πA2

4β3 ⇒ A2 = β3

π . From
the identity ∇2ψ = 1

r2 ∂r(r2∂rψ) = 1
r2 ∂r(−βr2e−βr) = β2e−βr − 2β

r e−βr, we
have

〈ψ|Ĥ|ψ〉 = A2

∫ ∞

0
4πr2dr

[
− !2

2m

(
β2e−2βr − 2β

r
e−2βr

)
− e2

4πε0r
e−2βr

]

=
!2β2

2m
− e2β

4πε0
.

Minimising with respect to β we obtain β = me2

4πε0!2 = a−1
0 , which is the inverse

of the Bohr radius and thus 〈ψ|Ĥ|ψ〉 = − m
2!2 ( e2

4πε0
)2 = −13.6 eV. This is the

correct value for the ground state energy of the Hydrogen atom, as expected,
because we chose the correct functional form for the trial function.

6. (a) Suppose that the two Hamiltonians are Ĥ1 and Ĥ2 with ground state
wavefunctions ψ1 and ψ2, i.e. Ĥ1ψ1 = E1ψ1, and Ĥ2ψ2 = E2ψ2. Given
that V1 ≤ V2, we have Ĥ1 = Ĥ2−V2(r)+V1(r) = Ĥ2 +∆V (r). From the
variational principle,

E1 ≤ 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉 − 〈ψ2|∆V |ψ2〉 = E2 + 〈ψ2|∆V |ψ2〉 ≤ E2 ,

where the last inequality follows because ∆V (r) ≤ 0. Thus E2 ≥ E1.

(b) The Hamiltonian is given by Ĥ = − !2

2m∂2
x +V (x), and the normalized trial

function is given by ψ = (2λ/π)1/4e−λx2
. Using standard integrals, we

obtain 〈ψ|Ĥ|ψ〉 = !2

2mλ +
√

2λ
π

∫∞
−∞ dxV (x)e−2λx2

= !2

2mλ + I. Minimsing
with respect to λ, we obtain,

0 =
!2

2m
+

I

2λ
+

I

2λ
+

√
2λ

π

∫
V (x)(−2x2)e−2λx2

,

where the second term arises from differentiating the normalization in I,
and the third term from differentiating the integrand. This is an implicit
equation for λ and if we solve for I and substitute into the equation from
above, we obtain

〈ψ|Ĥ|ψ〉 =
!2

2m
λ + I = − !2

2m
λ + 2λ

√
2λ

π

∫
dxV (x)(2x2)e−2λx2

.

This is our upper bound on the ground state energy, and since V (x) ≤ 0,
both terms are manifestly negative. Hence the ground state energy is
negative, and at least one bound state must exist.

7. A single particle in the potential well has the (unnormalized) wavefunction and
energy, ψn(x) = sin(nπx/L) and E = !2π2

2mL2 n2 ≡ εn2. The wavefunction for a
system of two identical particles must be either symmetric or antisymmetric,
i.e.

ψ(x1, x2) = sin(n1πx1/L) sin(n2πx2/L) ± sin(n2πx1/L) sin(n1πx2/L) ,

with energy (n2
1 + n2

2)ε. If E = 5ε, we must have n1 = 1, and n2 = 2 (or vice
versa).
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(a) Spin-zero particles are bosons and must have a symmetric wavefunction,

ψ(x1, x2) = sin(πx1/L) sin(2πx2/L) + sin(2πx1/L) sin(πx2/L)
= 2 sin(πx1/L) sin(πx2/L) [cos(πx1/L) + cos(πx2/L)] .

Clearly, this has zeros when x1 = 0, L, when x2 = 0, L, and when
x1 + x2 = L.

Symmetric wavefunction

Antisymmetric wavefunction

(b) Spin 1/2 particles are fermions and must have an antisymmetric wave-
function. In the singlet case, the spin wavefunction is antisymmetric, and
hence the spatial wavefunction is symmetric, just as in (a).

(c) In the triplet case, the spin wavefunction is symmetric, and hence the
spatial wavefunction must be antisymmetric, i.e.

ψ(x1, x2) = sin(πx1/L) sin(2πx2/L)− sin(2πx1/L) sin(πx2/L)
2 sin(πx1/L) sin(πx2/L) [cos(πx1/L)− cos(πx2/L)] .

Clearly, this has zeros when x1 = 0, L, when x2 = 0, L, and when x1 = x2.
If the particles were charged, they would repel each other through the
Coulomb interaction. Therefore, in the spin 1/2 case, the triplet state
would have the lower energy, because the particles tend to be further
apart. This is an example of the exchange interaction, and is a simplified
model of what happens in the Helium atom.

8. For the single-particle states, E = n2 π2!2

8ma2 = εn2 Since this well is not centred
on zero, the single-particle eigenstates are all just proportional to sin(nπx/2a) ≡
|n〉.

(a) If we write the two-particle states as |n1, n2〉, the ground state is |1, 1〉
(E = 2ε). The first excited states are |2, 1〉 and |1, 2〉 (E = 5ε). The second
excited state is |2, 2〉 (E = 8ε). The overall wavefunction needs to be sym-
metric for bosons, which |1, 1〉 and |2, 2〉 are already. These therefore pair
with a symmetric spin wavefunction, which is always possible, whether or
not the bosons have spin zero. For the first excited state, both symmetric
and antisymmetric combinations are possible: (|2, 1〉 ± |1, 2〉)/

√
2; these

would need to pair with spin wavefunctions that are respectively symmet-
ric and antisymmetric. If S > 0, both are possible; if S = 0, only the
symmetric space state is allowed.
The (normalized) ground state wavefunction is given by

ψ(x1, x2) = 〈x1, x2|1, 1〉 =
1
a

sin(πx1/2a) sin(πx2/2a) .

(b) According to first order perturbation theory, the change in the ground state
energy caused by Ĥ ′ is given by ∆E = 〈Ĥ ′〉, where the expectation value
involves the unperturbed eigenfunctions, ∆E =

∫ ∫
ψ∗(x1, x2)Ĥ ′ψ(x1, x2)dx1dx2.

Using the identity,
∫ ∫

f(x1, x2)δ(x1 − x2)dx1dx2 =
∫

f(x1, x2)dx1, for
any function f , we have

∆E = −2aV0

∫
|ψ(x, x)|2dx = −2V0

a

∫ 2a

0
sin4(πx/2a) = −4V0

∫ 1

0
sin4(πy)dy .

The sin4(πy) looks nasty, but written as sin2(πy)×sin2(πy), with sin2(πy) =
(1− cos(2πy))/2, it is easily evaluated and gives ∆E = −3V0/2.
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