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Abstract

A central goal of biology is to identify rules that govern cell fate in multicellular tissue: rules that
determine whether a cell will divide or differentiate into a specialised cell type. One may look for
a signature of such rules in the statistics of large populations of cells. Here we consider the case of
progenitor cells in adult mammalian epidermis, where we infer a stochastic mechanism of cell fate
during steady-state tissue turnover.

This work overturns the widely accepted paradigm of epidermal maintenance, which states that
epidermis is supported by two proliferating cell populations — long lived stem cells that can renew
themselves indefinitely, and their short-lived progeny that undergo only a limited number of rounds
of division. We show that observations of (i) scaling of size distributions of cell families (clones) in
transgenic mice, (ii) spatial correlations between proliferating cells, are consistent with a model of
steady-state epidermal maintenance involving a single population of progenitor cells that undergo
a critical birth-death process.

The resulting model establishes a quantitative platform for studying the effects of drugs and mu-
tations on the epidermis, without engaging with the complex biochemical circuitry regulating cell
fate. To exemplify the utility of the model, we use it to infer the effect of a non-disruptive drug
(all-trans retinoic acid) on the rates of cell division and differentiation in transgenic mice, and we
then use the revised rates to predict clone size distributions following an extended drug treatment.

Finally, drawing upon observations of spontaneous large-scale patterning of human epidermal cells,
we infer a mechanism by which human epidermal stem cells spontaneously organise into quiescent
clusters during homeostasis, whilst becoming active in response to spatial disruption of the tissue.
This mechanism offers a unified model of epidermal maintenance in mice and men, consisting of
a committed progenitor cell population whose stochastic behaviour enables stem cells to remain
quiescent unless needed for tissue repair.
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Preface
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Chapter 1

Introduction

1.1 Motivation: Cell tissue as a collective phenomenon

A central goal of biological research is to understand the laws governing cell fate in living tissue, laws
that predict when a cell will divide or differentiate into a specialised cell type. Beyond their ability
to explain how normal tissues develop and are maintained, such laws have important implications
for explaining the mechanisms of aging, wound healing and cancer.

Central to the question of cell fate is the study of adult (or somatic) stem cells. These are cells
that are specialised to different tissue types, and are considered to be responsible for generating
new cells upon demand: either in response to wounding, or to replace cells lost during routine
tissue turnover [1, 2]. Adult stem cells are believed to be long-lived, capable of sustaining their own
population throughout the lifetime of an organism [1]. Due to this property of self-renewal, adult
stem cells are endowed with unique control over their own fate: they may either divide to regenerate
their own population, or they may undergo a process of differentiation, by which they lose their
stem-like properties and become committed to an irreversible genetic program that endows them
with new functional properties within the tissue.

While the possible channels of cell fate may in principle be defined in terms of the choice between
self-renewal and differentiation, the process followed by individual cells in determining their final
fate remains poorly understood. At a fundamental level, such “cellular choices” are the end result
of complex molecular regulation. To understand the laws of cell fate, the biological community has
traditionally worked to identify the central constituents of molecular regulation, i.e. specific genes,
proteins and metabolites that control cell fate [3]. This form of analysis has been described as a
“reductionist approach”, as it supposes that, despite the potential complexity of the biochemical
circuits, only a small number of molecular constituents determine cell fate [3].

Yet, although a wide range of biochemical pathways regulating adult stem cell behaviour have now
been identified [4, 5, 6], one is challenged to find convincing concepts and methods to comprehend
how these constituents interact to give rise to the cell fate choices of stem cells, and their progeny,
at the cellular or tissue level [3]. As a result, the classification of cell fate in one system may fail to
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explain cell behaviour in another, such as when comparing cell behaviour in healthy tissue to that
seen during wound repair, cancer, or incubation in culture. More significantly, it is far from clear
that one may consistently identify a set of individual genes that dominate the resulting function of
cells in multicellular tissue. Rather, one may expect the observed properties of the cells to result
from a complex interplay between different gene products.

Systemic and phenomenological approaches to modelling cell fate: Therefore, rather than following
a reductionist viewpoint, the pluralism of causes and effects in biological systems must either be
explicitly addressed, or carefully overcome. One is led to consider two alternative methods:

• One may attempt to observe, through quantitative measures, the multiple intra-cellular com-
ponents simultaneously, viz. gene expression levels, chemical concentrations, etc.. Then, by
rigorous data integration with mathematical models, one may develop a system-wide perspec-
tive (so-called systems biology) on component interactions, revealing the dynamical properties
of the cell and tissue systems [7]. From here, large-scale characteristics such as a particular
functional state of the cells and tissue, or robustness [8], can be quantitatively understood
and rationally manipulated.

• Or, one may attempt to directly observe quantitative measures that characterise the entire
cell tissue population, such as details of the cell lineage or the large-scale organisation and
patterning of cells in the tissue. By developing mathematical models that capture the observed
cell population behaviour, one may infer the relevant underlying dynamics of the cells. In
contrast to both the reductionist approach and canonical systems biology, such an approach
does not require prior knowledge of the relevant intra-cellular components, and it can assist
in their identification.

Whereas the former (systems biology) approach has gained much popularity in recent years [9],
it has been largely successful in cases where the relevant system components can been identified
with comparative ease, such as in prokaryotes, simple single-celled eukaryotes, or other well-studied
systems [10]. For multi-cellular tissue, on the other hand, the laws of cell fate may be significantly
more complex. Yet, despite its apparent complexity, cell fate in these systems is heavily constrained
by the very existence of a stable tissue capable of robust physiological function. Such large-scale
constraints lead naturally to the latter (phenomenological) approach, the focus of this thesis.

1.2 A prototype tissue: Mammalian epidermis

The outer-most layer of mammalian skin, known as the epidermis, is a well-studied tissue that un-
dergoes constant renewal throughout adult life, and is therefore a good prototype for understanding
cell fate in regenerating adult tissues.

The skin and its appendages ensure a number of critical functions necessary for animal survival.
Skin protects animals from water loss, temperature change, radiation, trauma, and infections, and
it allows animals to perceive their environment through tactile sense. Overall, approximately 20
different cell types reside within the skin and contribute to its various functions [12] (see Fig. 1.1a)

2
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FIG. 1.1: Architecture of mammalian skin and epidermis. a, Mammalian skin consists of the sub-cutaneous
layer (fat), the dermis and the epidermis that is interspersed with hair follicles. The dermis is a complex
environment containing blood vessels, nerves, sweat glands and other cell types, whereas the interfollicular
epidermis (IFE) is a simple tissue composed perdominantly of keratinocyte cells. b, c, Micrograph and
schematic cross-sections of IFE. In the schematic, the labels correspond to (1) the basal membrane separating
the epidermis from the dermis; (2) the basal layer, in which cell division is localised; (3) the supra-basal
layers in which cells undergo differentiation, growing in size, filling with keratin and eventually flattening
out and losing their nucleus. The cell rise to finally join (4) the water-tight cornified layer, from which
they are ultimately shed. In b, the basal layer is indicated by the arrow. d, Schematic stucture of the hair
follicle. Hair follicles contain stem cells located in the bulge (b, green), with the potential to generate lower
hair follicle (lf), sebaceous gland (sg, orange), and upper follicle (uf) during normal maintenance, and to
regenerate the entire epidermis upon wounding. These stem cells play no role in routine maintainance of the
interfollicular epidermis (IFE) [11].
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The epidermis, in this context, forms a water-tight layer consisting of layers of specialised cells
known as keratinocytes, which are organised into hair follicles interspersed with interfollicular
epidermis (IFE) [13] (see Fig. 1.1b-d). The IFE, in particular, consists of only one cell type (the
keratinocyte).

In the following, we shall introduce key features of the epidermis, reserving additional details
of epidermal morphology to later chapters. This section draws heavily upon reviews found at
Refs. [14, 12, 13], as well as the following papers written by (or with) AMK [15, 16, 17, 18], and
references therein.

Structure of the interfollicular epidermis
In the IFE, proliferating keratinocyte cells are confined to the basal epidermal layer (see Fig. 1.1c).
The basal layer produces, secretes, and assembles an extracellular matrix, which constitutes much
of the underlying basement membrane that separates the epidermis from the underlying dermis.
As they differentiate into specialised skin cells, the basal cells withdraw from the cycle of cell
proliferation and then leave the basal layer, migrating towards the epidermal surface. In the early
stages of the differentiation program, the cells remain transcriptionally active. However, as they
move up through the cell layers, the cells lose their nucleus and culminate in the production of dead
flattened cells that form a water-tight cornified layer (Fig. 1.1c). In human epidermis, the cornified
layer consists of 25-30 layers of such cells. Ultimately, these cells are shed from the skin surface.
In total, estimates of the keratinocyte turnover time (the average time between cell division and
shedding) are 39-45 days in humans [19], corresponding to approximately 1,500 cells turned over
per day per mm2 [20].

Progenitor cells of the IFE
To maintain the integrity of the IFE, new cells must be generated to replace those lost through
shedding. To characterise this process, the progenitor cells found in the basal layer have been
studied extensively. Early studies using a radio-active DNA marker that is diluted during cell
division have revealed that a sub-population of progenitor cells retain their label for many weeks,
whereas the bulk of cells lose their label more rapidly by dividing, on average, once every 7-8
days [12]. The so-called “label-retaining” cells have been interpreted as stem cells that divide
infrequently, while the latter cells are seen to be a second, short-lived, progenitor cell population1.

Further evidence for two progenitor cell compartments is seen in in vitro experiments, where cells
isolated from the skin are plated in culture and allowed to form growing colonies2 [24]. When plated
at low cell density, it was found the cultured human keratinocytes can form (a) large macroscopic
cell colonies (known as holoclones) that continue to grow upon further re-plating, (b) microscopic
colonies (known as paraclones) in which all cells eventually undergo terminal differentiation, or
(c) macroscopic but small, irregularly shaped colonies (known as meroclones) that, upon fur-
ther re-plating, eventually give rise to paraclones, see Fig. 1.2. These experiments demonstrate a

1However, we will challenge this interpretation in chapter 2.
2The technology for such experiments was developed in the mid-1970s, when the culture conditions allowing

the growth of human IFE in vitro were discovered [21]. As well as its application to the study of progenitor cell
characteristics, this seminal discovery allows sheets of skin to be generated for use in treatment of severely burned
patients [22, 23]. In the past 25 years, this technology has saved many lives.
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2304 Cell Biology: Barrandon and Green

When 0-5% of colonies were terminal, the clone was scored
as a holoclone. When no colonies formed or when all colonies
formed were terminal, the clone was classified as a para-
clone. When more than 5% but less than 100% of the colonies
were terminal, the clone was classified as a meroclone.

Determination of Number of Cell Generations from Mea-
surements of Colony Area. In order to determine the number
of cells in a colony and, from this value, the number of cell
generations since inoculation of the founding cell, standard
curves were established to relate cell number to colony area.
Single cells were isolated from secondary cultures and
reinoculated. At different times, colony areas and cell num-
ber were determined. Over a large range of colony size, the
number of cells was proportional to colony area and equal to
1800 cells per mm2. For small growing colonies (less than 1
mm2) the best visual fit for the relation was at 1600 cells per
mm2; this may be accounted for by the limited stratification
in small colonies. Terminally differentiated colonies contain
predominantly large cells, and the cell number per unit area
was therefore lower. Cell number for colonies of each type
was read from the appropriate standard curve.
Frequency of Clonal Types in Different Strains of Keratin-

ocytes. An 8-day secondary culture of strain AY (donor age
= 0 years) was trypsinized and the cells were suitably diluted.
A series of66 cells was isolated under the microscope (5), and
each cell was transferred to a different 35-mm Petri dish
containing 2.2 x 105 irradiated 3T3 cells. On the seventh day,
the dishes were scanned and each colony was photographed
for later measurement of its area. Each colony was then
trypsinized and cells were inoculated into two 100-mm
indicator Petri dishes, already containing irradiated 3T3 cells.
These dishes were fixed and stained 12 days later.

Table 1 lists each clone, numbered according to the order

.0

V.
to A.i $ie *

I*
,
0

.. ts w

9

of isolation of the founding cell. Of the 66 cells isolated, 39
gave rise to identifiable clones. These are ranked in order of
their size, as determined by their area 7 days after inoculation
of the founding cell, andjust prior to transfer. The size of the
clones is also expressed as the number of cell doublings
during the 7-day period.

After transfer to indicator dishes, most clones again gave
rise to colonies. In general, the larger the clone at the time of
transfer, the larger the number of resulting colonies. Only
three clones failed to produce any colonies on the indicator
dishes. Of these, clones 63 and 60 were the smallest of all the
clones at the time of transfer, and clone 58 was only slightly
larger.
Of the clones studied, 28% were holoclones, 49% were

meroclones, and 23% were paraclones. It is clear from Table
1 that some paraclones grow quite rapidly, and classification
of clonal type therefore cannot be derived from study of
growth rates. The appearance of the colonies in indicator
dishes for each of the three clonal types is shown in Fig. 3.

Similar experiments were carried out on cells derived from
another newborn and from two elderly donors. The founding
cells gave rise to clones that grew about as rapidly in all cases.
When these clones were classified it was found that the
frequency of the three clonal types when the cells were
derived from elderly donors was different from that observed
when the cells were derived from newborns: few or none of
the clones were holoclones and most were paraclones (Table
2).
Growth Potential of Paraclones and Meroclones. Para-

clones: The data on growth potential of the paraclones oftwo
strains are summarized in Table 3. From the number of
generations that occurred in the original colony and the mean
number of generations that occurred in the indicator plates
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FIG. 3. Colonies produced in indicator dishes by different clonal types of strain AY. Each clone was disaggregated, and one-quarter of the
cells was inoculated into each oftwo indicator dishes containing irradiated 3T3 cells. The cells were allowed to grow for 12 days, when the dishes
were fixed and stained with rhodamine. The clones shown are those identified in Table 1 as nos. 44 (holoclone), 33 (meroclone), and 66
(paraclone).
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FIG. 1.2: Evidence for in vitro proliferative heterogeneity of human keratinocytes, after Ref. [24]. When the
progeny (or clone) of a single cultured keratinocyte are replated after a 7 day incubation period, “holoclones”
give rise to large and highly-proliferative colonies; “meroclones” give rise to large wrinkled colonies as well
as a variable fraction of microscopic colonies in which all cells have undergone terminally-differentiation; and
“paraclones” generate only microscopic colonies.

heterogeneity in the proliferation potential of epidermal progenitor cells: the highly-proliferative
clonogenic cells that give rise to holoclones are considered to be stem cells, whereas paraclones
must result from progenitor cells that are incapable of self-renewal through super-linear growth.
Meroclones are thought to result from the proliferation of poorly-defined ‘partially-differentiated’
stem cells3.

The stem/TA cell model of epidermal homeostasis
As a result of these experimental investigations, it has been thought for many years that interfol-
licular epidermis is maintained by two distinct progenitor cell populations in the basal layer. These
comprise long-lived stem cells with the capacity to self-renew, and their progeny, known as transit-
amplifying cells (TA), which go on to differentiate and exit the basal layer after several rounds
of cell division [25], see Fig. 1.3. Stem cells are also found in the hair follicles, but whilst they
have the potential to generate epidermis in circumstances such as wounding, they do not appear
to contribute to maintaining normal epidermis [11, 26].

3However, it remains a challenge (which is addressed in this thesis) to identify the mechanism that gives rise to
wrinkled morphology of meroclone colonies.
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FIG. 1.3: The stem/TA hypothesis of tissue maintenance. a Self-renewing stem cells give rise to a population
of transient-amplifying (TA) cells that undergo 3–5 rounds of cell division before differentiating into post-
mitotic cells. b Progenitor cells are confined to the basal layer, whilst post-mitotic cells migrate through the
supra-basal layers until they are shed from the skin surface.

Histological analysis has shown that mouse epidermis is organized in stacks of cells with a hexagonal
surface area lying on a bed of ten basal cells [27, 28, 25], see Fig. 1.4. According to the “stem/TA”
cell model of interfollicular homeostasis, this structure was hypothesized to indicate organisation
of the tissue into regularly sized “epidermal proliferative units” or EPUs, in which a central stem
cell supports a surrounding, clonal, population of transit amplifying cells, which in turn generate a
column of overlying differentiated cells [27, 28] (Fig. 1.4c).

However, although several experimental approaches have been used to attempt to demonstrate the
existence of EPUs, conclusive evidence for their existence is lacking. The EPU model predicts that
slowly-cycling stem cells should be found in a patterned array in the IFE; cell labelling studies
have failed to demonstrate such a pattern [30]. In chimaeric mice the EPU model predicts that the
boundaries of mosaicism in the IFE should run along the boundaries of EPUs; instead boundaries
were found to be highly irregular [31]. Genetic labelling studies using viral infection or mutation
to activate expression of a reporter gene in epidermal cells have demonstrated the existence of
long-lived, cohesive clusters of labelled cells in the epidermis, but these clusters do not conform to
the predicted size distribution of the EPU [30, 32, 33, 25, 34, 35].

Thus, until recently the means by which homeostasis of IFE was achieved has been unclear. In
the following chapters, drawing upon a range of experimental results, we shall challenge the EPU
concept, and with it, the stem/TA model. We shall show that stem cells appear to remain largely
quiescent during normal epidermal homeostasis, and that rapidly proliferating cells are capable of
independently maintaining the IFE. These rapidly proliferating cells are not short-lived TA cells,
but are instead regulated to behave stochastically, so that they are capable of a significant number
of cell divisions before differentiating.
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a b

c

FIG. 1.4: Early evidence for the stem/TA hypothesis and epidermal proliferating units (EPUs), after
Ref. [29]. a Schematic showing the observed structure of mouse ear epidermis [28], where the cornified-layer
consists of hexagonally shaped cells that are stacked above basal layer cells including one centrally-located
cell (yellow). It was first suggested that the central basal layer cell (yellow) is a stem-cell, which is surrounded
by transit-amplifying progeny. However, it was later found that the central cell plays no role in epidermal
maintenance. b Wholemount IFE stained for the cell proliferation marker Ki67, and for a label-retaining cell
(LRC) marker BrdU (green). LRCs are found by introducing a marker for DNA synthesis (BrdU), which is
then diluted through repeated cell divisions. Cells that retain the marker over extended periods of time are
considered to be quiescent. The existence of LRCs is seen as evidence for a population of slowly cycling stem
cells. c Genetic labelling of proliferating basal-layer cells allows the lineage of proliferating cells (clones)
to be visualised. The cross-section shows column-like progeny, which were initially interpreted as evidence
for EPUs. However, when imaged in 3D, the variation between the sizes of neighbouring clones calls into
question the validity of the EPU model (as will be shown in chapter 2).
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1.3 Theoretical models of epidermal cell fate — a brief survey

The importance of cell fate in biology and medicine has led to the development of several quanti-
tative models of epidermal maintenance. However, as such models have largely been challenged to
generate predictive laws, or to engage with new experimental data, this survey will be kept brief.
Models of epidermal cell fate have attempted to engage with different aspects of the experimental
system, including the basal layer topology and cell age distributions. Such models have either con-
sidered the coarse-grained dynamics of the cell populations, or individual cell-based dynamics, as
described below.

An elegant example of quantitative cell fate modelling is presented in the topological approach of
Dubertret and Rivier [36], who considered the basal layer as a surface of convex polygonal cells,
known as a Voronoi tesselation (or a ‘foam’), consisting of a single type of cell that is capable
of both division and differentiation through upward migration4. The proposed model successfully
reproduces the experimental topology of the basal layer, i.e. the distribution in the number of sides
per cell, by relating the probabilities of cell division and upward migration to the number of nearest
neighbours. Yet, despite its success (and elegance) in describing the steady-state topology, it is a
challenge to apply the model to explain cell fate outside of the specific topological context.

Taking a different approach, Savill [39] considered the age distribution of cells in the basal layer.
To develop a theoretical model of cell age distributions, he assumed that epidermal maintenance
adheres strictly to the stem/TA cell model, which predicts that cell age should vary as a result
of the differences between the stem, TA and post-mitotic cell populations, as well as due to the
stochastic variability within each population. However, this study acknowledges a lack of adequate
experimental data for comparison with the theory.

Other mean-field theories of cell fate have drawn upon variants of the Fisher equation in order to
describe cell turnover during wound repair and tissue maintenance [40, 41]. Here, the dynamics of
the cell population are described by a reaction-diffusion equation for the coarse-grained cell density,
with the effects of cell division and differentiation accounted for by a logistic source term. Although
the Fisher equation introduces an important regulatory principle, namely that of density-regulation
of the cell division rates, current studies do not attempt to engage with the question of individual
cell fate.

Beyond the mean-field, a range of individual cell-based (ICB) models have been developed to model
epidermal maintenance [42, 43]. These are models that simulate the evolution of a cell population
by defining characteristics and dynamical properties for each individual cell, and then simulating
the dynamics of a large number cells. In the simplest of such models, the spatial distribution of
cells is either ignored or modelled using a simple lattice, however several elaborate schemes exist
to allow the volume and surface properties of cells to be accounted for in silico [44, 45]. Despite
the superficial appeal inherent in the rich simulations that result from ICB models, many existing
studies introduce a large number of (uncontrolled) parameters to support their simulation results5.
As a result, such models are often challenged to develop predictive insights6.

4Similar topological models have been developed in other tissue types [37, 38].
5Typical parameters may include cell adhesion and migration rates, local nutrient supplies, compressibility, and

cell division and differentiation rates.
6By contrast, even very complex models may often be understood in terms of minimal key ingredients that
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1.4 Outline of research

This thesis is organised around a series of publications by the author, as follows: In chapters 2
and 3, following closely to Refs. [15, 16], we describe the experimental system used for genetically
labelling and tracking families of cells (clones) in mouse tail-skin, and we show how the experimental
clone fate data can be used to both rule out the stem/TA cell model of epidermal maintenance,
and to infer a new paradigm for epidermal maintenance.

In chapter 4, we then use the new model to characterise the effect of a topical drug treatment
on the epidermis, allowing us to predict experimental clone size distributions in the drug-treated
system.

In chapter 5, following closely upon Ref. [17], we extend the model of cell division in mouse tail-skin
to account for the spatial distribution of cells within the basal layer. By drawing upon observations
of clone cohesiveness to characterise the cell mobility, we predict that progenitor cells should cluster,
in good quantitative agreement with experiment.

In chapters 6-7, we then address the question of epidermal maintenance in humans, drawing upon
observations of steady-state stem cell patterning. We infer a patterning mechanism that is capable
of accounting for a wide range of empirical observations reported in the literature, and provides a
unified model of cell fate in both mice and men.

We conclude with a discussion of open questions and potential future work in chapter 8.

dominate their dynamics, such as may be understood by turning to the of field universal non-equilibrium processes
and interface growth models, see e.g. [46, 47, 45].
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Chapter 2

Lineage tracing experiments:
challenging the stem/TA cell model

Chapter overview

The long-standing model of adult epidermal homeostasis supposes that skin tissue is maintained
by two discrete populations of progenitor cells: self-renewing stem cells; and their progeny, known
as transit amplifying (TA) cells, which differentiate after several rounds of cell division [48, 49, 50].
This chapter describes inducible genetic labelling experiments that may be used to test the stem/TA
hypothesis. In these experiments, the fate of a representative sample of progenitor cells in mouse
tail epidermis is tracked at single cell resolution in vivo at time intervals up to one year.

The primary aim of this chapter is to familiarise the reader with the lineage tracing experiments
that will be analysed in the following four chapters of the thesis. We will demonstrate here that
the resulting clone size distributions are inconsistent with the classical stem/TA hypothesis. The
more significant implications of these results for understanding epidermal cell fate will be discussed
in the following chapter (3).

This chapter draws significantly upon the work carried out by E. Clayton1, D.P. Doupé1 and P.H.
Jones1, also reported in Ref. [15]. Experimental work was performed by EC, DPD and PHJ,
project planning by PHJ and D.J. Winton2. AMK and B.D. Simons conducted the data analysis.
In particular, the experimental sections 2.1 and 2.2 are largely the authorship of PHJ. We have not
included the full experimental methods nor the supplementary experimental results in this thesis.
A reader interested in these experimental aspects is kindly referred to Ref. [15].

1MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 2XZ, UK
2Cancer Research UK Department of Oncology, University of Cambridge, Cambridge Institute for Medical Re-

search, Cambridge CB2 2XY, UK
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EYFPStopcreERT

EYFPcreERT
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FIG. 2.1: The genetically modified mice (strain AhcreERT R26EYFP/wt) carry two genetic modifications
(top): firstly they carry the gene for an enhanced yellow flourescent protein (EYFP), whose expression was
blocked by a ‘stop’ cassette (red). Therefore, the cells do not initially express EYFP. Secondly, the mice
carry the gene for the DNA-modifying enzyme creERT recombinase, which is targeted at the stop cassette.
The recombinase is expressed following treatment with βnapthoflavone (βNF) (a drug that induces the cre
promoter). In the presence of a second drug, Tamoxifen, creERT mediates excision of the stop cassette (dashed
lines) resulting in EYFP expression in the recombinant cell and its progeny (bottom). By administering a
sufficiently low dosage of the activating drugs (βNF and Tamoxifen), the frequency of genetic labelling was
kept very low (1 in 600 cells labelled). See Ref. [15] for further technical details.

2.1 The experimental system: genetically labelled clones

As described in the thesis introduction, the mammalian interfollicular epidermis (IFE) is maintained
by proliferating epidermal progenitor cells (EPCs) that are found in the basal cell layer. Label
retaining studies show that IFE contains slowly cycling basal cells which, following the stem/TA
cell hypothesis, have been interpreted as representing stem cells that support clonal units of TA
and differentiated cells [27, 28]. However, these studies are unable to reveal the dynamics of EPC
behaviour during epidermal homeostasis. Previous genetic labelling studies to track the fate of
proliferating cells have either required epidermal injury or have yielded too few labelled clones to
permit quantitative analysis [32, 33, 34, 35].

To track the fate of EPCs in normal epidermis we have used inducible genetic marking to label
a sample of cells and their progeny in adult mice. As shown schematically in Fig. 2.1, animals
were genetically modified to carry the enhanced yellow flourescent protein gene (EYFP), whose
expression is blocked by a removable genetic ‘stop cassette’. EYFP is then expressed in response to
a treatment with βNF and tamoxifen at 6-9 weeks of age, which leads to the removal of the stop-
cassette and activation of the EYFP gene. Significantly, the fraction of initially labelled cells may
be kept low by adjusting the treatment dosage (see caption of Fig. 2.1). Cohorts of mice were culled
for analysis at intervals following a single injection of the inducing drugs. Cells expressing EYFP
and their labelled progeny were detected by confocal microscopy of wholemount epidermis [30]. At
two days post induction, only single labelled cells were seen, at a frequency of 1 in 600 cells in the
basal layer, indicating that the clusters of cells encountered at later time points are clones, each
derived from a single progenitor cell (Fig. 2.2). Analysis of subsequent cohorts of mice demonstrated
clones that remained cohesive and expanded progressively in size (Fig. 2.2, [15]). Scoring clones
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FIG. 2.2: In vivo clonal labelling of epidermal progenitor cells. Projected Z-stack confocal images of IFE
wholemounts from genetically modified mice (strain AhcreERT R26EYFP/wt) viewed from the basal surface
at the times shown following induction. Yellow, EYFP; blue, DAPI nuclear stain. Scale bar, 20 µm.

that contained one or more basal cells, the observed clone size distribution (ie. the total number of
nucleated cells per clone) up to six weeks post labelling, and the basal layer clone size distribution
up to one year (see methods in Ref. [15]) are shown in Fig. 2.3.

The density of labelled clones containing at least one basal layer cell in tail epidermis rose from 2
days to a peak at two weeks after induction, as EYFP levels accumulated to detectable levels in all
labelled cells. Clone numbers then fell to 7%±2% (mean ± SD) of the peak value by three months,
and 3%±2% at one year; similar results were seen in back skin [51]. This decline was accompanied
by the appearance of multi-cellular clones containing only suprabasal cells, consistent with clonal
loss through differentiation [15]. Analysis of the spatial distribution of IFE clones indicates that
labelled clones are not replaced by unlabelled clones migrating from hair follicles [15]. Moreover,
none of the labelled clones can derive from bulge stem cells as this region is not labelled [15].

Before attempting to interpret the clone fate data, it is necessary to assess the extent to which they
are influenced by tissue growth or apoptosis. Firstly, the rate of increase in epidermal surface area
due to growth was low (estimated at less than 3.5%/month over the time course of the experiment)
whilst apoptosis was undetectable in basal layer cells (see Ref. [15], supplementary results). Fur-
thermore, the number of basal layer cells/unit area and the proportion of cycling cells (as assessed
both by Ki67 and cdc6 immunostaining) showed no significant difference between two week and
one year samples. Both techniques of assessing the proportion of cycling cells gave similar results,
as did flow cytometry [52, 53]: 22%±3% (mean ± SD) for Ki67; 24%±4% for cdc6; and 22±1% for
flow cytometry (see Ref. [15], supplementary results). Finally, there was no significant difference
between the proportion of cycling cells in the labelled and unlabelled cell populations, either at 5
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clones migrating from hair follicles (Supplementary Fig. S5).
Moreover, none of the labelled clones can derive from bulge stem
cells because this region is not labelled (Supplementary Fig. S1 and
Supplementary results).

Before attempting to interpret the clone fate data, it is necessary to
assess the extent to which they are influenced by tissue growth or
apoptosis. First, the rate of increase in epidermal surface area due to
growth was low (estimated at less than 3.5% per month over the time
course of the experiment), whereas apoptosis was undetectable in
basal-layer cells (see Supplementary results and Supplementary Fig.
S6). Furthermore, the number of basal-layer cells per unit area and
the proportion of cycling cells (as assessed both by Ki67 and cdc6
immunostaining) showed no significant difference between 2-week
and one-year samples. Both techniques of assessing the proportion of
cycling cells gave similar results, as did flow cytometry: 226 3%
(mean6 s.d.) for Ki67; 246 4% for cdc6; and 226 1% for flow
cytometry (see Supplementary Fig. S7)19,20. Finally, there was no
significant difference between the proportion of cycling cells in the
labelled and unlabelled cell populations, either at 5 days or one year
post-induction (see Supplementary results and Supplementary Fig.
S2).We therefore conclude that basal-layer cells labelled at induction
are typical of the entire basal cell population, and that the observed
clonal evolution is representative of the adult system in a state of
homeostasis.

According to the stem/TA cell hypothesis, TA cells undergo a
limited number of cell divisions followed by differentiation21. To test
this prediction, we examined clones at 3 weeks, over 90%ofwhich are
lost by 12weeks post-induction. Significantly, clones comprising
three or more cells contained both basal and suprabasal cells, indi-
cative of asynchronous terminal differentiation (Fig. 3a). Further-
more, the immunostaining of clones consisting of two basal cells
reveals that a single cell division may generate either one cycling
and one non-cycling daughter, or two cycling daughters, or two

non-cycling daughters (Fig. 3b). This raises the question of whether
there is asymmetric cell division within the basal plane as described
in the Drosophila peripheral nervous system and zebrafish retinal
precursors22,23. Three-dimensional imaging of wholemount epi-
dermis revealed that only 3% of mitotic spindles lie perpendicular
to the basal layer, indicating that, in contrast to embryonic epidermis,
the vast majority of EPC divisions generate two basal-layer cells
(Supplementary Fig. S8; refs 24, 25). The observation of asymmetric
partitioning of numb protein (which marks asymmetric division
in neural and myogenic precursors) in clones consisting of two
basal cells suggests that planar-orientated asymmetric division also
occurs in the epidermis (Fig. 3c)26,27. EPC behaviour thus differs
substantially from that observed in committed precursors in other
systems28,29.

We next considered the behaviour of the long-lived clones that
persist for over 3months. Within the stem/TA cell hypothesis, the
epidermis is organized into epidermal proliferative units comprising
about ten basal cells supported by a single self-renewing stem cell11. If
individual stem cells retain their self-renewal capacity, the stem/TA
cell model predicts that the basal-layer clone-size distribution must
become time-independent and characteristic of a single epidermal
proliferative unit (see Supplementary theory21). Such behaviour is in
stark contrast to the progressive increase in average clone size
observed in the epidermis (Fig. 2).

Faced with this apparent contradiction, one could attempt to
revise the stem cell/TA cell model, but staying within the general
paradigm. This might include introducing the capacity for stem-cell
ageing and/or migration15. Alternatively, one could try to exploit the
range of experimental data to seek evidence for a new paradigm for
epidermal homeostasis. Intriguingly, such evidence is found in the
scaling properties of the observed clone-size distribution. Here we
argue that the clone fate data are compatible with a model in which
IFE is maintained by only one compartment of proliferating cells.
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Figure 2 | Clone fate data. a, Distribution of clone size (total cells per clone)
as a function of cell number, as measured at 2 days, 1, 2, 3, 4 and 6weeks
post-induction (error bars indicate s.e.m.). c, Distribution of basal cells per
clone as a function of basal cell number, as measured at 2 days, 1, 2, 3, 4 and
6weeks, 3, 6 and 12months post-induction (error bars indicate s.e.m.).
b, d, Distribution of clone size (total cells per clone) (b) and basal cells per
clone (d) as a function of time for different values of cell number (error bars
indicate s.e.m.). Here we have aggregated clone sizes in ranges increasing in

size in powers of two (see legend within figure). To eliminate possible
ambiguities due to labelling efficiency, single cell clones are eliminated from
the distribution in b and d, thereby removing the population of post-mitotic
cells labelled at induction. We focus on time points of 2weeks or more post-
induction when EYFP levels have stabilized. Continuous curves show the
behaviour of the proposed one-progenitor-cellmodelwith a cell division rate
of l5 1.1 per week and a symmetric division ratio of r5 0.08 (see main text
for details).
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FIG. 2.3: Clone fate data. a, Distribution of clone size (total cells /clone) as a function of cell number,
as measured at 2 days, 1, 2, 3, 4 and 6 weeks post induction. Error bars indicate standard error of the
mean (SEM). b and d, Distribution of (b) clone size (total cells per clone) and (d) basal cells per clone as
a function of time for different values of cell number (error bars indicate SEM). Here we have aggregated
clone sizes in ranges increasing in size in powers of two (see legend within figure). To eliminate possible
ambiguities due to labelling efficiency, single cell clones are eliminated from the distribution thereby removing
the population of post-mitotic cells labelled at induction. We focus on timepoints of 2 weeks or more post
induction when EYFP levels have stabilised. Continuous curves show the behaviour of the one progenitor
cell model proposed in the following chapter (3). c, Distribution of basal cells per clone as a function of
basal cell number, as measured at 2 days, 1, 2, 3, 4, 6 weeks, 3, 6 and 12 months post induction (error bars
indicate SEM).

days or one year post induction (see Ref. [15], supplementary results). We therefore conclude that
basal layer cells labelled at induction are typical of the entire basal cell population, and that the
observed clonal evolution is representative of the adult system in epidermal homeostasis.

2.2 Failure of the stem/TA hypothesis

According to the stem/TA cell hypothesis, TA cells undergo a limited number of cell divisions fol-
lowed by differentiation [25]. To test this prediction we examined clones at 3 weeks, over 90%
of which are lost by 12 weeks post induction. Significantly, clones comprising three or more
cells contained both basal and suprabasal cells, indicative of asynchronous terminal differentia-
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FIG. 2.4: Asymmetric cell fate in epidermal progenitors. a, Visualization of a three-cell clone exhibiting
asynchronous terminal differentiation. Projected Z-stack images show one basal cell (labelled b), and two
suprabasal cells: a cornified layer cell (labelled c), and a second suprabasal cell indicated by the arrowhead.
Cartoon shows the angle of view. Upper panels show the clone marker EYFP, yellow, and the nuclear
marker DAPI, blue; lower panels are corresponding images with only EYFP shown. Scale bar, 20 µm.
b, Visualization of two-cell clones (both cells basal, 3 weeks post-recombination), showing the different
proliferative fates of the daughter cells of a single division, providing evidence for symmetric and asymmetric
cell fate. Clones are viewed from the basal epidermal surface, stained for the proliferation marker Ki67 (red),
DAPI (blue), and EYFP (yellow); arrowheads indicate position of EYFP-labelled cells. Three types of clone
are shown, with two, one and zero Ki67 positive cells. Scale bar, 10 µm. c, Two-cell clone (both cells basal,
3 weeks post-recombination, viewed from the basal epidermal surface,) stained for the proliferation marker
Ki67 (blue), numb (red) and EYFP (yellow), showing asymmetric distribution of numb, providing evidence
for asymmetric cell fate resulting from a planar division. Scale bar, 5 µm.
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tion (Fig. 2.4a). Furthermore, the immunostaining of clones consisting of two basal cells reveals
that a single cell division may generate either one cycling and one non-cycling daughter, or two
cycling daughters, or two non- cycling daughters (Fig. 2.4b). This raises the question of whether
there is asymmetric cell division within the basal plane as described in the Drosophila peripheral
nervous system and Zebra Fish retinal precursors [54, 55]. Three-dimensional imaging of whole-
mount epidermis revealed that only 3% of mitotic spindles lie perpendicular to the basal layer
indicating that, in contrast to embryonic epidermis, the vast majority of EPC divisions generate
two basal layer cells (see Ref. [15] supplementary results), [56, 57]. The observation of asymmetric
partitioning of numb protein, which marks asymmetric division in neural and myogenic precursors,
in clones containing two basal cells suggests that planar-orientated asymmetric division also occurs
in the epidermis (Fig. 2.4c) [58, 59]. EPC behaviour thus differs substantially from that observed
in committed precursors in other systems [60, 61].

We next considered the behaviour of the long lived clones that persist for over 3 months. Within
the stem/TA cell hypothesis, the epidermis is organised into epidermal proliferative units (EPUs)
comprising about 10 basal cells supported by a single self- renewing stem cell [28]. If individual stem
cells retain their self renewal capacity, the stem/TA cell model predicts that the basal layer clone
size distribution must become time-independent and characteristic of a single EPU (see section 2.A
and Ref. [25]). Such behaviour is in stark contrast to the progressive increase in average clone size
observed in the epidermis (Fig. 2.3).

Faced with this apparent contradiction, one could attempt to revise the stem cell/TA cell model
staying within the general paradigm. This might include introducing the capacity for stem cell
aging and/or migration [35]. Alternatively, one may try to exploit the range of experimental data
to seek evidence for a new paradigm for epidermal homeostasis. Intriguingly, such evidence is found
in scaling properties of the observed clone size distribution. In the following chapter, we will argue
that the clone fate data are compatible with a model in which interfollicular epidermis is maintained
by only one compartment of proliferating cells. Whether this model should be considered as an
extreme variant of the stem/TA cell hypothesis or a new concept is arguably a matter of semantics,
a point we will return to later.
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Chapter appendix

2.A Classical EPU model and the predictions of the stem/TA cell
hypothesis

In the ‘classical EPU model’, long-lived self-renewing stem-cells support a transit-amplifying cell
compartment, which in turn divide into post-mitotic cells. Within this framework, we will show
that:

• in steady-state, the clone size distribution associated with an EPU is strongly peaked around
some average value with fluctuations that are typically small as compared to the mean size;

• the size distribution of a representative sample of labelled basal cells (such as addressed in
the experiment) must eventually converge onto the same stationary distribution as that of
the EPU.

According to the classical EPU model, stem cells can divide indefinitely, and are the source of
all interfollicular keratinocytes in normal epidermis. Stem cells (labelled as S-type) divide into
a daughter stem cell and a differentiated transit-amplifying (TA) cell which, in turn, is thought
to undergo several rounds of division before exiting the cell cycle. Finally, post-mitotic cells (B)
are free to exit the basal layer. Focussing on the basal layer cell distribution, the model may be
summarised by the rate equations,

S λS−→ S + TA1

TAn
λA−→ TAn+1 + TAn+1

TAN
λA−→ B + B

B Γ−→ �,

(2.1)

where TAn indexes the n-th generation of the TA cell population, and N ∼ 3−5 [25] represents the
number of rounds of division of the TA cell population. Here λS and λA (assumed, for simplicity, to
be independent of generation) represent the division rates of stem and TA cells respectively, and Γ
denotes the post-mitotic cell transfer rate from the basal to the suprabasal layer. Although one can
conceive of possible variations, while one assumes that an EPU is maintained by a single long-lived
stem cell, the model encapsulated by (2.1) exemplifies the general properties of any model based
on the stem cell/TA cell hypothesis.

To analyse the model, let us define PnS,nA1
,···,nAN

,nB as the probability for finding a given clone with
nS stem cells, (nA1 + · · ·+ nAN

) TA cells, and nB post-mitotic cells at some time t after induction.
The time-evolution for this probability distribution is specified by the Master equation

dP

dt
= nSλS

[
PnA1

−1 − P
]

+ λA

N−1∑
k=1

[
(nAk

+ 1)PnAk
+1,nA(k+1)

−1 − nAk
P
]

+ λA

[
(nAN

+ 1)PnAN
+1,nB−1 − nAN

P
]

+ Γ [(nB + 1)PnB+1 − nBP ] , (2.2)
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where, for clarity, we have suppressed indicies of P{n}(t) which remain unrevised in the respective
terms.

The time evolution of P{n} depends upon the initial conditions: With P{n}(0) = δnS ,1(
∏N

k=1 δnAk
,0)δnB ,0,

i.e. with one initially labelled stem cell, the solution to Eq. (2.2) describes the time-evolution of a
persisting clone destined to form an EPU. At long times, the corresponding probability distribu-
tion becomes stationary. Recasting Eq. (2.2) in terms of the moment-generating function (see, e.g.,
Ref. [62] for details), one finds a stationary distribution

P{n} = P(nA1 |λS/λA)

[
N∏

k=2

Q(nAk
|2k−1λS/λA)

]
Q(nB|2NλS/Γ), (2.3)

where P(n|X) denotes the Poisson distribution with mean X, and Q(n|X) is a Poisson-like distri-
bution,

Q(n|X) =
e−X

n!

∞∑
k=ceil(n/2)

(2k)!Xk

4kk!(2k − n)!
,

characterised by its mean X, and variance 3X/2. From this result one may conclude that, while
each EPU contains one and only one stem cell, the mean and variance of the relative populations
of TA and post-mitotic cells in an EPU is given by

〈nA〉 = (2N − 1)
λS

λA
, σ2

A =
2N − 4

3

2N − 1
3
2
〈nA〉

〈nB〉 = 2N λS

Γ
, σ2

B =
3
2
〈nB〉, (2.4)

with the mean and variance in the total size of each EPU equal to 〈n〉 = 〈nS〉 + 〈nA〉 + 〈nB〉 and
σ2 = σ2

S + σ2
A + σ2

B. Each stem cell supports a population of TA and post-mitotic cells with a
variance that is approximately proportional to the mean. Since the average total size of an EPU
is equal to the inverse of the stem-cell density ρS = 1/〈n〉, the variance in size between EPUs is
independent of the details of the TA cell compartment. For example, taking a stem cell density
of ρS = 0.02 (i.e. 2%), we find the average total number of cells per clone in the basal layer to
be 〈n〉 = 1/ρS = 50 with variance σ ' 9, so that all EPUs have 50 ± 9 cells in the steady-state,
irrespective of the density, ρA, and number of generations, N , of TA cells.

On this platform, let us now consider the transient behaviour of a labelled clone population if
we assume an equal labelling efficiency of cells in the basal layer. Referring to Eq. (2.1), one
would expect all clones arising from initially labelled TA and B cells to inevitably detach from
the basal layer. At the same time, a stem cell labelled at induction will give rise to a persisting
clone which converges onto a fully-developed EPU. We conclude that, following a transient period,
the size distribution of a randomly-labelled population will converge onto the steady-state EPU
size distribution (2.3). This convergence is illustrated in figs. 2.5a and b where the clone size
distributions predicted for the non-equilibrium process (2.1) are plotted against time for two values
of the stem cell density. Notably, the steady-state behaviour differs markedly from that observed
in experiment where the size of surviving clones continues to grow, and the distribution P{n}(t)
does not settle, at least within the observed time period.
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FIG. 2.5: Predicted clone size distributions for stem/TA cell model. The probability distribution P pers.
n>1 (t)

for finding a labelled clone with n basal cells is plotted against time (measured in units of the average
stem-cell cycle time 1/λS) for (a) ρs = 0.1 (i.e. 10%), and (b) ρs = 0.02 (i.e. 2%). For consistency with the
main text, we have eliminated single cell clones from the statistical ensemble. The distribution is obtained
for N = 3 generations of TA cells by integrating Eq. (2.2) starting from an initial condition corresponding
to each clone consisting of a single, randomly-labelled cell. To perform the integration, we have used the
respective values of stem cell number density, ρs, while keeping the overall density of proliferating cells at the
experimentally measured value of ρs + ρA = 0.22 (i.e. 22%). The mean-field relations in Eq. (2.4) constrain
the rates λA and Γ, leaving only one free parameter, the stem cell cycling rate, λS . For ρs = 0.1, the TA
cell division rate is some 7 times faster than the stem cell division rate while for ρs = 0.02, the cycling
rates are are comparable (note that larger N will lead to λS � λA). As expected, in the long-time limit,
the probability distribution becomes time-independent. Inset : The full probability distribution, P pers.

n>1 (t),
is plotted as a function of n after a time (a) t = 10/λS and (b) t = 50/λS when both distributions have
converged onto their steady-state.
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Chapter 3

Mechanism of cell division in murine
tail skin

Chapter overview

By studying the scaling behaviour of the clone fate data presented in chapter 2, we infer here a new
model of homeostasis involving only one type of progenitor cell. These cells are found to undergo
both symmetric and asymmetric division at rates that ensure epidermal homeostasis. We show
that the rates of cell division and differentiation may be evaluated by considering the long-time
and short-time clone fate data, and that the data is consistent with cells dividing independently
rather than synchronously. These results raise questions about the potential role of stem cells in
tissue maintenance in vivo.

Motivated by these findings, we then consider a mechanism for cancer onset based closely on the
model for normal adult skin. By analysing the expected changes to clonal fate in cancer emerging
from a simple two-stage mutation, we propose that clonal fate data may provide a novel method
for studying the earliest stages of the disease.

The contents of this chapter draw significantly upon a recent publication [16] by AMK et al..

3.1 Introduction

As described in chapter 2, by genetically labelling cells at a defined time in transgenic mice, we have
obtained access to the kinetics of labelled cells in vivo, with single-cell resolution. From a theoretical
perspective, the analysis of clonal fate data presents a challenging “inverse problem” in population
dynamics: While it is straightforward to predict the time-evolution of a population distribution
according to a set of growth rules, the analysis of the inverse problem is more challenging, open to
ambiguity and potential misinterpretation.

21



ba

(iii)

(ii)

(i)

FIG. 3.1: (a) Schematic cross-section of murine interfollicular epidermis (IFE) showing the architecture
of typical labelled clones. The shaded regions (yellow) indicate two distinct clones, the progeny of single
basal layer cells labelled at induction. While the clone on the right retains at least one labelled cell in
the basal layer, the clone on the left hand side has detached from the basal layer indicating that all of the
cells have stopped proliferating. The former are designated as “persisting clones” and contribute to the
clone size distributions, while the latter, being difficult to resolve reliably, are excluded from experimental
consideration. See caption of Fig. 1.1 for a description of layers (i)–(iii). (b) Typical example of a clone
acquired at a late time point, viewed from the basal layer surface. Cell nuclei are labelled blue; the hereditary
clone marker (EYFP) appears yellow. Scale bar: 20µm

In the previous chapter, we showed that the range of clone fate data resulting from genetic labelling
experiments undermines the basis of the stem/TA cell hypothesis of murine epidermal homeostasis.
Expanding upon this preliminary theoretical finding, the aim of this chapter is to infer the true
mechanism of epidermal homeostasis, and to describe the potential of the system as a method to
explore early signatures of carcinogenic mutations.

3.1.1 Background: Experimental Methodology

To organise our discussion and to define the elements of the analysis, we begin with a concise review
of the experiment described in the preceding chapter and Ref. [15]. To generate data on the fate of
individual labelled cells and their progeny, hereafter referred to as clonal fate data, inducible genetic
marking was used to label a sample of cells and their progeny in the epidermis of transgenic mice.
The enhanced Yellow Fluorescent Protein (EYFP) label was then detected by confocal microscopy,
which enables 3D imaging of entire sheets of epidermis. Low-frequency labelling of approximately
1 in 600 basal-layer epidermal cells at a defined time was achieved by using two drugs to mediate a
genetic event which resulted in expression of the EYFP gene in a cohort of mice. This low efficiency
labelling ensures that clones are unlikely to merge (see discussion in section 3.2.1). By analysing
samples of mice at different time points it was possible to analyse the fate of labelled clones at single
cell resolution in vivo for times up to one year post-labelling in the epidermis (see, for example,
Fig. 3.1(b)) [30, 15].

With the gradual accummulation of EYFP levels, the early time data (less than two weeks) reveals
a small increase in the number of labelled clones containing one or two cells. At longer times, clones
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FIG. 3.2: (Color online) Top: Theoretical lineage for the first 12 weeks post-labelling of a, a detached clone
in which all cells have undergone a transition to terminal differentiation by week 12, and b, a persisting
clone in which some of the cells maintain a proliferative capacity, according to model (3.2). Circles indicate
progenitor cells (P), differentiated cells (D), and suprabasal cells (SB). Note that, because the birth-death
process (3.2) is Markovian, the lifetime of cells is drawn from a Poisson distribution with no strict minimum
or maximum lifetime. The statistics of such lineage trees do not change significantly when we account for a
latency period between divisions that is much shorter than the mean cell lifetime (see discussion in section
3.2.3). Bottom: The total number of proliferating, differentiated and supra-basal cells for the two clones as
a function of time.
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FIG. 3.3: (Color online) Mean number of basal layer cells in persisting clones. The experimental data
(circles) show an inexorable increase in the size of persisting clones over the entire time course of the
experiment. The behaviour at short times (from 2− 6 weeks) and at long times (beyond 13 weeks) follows
the two simple analytical approximations described in the main text (lower and upper dashed curves).
For times earlier than two weeks (referring to section 3.2.4), clones remain approximately one cell in size.
The experimental data are consistent with the behaviour predicted by process (3.2) (black line) when it is
assumed that only A-type cells are labelled at induction. In contrast, assuming that A and B type cells
label in proportion to their steady-state population leads to an underestimate of average clone size between
two and six weeks (lower curve, red online), as does the assumption that type B cells label with better
efficiency (not shown). Inset: The underlying distribution of basal cells per clone at 2 weeks and 26 weeks
post-labelling. The data is binned by cell count in increasing powers of 2.

increase in size while cells within clones begin to migrate through the suprabasal layers forming
relatively cohesive irregular columns (see Fig. 3.1(a)).

The loss of nuclei in the cornified layer (fig. 3.1) makes determination of the number of cornified
layer cells in larger clones by microscopy unreliable. Therefore, to identify a manageable population,
attention was focused on the population of basal cells in “persisting clones”, defined as those labelled
clones which retain at least one basal layer cell, such as is exemplified in the theoretical lineage maps
in Fig. 3.2. After two weeks, the density of persisting clones was seen to decrease monotonically
indicating that the entire cell population within such clones had become differentiated and the
clone detached from the basal layer (shown schematically in figs. 3.1(a) and 3.2(a)). However, as
shown in Fig. 3.3, the average size of the persisting clone population showed a steady increase in
size throughout the entire duration of the experiment.

In appendix 2.A we demonstrated that a non-stationary steady-state clone size distribution is
incompatible with any model in which the IFE is supported by a population of long-lived stem
cells. With the latter, one would expect the number density of persisting clones to reach a non-zero
minimum (commensurate with the labelling frequency of stem cells) while the average clone size
would asymptote to a constant value characteristic of a single epidermal proliferative unit. This
inconsistency has led us to abandon, or at least substantially revise, the orthodox stem/TA cell
hypothesis and look for a different paradigm for epidermal maintenance.

24



But, to what extent are the clone fate data amenable to further theoretical analysis? Indeed, the
application of population dynamics to the problem of cell kinetics has a long history (see, e.g.,
Refs.[63, 64, 65, 66]) with studies of epidermal cell proliferation addressed in several papers [39,
67, 68, 20]. However, even in the adult system, where cell kinetics may be expected to conform
to a “steady-state” behaviour, it is far from clear whether the cell dynamics can be modelled as
a simple stochastic process. Regulation due to environmental conditions could lead to a highly
nonlinear or even non-local dependence of cell division rates. Indeed, a priori, it is far from
clear whether the cell kinetics can be considered as Markovian, i.e. that cell division is both
random and independent of the past history of the cell. Therefore, instead of trying to formulate
a complex theory of cell division, taking account of the potential underlying biochemical pathways
and regulation networks [39], we will follow a different strategy looking for signatures of steady-state
behaviour in the experimental data and evidence for a simple underlying mechanism for cell fate.
Intriguingly, such evidence is to be found in the scaling properties of the clone size distribution [15].

3.1.2 Scaling

To identify scaling characteristics, it is necessary to focus on the basal layer clone size distribution,
Pn(t), which describes the probability that a labelled progenitor cell develops into a clone with a
total of n basal layer cells at a time t after labelling. (Note that, in general, the total number of
cells in the supra-basal layers of a clone may greatly exceed the number of basal layer cells.) With
this definition, P0(t) describes the “extinction” probability of a clone, i.e. the probability that all
of the cells within a labelled clone have migrated into the supra-basal layers. To make contact with
the experimental data, it is necessary to eliminate from the statistical ensemble the extinct clone
population (which are difficult to monitor experimentally) and single-cell clones (whose contribution
to the total ensemble is compromised by the seemingly unknown relative labelling efficiency of
proliferating and post-mitotic cells at induction), leading to a reduced distribution for “persisting”
clones,

P pers.
n≥2 (t) ≡ Pn(t)

1− P0(t)− P1(t)
.

Then, to consolidate the data and minimise fluctuations due to counting statistics, it is further
convenient to bin the distribution in increasing powers of 2,

Ppers.
k (t) =

2k∑
n=2k−1+1

P pers.
n≥2 (t) ,

i.e. Ppers.
1 (t) describes the probability of having two cells per clone, Ppers.

2 (t) describes the probabil-
ity of having 3-4 cells per clone, and so on. Referring to Fig. 3.4, one may see that, after an initial
transient behaviour, the clone size distribution asymptotes in time to the simple scaling form,

Ppers.
k (t) = f(2k/t) . (3.1)

This striking observation brings with it a number of important consequences: As well as reinforcing
the inapplicability of the stem cell/TA cell hypothesis, such behaviour suggests that epidermal
maintenance must conform to a simple model of cell division. The absence of further characteristic
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FIG. 3.4: (Color online) Time dependence of the grouped size distribution of persisting clones, Ppers.
k (t),

plotted as a function of the rescaled time coordinate t/2k 7→ t. The data points show measurements (ex-
tracted from data such as shown in Fig. 3.3(inset), given fully in ref. [15]), while the solid curves show the
probability distributions associated with the non-equilibrium process (3.2) for the basal-layer clone popula-
tion as obtained by a numerical solution of the Master equation (3.3). (Error bars refer to standard error of
the mean). At long times, the data converge onto a universal curve (dashed line), which one may identify
with the form given in eq. 3.7. The rescaling compresses the time axis for larger clones, so that the large-clone
distributions appear to converge much earlier onto the universal curve.

time-scales, beyond that of an overall proliferation rate, motivates the consideration of a simple
kinetics in which only one process dictates the long-time characteristics of clonal evolution.

Moreover, from the scaling observation one can also deduce two additional constraints: Firstly,
in the long-time limit, the average number of basal layer cells within a persisting clone increases
linearly with time, viz.

P pers.
n≥2 (t) ' d

d(2k)
Ppers.

k (t) =
1
t

f ′(2k/t)

〈n〉pers. ≡
∞∑

n≥2

n P pers.
n≥2 (t) '

∫ ∞

0
dn

n

t
f ′(n/t) ∝ t .

Secondly, if we assume that labelled progenitor cells are representative of all progenitor cells in the
epidermis, and that the population of clones with only one basal layer cell is not “extensive” (i.e.
limt→∞ P1(t) = 0), this means that, in the long-time limit, the clone persistence probability must
scale as 1− P0(t) ∝ 1/t such that

〈n〉 =
∑

n

n Pn(t) != ρ ,

where the constant, ρ, is given by the fraction of proliferating cells in the basal layer. Without
this condition, one is lead to conclude that the labelled population of basal layer cells either grows
or diminishes, a behaviour incompatible with the (observed) steady-state character of the adult
system.
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Although the manifestation of scaling behaviour in the clone size distributions gives some confi-
dence that the mechanism of cell fate in IFE conforms to a simple non-equilibrium process, it is
nevertheless possible to conceive of complicated, multi-component, models which could asymptote
to the same long-time evolution. To further constrain the possible theories, it is helpful to draw on
additional experimental observations [15]: Firstly, immunostaining of clones with a total of two cells
(using the proliferation marker Ki67 and, separately, the replication licensing factor cdc6) reveals
that a single cell division may generate either one proliferating and one non-proliferating daughter
through asymmetric division, or two proliferating daughters, or two non-proliferating daughters
(cf. [56, 57, 58]). Secondly, three-dimensional imaging of the epidermis reveals that only 3% of
mitotic spindles lie perpendicular to the basal layer indicating that divisions may be considered to
be confined to the basal layer, confirming the results of earlier work that indicates a dividing basal
cell generates two basal layer cells [57].

This completes our preliminary discussion of the experimental background and phenomenology. In
summary, the clone fate data reveal a behaviour wholely incompatible with any model based on
the concept of long-lived self-renewing stem cells. The observation of long-time scaling behaviour
motivates the consideration of a simple model based on a stochastic non-equilibrium process and
is indicative of the labelled cells being both a representative (i.e. self-sustaining) population and
in steady-state. In the following, we will develop a theory of epidermal maintenance which encom-
passes all of these observations.

3.2 Theory of epidermal maintenance

3.2.1 Model

Taken together, the range of clonal fate data and the observation of symmetric and asymmetric
division are consistent with a remarkably simple model of epidermal homeostasis involving only
one proliferating cell compartment and engaging just three adjustable parameters: the overall cell
division rate, λ; the proportion of cell divisions that are symmetric, r; and the rate of transfer, Γ, of
non-proliferating cells from the basal to the supra-basal layers. To maintain the total proliferating
cell population, a constraint imposed by the steady-state assumption, we have used the fact that the
division rates associated with the two channels of symmetric cell division must be equal. Denoting
the proliferating cells as type A, differentiated basal layer cells as type B, and supra-basal layer
cells as type C, the model describes the non-equilibrium process,

A λ−→


A + A Prob. r
A + B Prob. 1− 2r
B + B Prob. r

B Γ−→ C .

(3.2)

Finally, the experimental observation that the total basal layer cell density remains approximately
constant over the time course of the experiment leads to the additional constraint that

Γ =
ρ

1− ρ
λ ,

reducing the number of adjustable parameters to just two.
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By ignoring processes involving the shedding of cells from the surface of the epidermis, the applica-
bility of the model to the consideration of the total clone size distribution is limited to appropriately
short time scales (up to six weeks post-labelling). However, if we focus only on the clone size dis-
tribution associated with those cells which occupy the basal layer, the model can be applied up
to arbitrary times. In this case, the transfer process must be replaced by one in which B Γ−→ ∅.
In either case, if we treat all instances of cell division and cell transfer as independent stochastic
events, a point that we shall revisit later, then the time evolution associated with the process (3.2)
can be cast in the form of a Master equation. Defining PnA,nB(t) as the probability of finding nA

type A cells and nB type B cells in a given clone after some time t, the probability distribution
evolves according to the Master equation:

∂tPnA,nB = rλ [(nA − 1)PnA−1,nB − nAPnA,nB ]
+rλ[(nA + 1)PnA+1,nB−2 − nAPnA,nB ]
+(1− 2r)λ[nAPnA,nB−1 − nAPnA,nB ]
+Γ[(nB + 1)PnA,nB+1 − nBPnA,nB ] . (3.3)

If we suppose that the basal layer cells label in proportion to their population, the latter must be
solved subject to the boundary condition PnA,nB(0) = ρδnA,1δnB,0 + (1 − ρ)δnA,0δnB,1. Later, in
section 3.2.4, we will argue that the clone size distribution is compatible with a labelling efficiency
which favours A over B type cells. Either way, by excluding single cell clones from the distribution,
this source of ambiguity may be safely eliminated. Although the Master equation (and its total cell
number generalisation) is not amenable to exact analytic solution, its properties can be inferred
from the consideration of the A cell population alone for which an explicit solution may be derived.

When considered alone, A type cells conform to a simple set of rate laws,

A 2rλ−→
{

A + A Prob. 1/2 ,
∅ Prob. 1/2 ,

(3.4)

an example of a Galton-Watson process, long known to statisticians (see, e.g., Ref. [62]). In this
case, the probability distribution, which is related to that of the two-component model through the
relation pnA(t) =

∑∞
nB=0 PnA,nB(t), can be solved analytically. (Here, we have used a lower case

p to discriminate the probability distribution from its two-component counterpart.) For an initial
distribution pnA(0) = δnA,1 it may be shown that [62],

pnA(t) =
(

1 +
1

rλt

)−(nA+1)

×

{
1 nA = 0 ,

1
(rλt)2

nA > 0 .
(3.5)

From this system and its associated dynamics, one can draw several key implications:

Epidermis is maintained through an ever-decreasing clonal population:

Starting with a single labelled cell, the Galton-Watson process predicts that the persistance prob-
ability of the resulting clone (i.e., in this case, the probability that the clone retains at least one
proliferating cell), is given by

pnA>0 ≡ 1− p0(t) =
1

1 + rλt
,
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i.e. as with the experiment, the persistance probability of a clone decays monotonically, asymptoting
to the form 1− p0(t) ∝ 1/t at time scales t � 1/rλ, the time scale for symmetric division. Applied
to the experimental system, this suggests that labelled clones continue to detach from the basal
layer indefinitely. At the same time, defining

ppers.
nA>0(t) =

pnA(t)
1− p0(t)

,

as the size distribution of persisting clones, the mean number of basal layer cells in a persisting
clone grows steadily as

〈nA〉pers. ≡
∞∑

n=1

nA ppers.
nA>0(t) = 1 + rλt ,

such that the overall cell population remains constant, viz. 〈nA〉 ≡
∑∞

n=0 nA pnA(t) = 1, i.e. the
continual extinction of clones is compensated by the steady growth of persisting clones such that
the average number of proliferating cells remains constant: given enough time, all cells would derive
from the same common ancestor, the hallmark of the Galton-Watson process1.

This linear increase in clone size may lead one to worry about neighbouring clones coalescing.
Fortunately, the continual extinction of clones ensures that the fraction of clones conjoined with
their neighbours remains small and of same order as the initial labelling density2. The fact that
this fraction is constant is again indicative of the steady-state condition maintained throughout the
experiment.

Larger clones begin to exhibit the stability of the macroscopic system:

If, at some instant, a clone is seen to have, say, NA proliferating cells then, after a further time t,
its size will fluctuate as

〈(nA − 〈nA〉)2〉1/2

〈nA〉
=
√

2rλt

NA
.

Thus clones (as defined by the A cell population) will maintain an approximately stable number of
cells providing t � NA/rλ. For larger clones this time may exceed the lifetime of the system. At
the limit where macroscopic sections of the basal layer are considered, the statistical fluctuations
are small. The increased stability of larger clones also explains the surprising prediction that, given
enough time, all clones eventually become extinct (viz. limt→∞ pn>0(t) = 0). Calculated explicity,
the extinction probability for a clone of size NA � 1 scales as p0(t) ≈ e−NA/rλt [62] approaching
unity at long times. However, because this extinction probability is small when t � NA/rλ, a large
enough clone may easily persist beyond the lifetime of the system.

1Curiously, Galton and Watson first dealt with this question amidst the concern that aristocratic surnames were
becoming “extinct” in Victorian Britain [69]!

2The fraction of clones in contact with their neighbours is estimated by assuming that all clones are randomly
and independently distributed, and by noting the empirical observation that clones are oblique in shape, so that the
distribution in clone area has the same form as P pers.

n>0 (t).
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The properties of the proliferating cell population dictates the behaviour of the entire
clone size distribution:

At asymptotically long times, one may show3 that the full probability distribution for finding
n = nA + nB cells within a persisting clone scales in proportion to ppers.

nA (t), viz.

lim
t�1/rλ

P pers.
n>0 (t) =

ρ

rλt
exp

[
− ρn

rλt

]
, (3.6)

and so

lim
t�1/rλ

Ppers.
k (t) ' exp

[
−2k ρ

2rλt

]
− exp

[
−2k ρ

rλt

]
, (3.7)

i.e. the probability distribution acquires the scaling form found empirically. Referring to Eq. (3.1),
we can therefore deduce the form of the scaling function,

f(x) = exp[−ρx/2rλ]− exp[−ρx/rλ] . (3.8)

As a result, at long times, the average basal layer population of persisting clones becomes propor-
tional to the average number of proliferating cells per clone, 〈n〉pers. = (1 + rλt)/ρ, a behaviour
consistent with that seen in experiment (see Fig. 3.3).

The creation and transfer of differentiated cells dictates the short-time behaviour of
the clone size distribution:

In fitting the model to the data (see below), we will find that the rates λ and Γ at which differentiated
cells are created and then transferred into the super-basal region are significantly larger than the rate
of symmetric division rλ, which dictates the long-time behaviour of the clone size distribution. In
this case, at early times (t . 1/Γ), the clone size distributions are dominated by the differentiation
and transfer rates, which remain prominent until the population of labelled differentiated cells
associated with each proliferating cell reaches its steady-state value of (1−ρ)/ρ. One may therefore
infer that, at short times, the mean number of basal layer cells in clones arising from proliferating
cells is given by

lim
t�1/Γ

〈n〉pers. = 1/ρ− (1/ρ− 1)e−Γt ,

and that the early-time clone size distribution is Poisson-distributed, viz.

lim
t�1/Γ

P pers.
n≥2 (t) =

(〈n〉pers. − 1)n−1(
e〈n〉pers.−1 − 1

)
(n− 1)!

. (3.9)
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FIG. 3.5: (Color online) (a) Fit of Eq. (3.9) to the short-time clone size distributions. At early times (a),
the data is optimally fitted by Eq. (3.9) using the value λ = 1.1/week and the empirical value ρ = 0.22 (solid
lines show fit). To ensure integrity of the analysis, data for times earlier than week 2 have been excluded
(see section 3.2.4). (b) Linearisation of the long-time asymptotic data using the “inverse” scaling function
f−1(2k/t) for t ≥ 13 weeks and k ≥ 3 (see main text). (c) Likelihood of the overall division rate λ (red) and
the symmetric division rate rλ (black), as assessed from a χ2 test of the numerical solution to Eq. (3.3) [70].
A fit to the basal-layer clone size distribution alone (dashed) is less discriminatory than a simultaneous fit
to both the basal-layer and total clone size distributions (solid curves). The likelihood of rλ is shown for
the optimal value of λ, and vice-versa. Inset: Referring to section 3.2.3, the likelihood is plotted against the
duration of a latency period (τmin.) immediately following cell division, and assuming that division events
are otherwise independent (see main text).

3.2.2 Fit to the data

With these insights it is now possible to attempt a fit of the model to the data. Referring to
Fig. 3.5, one may infer the rate of cell division λ from the short-time data, and the symmetric
division rate rλ from the long-time scaling data. In particular, taking the fraction of proliferating
cells in the basal layer to be ρ = 0.22, a figure obtained experimentally by immunostaining using
Ki67 [15], a fit of Eq. (3.9) to the short-time data (fig. 3.5(a)) is consistent with a transfer rate
of Γ = 0.31/week which, in turn, implies a rate of cell division of λ = 1.1/week. Furthermore, by
plotting the long-time, large-k, size-distributions in terms of the “inverse” to the scaling function,

f−1(2k/t) ≡
(
2 ln

[
(1− (1− f(2k/t))1/2)/2

])−1

=
(
2 ln

[
(1− (1− Ppers.

k (t))1/2)/2
])−1

,

the data converge onto a linear plot (Fig. 3.5(b)). The resulting slope takes the value −rλ/ρ, from
which we may infer the symmetric division rate rλ = 0.09± 0.01/week, and r = 0.08± 0.01.

3To obtain Eq. (3.6), we treat nA, nB as continuous variables in Eq. (3.3) (a good approximation at large values
of n). Then, making the ansatz that the B-cell population remains slave to the A-cell population viz. nA = ρn, nB =
(1− ρ)n, the Master equation simplifies to the approximate form

∂tP =
rλ

ρ
(n∂2

nP + 2∂nP ),

which is solved by Pn(t) = (ρ/rλt)2 exp(−ρn/rλt), leading to Eq. 3.6.
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These figures compare well with an optimal fit of the entire basal layer clone size distribution
(Fig. 3.4), obtained by numerically integrating the Master equation (3.3). The fitting procedure is
shown in Fig. 3.5(c) (solid curves), where the likelihood of the model is evaluated for a range of
values of λ and rλ, as assessed from a χ2 test of the model solution [70]. One may see that the
likelihood is maximised with an overall division rate of λ = 1.1/week and a symmetric division rate
in the range rλ = 0.1 ± 0.01/week, thus confirming the validity of the asymptotic fits. Moreover,
the corresponding fit of both the basal layer distribution and the total clone size distribution,
including both basal and supra-basal cells, is equally favourable (Fig. 3.5(c), dashed). Thus, in the
following sections we shall use the asymptotically fitted value of r = 0.08, however any choice of
the parameter in the range r = 0.08− 0.10 gives similar results.

Although the comparison of the experimental data with the model leaves little doubt in its validity,
it is important to question how discerning is the fit. By itself, the observed increase in the size of
persisting clones is sufficient to rule out any model based on long-lived self-renewing stem cells, the
basis of the orthodox EPU model. However, could one construct a more complicated model, which
would still yield a similar fit? Certainly, providing the long-time evolution is controlled by a single
rate-determining process, the incorporation of further short-lived proliferating cell compartments
(viz. transit-amplifying cells) would not affect the observed long-time scaling behaviour. However,
it seems unlikely that such generalisations would provide an equally good fit to the short-time data.

More importantly, it is crucial to emphasize that the current experimental arrangement would be
insensitive to the presence of a quiescent, long-lived stem cell population. Yet, such a population
could play a crucial role in non-steady state dynamics such as that associated with wound healing
or development. We are therefore led to conclude that the range of clone fate data for normal
adult IFE are consistent with a simple non-equilibrium process involving just a single progenitor
cell compartment.

3.2.3 Stochastic behaviour of cell division

At this stage, it is useful to reflect upon the sensitivity of the model to the stochasticity assumption
applied to the process of cell division. Clearly, the scaling behaviour (Eq. 3.6) depends critically
on the statistical independence of successive cell divisions; each cell division results in symmet-
ric/asymmetric cell fate with relative probabilities as detailed in (3.4). But, to what extent would
the findings above be compromised if the cell cycle-time, i.e. the time between consecutive cell
divisions, were not determined by an independent stochastic process? This question may have
important ramifications, because the assumption of independent cell division, used in formulating
the Master equation (3.3), introduces a manifestly unphysical behaviour by allowing cells to have
arbitrarily short cycle times. Moreover, although a wide distribution of cell cycle-times has been
observed for human keratinocytes in vitro [71], it is possible that that keratinocytes in vivo may
divide in synchrony, giving a cell cycle-time distribution narrowly centered about the mean (1/λ).
In the following, we shall address both of these points: Firstly, we shall show that, up to some
potential latency period (the time delay before a newly-divided cell is able to divide again), con-
secutive cell divisions occur independently as an asychronous, Poisson process. Secondly, while the
data is insufficient to detect a latency period of 12 hours or less between consecutive cell divisions,
the data does discriminates against a period lasting longer than 24 hours.
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FIG. 3.6: (Color online). (a) Examples of progenitor cell cycle-time distributions with the same average cycle
time 1/λ, (λ = 1.1/week), and with a latency period of τmin. = 12 hours introduced between consecutive
cell divisions (hashed region). The case κ = 1 corresponds to a model of independent cell division such
as assumed in section 3.2.1, but now accounting for an initial latency period. The case κ → ∞ (black
dashed) corresponds to all cells having an exact cell cycle-time of 1/λ. Note that small values of κ allow for
both very short and very long cycle times. (b) Using Monte-Carlo simulations of process (3.2), the clone
size distributions predicted by each of the different cycle-time distributions in (a) are compared with the
empirical data. Data points show the size distribution of persisting clones including supra-basal layer cells
over the first 6 weeks post-labelling (extracted from data given fully in Ref. [15]; for legend see Fig. 3.4), and
the theoretical curves correspond to the same legend as in (a). All of the models give an optimal fit with
the same value of λ = 1.1/week, r = 0.08.

To investigate the degree to which the model is sensitive to the particular cell cycle-time distribu-
tion, let us revisit the original model of independent cell division with several variations: Firstly,
we introduce a latency period of τmin immediately following cell division, in which daughter cells
cannot divide. This biologically-motivated constraint renders a more complicated yet more real-
istic model of cell division than the idealised system studied in the previous section. Motivated
by observations of the minimal cycle-time of (human) keratinocytes [71], where a latency period
of τmin ' 10 hours was observed in vitro, we shall here consider the a range latency periods of up
to 48 hours. Secondly, we compare the empirical clone size distributions with a model where all
progenitor cells have a cycle-time of exactly 1/λ, i.e. where cells within each clone divide in perfect
synchrony. Finally, we shall investigate a range of intermediate models with different distributions
of progenitor cell cycle-time (see Fig. 3.6(a)).

Technically, the resulting clone size distributions may be evaluated through Monte Carlo simulations
of the non-equilibrium process (3.2) with the cycle-time τ of each proliferating cell selected at
random from a Gamma distribution of the form

fκ(τ) =

{
0 τ < τmin.

κκ(τ−τmin.)
κ−1

τ̄κΓ(κ) e−
κ(τ−τmin.)

τ̄ τ ≥ τmin.
,

where τ̄ = 1/λ−τmin. is the average time to division following the initial latency period τmin., and κ
is the “shape parameter” of the Gamma distribution. In particular, the choice of shape parameter
κ = 1 corresponds to the exponential distribution which characterises the independent cell cycle-
time distribution, whereas κ →∞ describes the case in which all A-cells have an exact cycle-time
of 1/λ (see Fig. 3.6(a)). Then, to reflect the assumption that initially-labelled, spatially separated,
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progenitor cells have uncorrelated cell cycles, the time to the initial division event post-labelling
is adjusted by a random time τ ∈ [0, 1/λ]. Finally, for an unbiased comparison of the models,
we optimise the value of λ for each model separately against the empirical data, whilst keeping
rλ = const. to ensure an optimal fit of the long-time data, as discussed below.

The resulting clone size distributions are shown in Fig. 3.6(b), where the case of independent
division following a 12-hour latency (κ = 1) and the exact cycle-time case (κ →∞) are compared
to the empirical total clone size distribution, which includes both basal and supra-basal (type C)
cells, over the first 6 weeks post-labelling. Two intermediate cases are also shown for comparison
(κ = 2, 10). Focusing first on the results for the case κ = 1, which bears closest resemblance to the
Markovian model analysed using the Master Equation (3.3), one may see by inspection that the
quality of the fit to the data remains good even when the effects of a latency period between cell
divisions is taken into account. More rigorously, a likelihood analysis reveals that the two cases
are statistically indistinguishable (see Fig. 3.5(c), inset), which indicates that the duration of a
latency period of τmin. . 12 hours is beyond the current empirical resolution. However, referring to
Fig. 3.5c (inset), a similar analysis of longer latency periods reveals that for periods of τmin. & 24
hours, the fit to the data is significantly poorer.

Turning next to the predicted basal-layer clone size distributions at late times (t & ρ/rλ) (not
shown), one may see that all of the proposed distributions asymptotically converge: Starting with
exactly one cell, then the moment-generating function G(q, s) =

∑∞
n=0 pn(s)qn associated with the

A cell population distribution pn(s) after s cell cycles satisfies the recursion relation [72]:

G(q, s + 1)−G(q, s) = r (G(q, s)− 1)2 ,

which asymptotes to the continuous master equation lims�1 ∂sG(q, s) = r (G(q, s)− 1)2 , with the
relative magnitude of the leading-order correction dropping off as 1/s. But with s = λt, this
equation is simply the master equation for the moment-generating function associated with the
original model, Eq. 3.5, and so the two models converge. One may therefore conclude that, beyond
the first several weeks of the experiment (t � 1/λ), the fit to the data is sensitive only to the
average cycle time of progenitor cells. With this in mind, we note that for the case of perfectly
synchronous cell division, an optimal (albeit poor) numerical fit was obtained when λ = 1.2/week,
a figure that compares well with the fit for the independent case. It appears therefore that the
predicted average cell division rate (λ) is insensitive to the shape of the cell cycle distribution.

Finally, let us turn to the early time behaviour (t ∼ 1/λ), where the predicted distributions are
distinct. Referring to Fig. 3.6(b), one may see, at 2-4 weeks post-labelling, that relatively large
clones (5−8 cells) appear earlier than expected by a model assuming synchronous division, and that,
compared with the same model, a sizeable proportion of small clones (e.g., 2 cells) lingers on for
far longer than expected. The same behaviour is observed for the basal layer clone size distribution
(not shown). One may therefore infer that cell division conforms to a model of independent rather
than synchronous division, allowing for some progenitor cells to divide unusually early, and for
others to remain quiescent for an unusually long period of time.

In summary, we have established that, following division, progenitor cells do not divide for a period
that is likely to last up to 12 hours, and not more than 24 hours. After this latency period, the
data is consistent with cells switching to a mode of independent, asynchronous, cell division. These
results shed light on why the simple model of independent cell division presented in section 3.2.1
succeeds in producing such a remarkable fit to the data.
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3.2.4 Labelling efficiency and EYFP accumulation in basal cells

Although the integrity of the fit of the model to the data provides some confidence in its applicability
to the experimental system, its viability as a model of epidermal homeostasis rests on the labelled
clone population being representative of all cells in the IFE. Already, we have seen that the model,
and by inference, the labelled clone population, has the capacity to self-renew. However, the
slow accumulation of EYFP after induction, together with the question of the relative labelling
efficiency of the two basal layer cell types, leaves open the question of the very short-time behaviour.
Accepting the validity of the model, we are now in a position to address this regime.

In doing so, it is particularly useful to refer to the time evolution of clone size as measured by the
average number of basal cells in a persisting clone. As expected from the scaling analysis discussed
in section 3.1.2, a comparison of the experimental data with that predicted by the proposed cell
kinetic model shows a good agreement at long times (Fig. 3.3). However, comparison of the data at
intermediate time-scales provides significant new insight. In particular, if we assume equal labelling
efficiency of progenitor and differentiated cells, i.e. that both cell types label in proportion to their
steady-state population (shown as the lower (red) curve in the Fig. 3.3), then there is a substantial
departure of the predicted curve from the experimental data for times of between two and six weeks.
Intriguingly, if we assume that differentiated cells simply don’t label, then the agreement of the
data with theory is excellent from two weeks on! We are therefore lead to conclude that, at least
from two weeks, all labelled clones derive from progenitor cells labelled at induction.

With this in mind, we may now turn to the average clone size as inferred from the data at two
days and one week. Here one finds that the model appears to substantially over-estimate the clone
size. Indeed, Fig. 3.3 suggests that the average clone size is pinned near unity until beyond the
first week post-labelling, i.e. the relative population of single-cell clones is significantly larger than
expected at one week, yet falls dramatically to the theoretical value at two weeks. Referring again
to the slow accumulation of EYFP, can one explain the over-representation of single-cell clones at
one week post-labelling? At one week, two-cell clones are observed soon after cell division, and
thus express lower concentrations of EYFP compared to single-cell clones. As a result they may be
under-represented. At later times, all labelled clones become visible as EYFP concentration grows,
explaining the coincidence of experiment and theory at two weeks. It follows, of course, that the
size distributions at later time points would be unaffected by slow EYFP accumulation. However, a
full explanation of this effect warrants further experimental investigation, and is beyond the scope
of this paper.

3.3 Manifestation of mutations in clonal distributions

Having elucidated the mechanism of normal skin maintenance, it is interesting to address its poten-
tial as a predictive tool in clonal analysis. Conceptually, the action of mutations, drug treatments
or other environmental changes to the tissue can effect the non-equilibrium dynamics in a variety of
ways: Firstly, a revision of cell division rates or “branching ratios” (i.e. symmetric vs. asymmetric)
of all cells may drive the system towards either a new non-equilibrium steady-state or towards a
non-steady state evolution resulting in atrofication or unconstrained growth of the tissue. (The
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development of closed non steady-state behaviour in the form of limit cycles seems infeasible in the
context of cellular structures.) Secondly, the stochastic revision of cell division rates or branching
ratios of individual cells may lead to cancerous growth or extinction of a sub-population of clones.
The former may be referred to as a “global perturbation” of the cell division process while the
second can be referred to as “local”. In both cases, one may expect clonal analysis to provide a
precise diagnostic tool in accessing cell kinetics. To target our discussion to the current experi-
mental system, in the following we will focus on the action of a local perturbation in the form of a
carcinogenic mutation, reserving discussion of a global perturbation, and its ramifications for the
study of drug treatment, to a separate publication.

Let us then consider the action of a local perturbation involving the activation of a cancer gene
in a small number of epidermal cells, which leads to the eventual formation of tumours. In the
experimental system, one can envisage the treatment coinciding with label induction, for example
by simultaneously activating the EYFP and the cancer gene. In this case, clonal fate data should
simply reflect a modified model of cell proliferation leading to the eventual failure of the steady-state
model of tissue maintenance.

3.3.1 A simple model of carcinogenesis

To quantify the process of cancer onset, we start by establishing the simplest possible changes to
process (3.2) which may be associated with tumour growth. Cancer is widely held to be a disease
caused by genetic instability that is thought to arise when a progenitor cell undergoes a series of
mutations [73, 74, 75]. As a result, cells within the mutant clone prefer to proliferate, on average,
over processes leading to terminal differentiation or death. In this investigation we shall consider
a “simple” cancer resulting from two rate-limiting mutations: Referring to our proposed labelling
experiment, the controlled induction of a cancer-causing mutation during label induction defines
the first mutation; a second, rate-limiting step then occurs with the stochastic occurrence of a
second cancer causing mutation. Examples of the first type of mutation may be genes that affect
the ability of a cell to respond to genetic changes of the cell, e.g. p53, whilst the second mutation
may be of a gene that affects clone fate such as the Ras oncogene [74]. We may therefore distinguish
between “stage one” mutated cells, which maintain the steady-state, and “stage two” cells, which
have the capacity for tumour formation.

The resulting process of cell proliferation is set by three parameters: The overall rate of mutation
ν from a stage one A cell into a cancerous stage two cell; the division rate µ of the stage two cells;
and the degree of imbalance ∆ between their stochastic rate of proliferation and differentiation. In
summary, focusing on the proliferating cell compartment only, and denoting the stage two mutated
cells as type A∗, then the revised cell proliferation model includes the additional non-equilibrium
processes

A
ν−→ A∗

A∗ µ−→
{

A∗ + A∗ prob. (1 + ∆)/2
∅ prob. (1−∆)/2 .

(3.10)

The rate ν may be interpreted as the mean rate with which a stage-one cell acquires an additional
mutation necessary to activate a second oncogene. The mutated cells then give rise, on average, to
an exponentially growing cell lineage with growth rate ∆µ.
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FIG. 3.7: (Color online) (a) The total number of basal layer cells per labelled clone during the onset of
cancer according to process (3.10). The figure was plotted by numerically integrating Eq. (3.11) using the
empirical value rλ = 0.088/week found for normal skin, together with hypothetical values of the cancer
growth parameters ν = 0.1 rλ, µ = 10 rλ, and ∆ = 0.5. To compare with normal skin, the predicted clone
size distributions are replotted against the rescaled time coordinate t/2k 7→ t in (a) inset. In contrast with
Fig. 3.4, here the curves fail to converge. In (b), the same curves are shown converge onto the universal form
given in Eq. (3.11) (dashed) when they are plotted against a new rescaled time t 7→ t′k = t+k ln 2/∆µ. Note
that the large-clone distributions converge rapidly, whereas the distributions for smaller clones are affected
by the non-negligible contribution of non-cancerous (A) cells to the small-clone size distribution.

This nonequilibrium process was originally addressed by Kendall, who predicted the distribution
in the number of tumours detected at time t after mutation [76]. His focus on tumour statistics
may reflect the experimental limitations in clonal analysis at the time: Until recently it was not
possible to reliably detect clones at all, let alone to count the number of cells per clone. Experi-
mentally, however, the clone size distributions are a more efficient measure of cell kinetics than the
tumour number distributions, because they result in a far richer data set, and are accessible within
weeks rather than months. We shall therefore extend Kendall’s approach to predict the clone size
distributions at times far earlier than tumour appearance.

3.3.2 Clonal behaviour during early-stage cancer

To familiarise ourselves with the modified model, consider the evolution of the average clone size
with time. Focusing on the proliferating cell compartment with n type A cells and n∗ type A∗ cells
in a clone, the relevant mean-field equations are

∂t〈n〉 = −ν〈n〉 ,
∂t〈n∗〉 = ν〈n〉+ ∆µ〈n∗〉 ,

which give the expected shift from linear growth of clones in normal skin to that of exponential
growth, 〈n+n∗〉 = (νe∆µt+∆µe−νt)/(ν+∆µ). More interestingly, referring to the Master equation
below, one may show that the variance in clone size also changes qualitatively: Whereas for normal
skin the RMS variance in clone size grows as t1/2, here the variance in the long-time limit is finite,

lim
t→∞

〈(n∗ − 〈n∗〉)2〉1/2

〈n∗〉
=
√

1 + ∆−1 .
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That is, the relative broadening of the clone size distribution observed in normal skin is halted by
the introduction of an exponentially growing cell population.

These observations may already provide a crude method for identifying carcinogenesis through
clonal analysis. To do better, it becomes necessary to solve for the full size distribution by extending
the Master equation (3.3) to include process (3.10). If we neglect the fate of differentiated cells,
then the Master equation now describes the evolution of the probability Pn,n∗(t) for finding n type
A cells and n∗ type A∗ cells in a clone,

∂tPn,n∗ = rλ [(n− 1)Pn−1,n∗ − nPn,n∗ ] + rλ [(n + 1)Pn+1,n∗ − nPn,n∗ ] + ν [(n + 1)Pn+1,n∗−1 − nPn,n∗ ]

+
1 + ∆

2
µ [(n∗ − 1)Pn,n∗−1 − n∗Pn,n∗ ] +

1−∆
2

µ [(n∗ + 1)Pn,n∗+1 − n∗Pn,n∗ ] ,

subject to the experimental boundary condition Pn,n∗(0) = δ1,0 corresponding to exactly one “stage
one” cell per clone at t = 0. As for the case of normal skin, we shall later be interested in the
distribution of persistent clones, defined as,

P(canc.)

2k (t) =
2k∑

N=2k−1+1

N∑
n=0

Pn,N−n(t)
1− P0,0(t)− P1,0(t)− P0,1(t)

.

While it is not possible to solve Eq. (3.11) analytically, progress may be made when we allow for
the widely-accepted view that tumours are monoclonal, that is they arise from a single “stage two”
mutated cell [74]. This assumption conveniently limits us to the parameter space ν � ∆µ, for
which an approximate long-time solution for the full clone size distribution may be found.

Referring to the appendix for details, we find that the binned clone size distribution takes the
long-time asymptotic scaling form,

P(canc.)
k (t) ' N

[
Iβ,a

(
1

2φk(t)

)
− Iβ,a

(
1

φk(t)

)]
, (3.11)

where φk(t) = (1 + ∆−1)e∆µt/2k

Iβ,a(x) =
∫ ∞

1
dζ

ζ−1−βe−xζ

(1 + aζ−β)2
,

N = 4rλχ2

∆µ(χ+ν/2rλ) , χ2 =
(

ν
2rλ

)2 + 2 ∆ν
(1+∆)rλ , β = 2χrλ/∆µ, and a = 2rλχ−ν

2rλχ+ν . Despite its apparent
complexity, this distribution is characterised by a simple scaling behaviour: Referring to Fig. 3.7(a),
the predicted clone size distributions are plotted using the scaling appropriate to the normal (un-
perturbed) system (cf. Fig. 3.4). In this case, it is apparent that the scaling t 7→ t/2k fails. By
contrast, from the expression for φk(t), it is clear that the size distributions should scale according
to the time translation, t 7→ t′k = t + k ln 2/∆µ as confirmed by the results shown in Fig. 3.7(b).
Further consideration of the size distribution exposes several additional features, which may provide
further access to the new model parameters:

(i) The long-time distribution decays with a rate β∆µ: Expanding Iβ,a(x) for small x gives us
the asymptotic form of the universal decay curve. For β < 1, consistent with the monoclonicity
requirement ∆µ � ν, we find

lim
t�∆µ

P(canc.)
k (t) = N Γ(−β)(2−β − 1)φk(t)−β , (3.12)
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where Γ(x) denotes the Gamma function. This expression allows us to estimate β from the rescaled
clone size distributions, providing access to the cell division and mutation parameters of the ob-
served cells.

(ii) The probability of tumour formation is finite: This is a well-known feature of the simple non-
critical birth-death process (3.10) [62]. Referring to the appendix, we find that the probability pT

for any given clone to survive and form a tumour is finite,

pT = 1 +
ν

2rλ
−

√( ν

2rλ

)2
+

2∆ν

rλ(1 + ∆)
.

As a result, the onset of cancer will halt the steady decrease in the density of labelled clones that
is a hallmark of the unperturbed system.

These properties, and especially the change in scaling behaviour, allow the onset of early-stage
cancer to be identified from observations of clones less than one hundred cells in size. This may
provide a dramatic improvement both in speed and accuracy over current experimental models,
which rely on much later observations of tumours (or hyperplasias) in order to deduce the cell
kinetics at early-stages.

3.4 Chapter conclusions: A new paradigm for epidermal mainte-
nance

To summarize, we have shown that the range of clone fate data obtained from measurements of
murine tail epidermis are consistent with a remarkably simple stochastic model of cell division and
differentiation involving just one proliferating cell compartment. These findings overturn a long-
standing paradigm of epidermal fate which places emphasis on a stem cell supported epidermal
proliferative unit. As well as providing significant new insight into the mechanism of epidermal
homeostasis, these results suggest the utility of inducible genetic labelleling as a means to resolve
the mechanism of cell fate in other tissue types, and as a means to explore quantitatively the effects
of drug treatment and mutation.

To conclude, we note that the analysis above has focused on the dynamics of the clonal population
without regard to the spatial characteristics. Indeed, we have implicitly assumed that any model
capable of describing the cell size distributions will also succeed in maintaining the near-uniform
areal cell density observed in the basal layer. However, it is known that, when augmented by
spatial diffusion, a simple Galton-Watson birth-death process leads to “cluster” formation in the
two-dimensional system whereupon local cell densities diverge logarithmically [77, 78]. Significantly,
these divergences can not be regulated through a density-dependent mobility. In chapter 5 we shall
examine how the Galton-Watson process emerges from a two-dimensional reaction-diffusion type
process.

From a practical perspective, there is also the significant question of how the cell kinetic model
might be generalised to describe other forms of epidermis. In particular, although it is not feasible
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to repeat these experiments in vivo in humans, in chapters 6-7 we shall examine new evidence for
cell fate regulation in human epidermis, a system of obvious medical significance.

Lastly, our analysis of the cancer system referred to the relatively simple case of a two-stage
mutation. It is, of course, well-known that tumour formation is usually the result of multiple
mutations. Understanding whether clonal fate data can be used to probe the kinetics of multi-stage
mutation remains an interesting future challenge.
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Chapter appendix

3.A Clone size distributions in the two-stage cancer model

To derive the clone size distribution given in Eq. (3.11), we start by quoting the known result for
the probability distribution Πn∗(t; τ) of finding n∗ stage-two A∗ cells at time t starting from a single
A∗ cell at time τ [62],

Πn∗(t; τ) =


(1−∆)(1−e−∆µ(t−τ))

(1+∆)−(1−∆)e−∆µ(t−τ) for n∗ = 0(
2∆

(1+∆)(1−e−∆µ(t−τ))

)2

e−∆µ(t−τ)
(
1− 2∆e−∆µ(t−τ)

(1+∆)−(1−∆)e−∆µ(t−τ)

)n∗−1
for n∗ ≥ 1

(3.13)
When ∆µ(t− τ) � 1, this distribution asymptotes to the form

Πn∗(t; τ) '



(1−∆)
(1+∆) for n∗ = 0

(
2∆

(1+∆)

)2
e−∆µ(t−τ)×

exp
(
−n∗ 2∆

(1+∆)e
−∆µ(t−τ)

)
for n∗ ≥ 1

(3.14)

From the value of Π0 we see that even when a cell has mutated, it is not guaranteed to result in
a tumour: This will only occur with a probability of f = 1 − Π0(t → ∞) = (2∆)/(1 + ∆). The
value of f plays an important role in determining the statistics of tumour formation, as will be seen
below.

We now make two approximations: First, we take the long-time clone size distribution to be
dominated by the statistics of A∗ cells. This is a safe assumption at times t & 1/ν and t � 1/∆µ,
as may be seen by considering the behaviour of the mean-field equations in section 3.3.2. This
approximation allows us to focus on the size distribution of A∗ cells only, pn∗(t), which is related
to the full clone size distribution by the sum pn∗(t) =

∑∞
n=0 Pn,n∗(t). Secondly, we assume that

the entire population of type A∗ cells in each clone arises from the first mutated cell that gives rise
to a stable, exponentially growing lineage of cells. This corresponds to the condition ν � ∆µ, as
discussed in the main text.

With these two approximations, the probability of finding a labelled clone containing n∗ > 0
mutated cells is given by the population distribution of the first surviving cell lineage of A∗ cells,

pn∗(t) ' N
∫ t

0
Πn∗(t− τ)

∞∑
m=1

(1− f)m−1rm(τ)dτ , (3.15)

where N is some normalisation constant, and we have introduced the probability rm(τ)dτ for the
m-th lineage of mutated cells within a given clone to be created during the interval τ → τ + dτ
through the mutation process A → A∗. The weight factor (1 − f)m−1 gives the probability that
the first m− 1 cell lineages of A∗ cells within a clone will become extinct — a situation necessary
to make the m-th cell line relevant to the distribution according to the monoclonal approximation.
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The rates rm(τ) may be accessed by considering the probability wn,m(t) that a clone containing
n type A cells at time t also contains m independent lineages of mutated A∗ cells, each arising
from a separate mutation event. (Later we shall treat the evolution of each of these cell lines post-
creation). To solve for wn,m(t) we must introduce its moment-generating function G(q, Q∗; t) ≡∑∞

n=0

∑∞
m=0 wn,m(t)qn(Q∗)m, which evolves (from Eq. 3.11) according to the dynamical equation,

Ġ =
[
rλ(q − 1)2 + ν(Q∗ − q)

]
∂qG . (3.16)

Solving this equation subject to the initial condition of one “stage-one” (A) cell per clone, we find
the solution

G(q, Q∗; t) = ξQ∗ −
2ξQ∗

1 + ξQ∗+(q−1− ν
2rλ

)

ξQ∗−(q−1− ν
2rλ

)e
−2ξQ∗rλt

+1 +
ν

2rλ
, (3.17)

with ξQ∗ ≡
√

( ν
2rλ)2 + ν

rλ(1−Q∗). Eq. (3.17) describes the evolution of a single A cell as it
proliferates and eventually gives rise to a set of internal lines of mutated cells.

Before we proceed to find pn∗(t), note that setting q = 1, Q∗ = 1 − f in Eq. (3.17) gives us the
result (quoted in the main text) for the asymptotic fraction pT of clones in which all mutated cell
lines become extinct,

pT = 1 +
ν

2rλ
−
√( ν

2rλ

)2
+

νf

rλ
.

On the other hand, setting q = 1 only in Eq. (3.17) gives the moment-generating function for (yet
another) distribution Wm(t) =

∑∞
n=0 wn,m(t) of a clone containing m independent lines of A∗ cells

irrespective of the number of normal cells in the clone. Finally, noting that Ẇm(t) = rm − rm+1

then gives:

rm(t) = −
m−1∑
n=0

Ẇm(t) , (3.18)

which we may substitute into Eq. (3.15) to find (for n∗ > 0)

pn∗(t) ' −N
∫ t

0
dτΠn∗(t− τ)Ġ(1, 1− f ; τ) . (3.19)

From this expression, simplified by the large-n∗ approximation (
∑

n∗ '
∫

dn), we obtain the final
form of the binned size distribution given in Eq. (3.11).
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Chapter 4

Effects of drug treatment on the
mechanism of epidermal homeostasis

Chapter overview

Understanding the complex phenotypes produced by drugs in vivo requires insights into how drugs
alter the behaviour of proliferating and differentiating cells that function to maintain normal tissue
homeostasis. In chapter 3 we established a method to access the laws of in vivo cell kinetics
through the analysis of the fate of a representative sample of clones of genetically labelled cells
and their progeny. Here, we explore theoretically and test experimentally the predictive power of
clonal analysis in evaluating the effects of topical drug action on the epidermis. Using all-trans
retinoic acid as a test drug, we show that the results of an extended drug course may be successfully
predicted by the single compartment model. As well as providing validation of the model of normal
epidermal homeostasis, this chapter establishes a platform for characterising the effects of drugs on
the epidermis.

This chapter demonstrates a very close overlap between experiment and the theory of epidermal
maintenance, and it has been written to allow publication at some future date. While the theoretical
analysis is completely in place, the experiment reported here requires a repeat of one of the control
experiments (as described in the body of the text). Experimental work was performed by E.
Clayton1, D.P. Doupé1 and P.H. Jones1, while AMK conducted the theoretical work and is the
author of the text.

4.1 Introduction

A major challenge in studying the effects of drugs on tissues is the ability to dissect the effects
of the drug on cell behaviour from complex tissue phenotypes that may follow drug treatment.

1MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 2XZ, UK
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Normal adult tissues are maintained in a homeostatic state by proliferating cells which replace cells
lost from the tissue. Drugs may act to alter the rates of cell proliferation, differentiation or cell
death, but it is impossible to measure these changes and their effect on cell behaviour with precision
using conventional histology. A powerful technique in solving this problem is clonal analysis, the
genetic labelling of a representative sample of cells within the tissue to enable their fate and that
of their progeny to be tracked. This approach gives information on the proliferation, migration,
differentiation and cell death (apoptosis) of the labelled cells. In chapters 2 and 3, this approach was
used to demonstrate that cell proliferation and differentiation in adult murine epidermis conform
to a remarkably simple model. Motivated by the success of this method in resolving the rules of
normal epidermal maintenance, the aim of the present chapter is to explore theoretically the action
of a drug on the epidermis through signatures in the resulting clone size distributions. To test the
ideas developed in this work, we will also present the results of a pilot investigation exploring the
influence of all trans retinoic acid (ATRA) on mouse tail epidermis.

The chapter is organised as follows: Using the results obtained in chapter 3 for normal (wildtype)
epidermis as a platform, in section 4.2 we will investigate the action of drug treatment on epidermal
maintenance focusing on how revisions in the clone fate data can be used to infer changes in the
respective cell division rates and “branching ratios”. To illustrate the integrity of the model, its
utility as a diagnostic tool, and its predictive power, in section 4.3 we will describe the results of a
pilot study of ATRA treatment on mouse tail epidermis. Finally, in section 4.4, we will close with
a discussion of the methodology and future challenges.

4.2 Effects of drug treatment on the epidermis

We turn now to consider how clonal analysis may be used to infer the effect of drug treatment or
other environmental changes on the rates and channels of cell proliferation and differentiation in
the epidermis. As described in section 3.3 for the case of mutations, a drug treatment can affect
tissue in a variety of ways:

• Firstly, a revision of cell division rates of all cells may drive the system towards either a new
non-equilibrium steady-state behaviour or towards a non-steady state evolution resulting in
atrofication or unconstrained growth of tissue2.

• Secondly, the random revision of cell division rates or “branching ratios” (symmetric vs.
asymmetric) of individual cells may lead to cancerous growth or extinction of a sub-population
of clones.

The former may be referred to as a “global perturbation” of the cell division process while the
second can be referred to as “local”. In both cases, one may expect clonal analyses to provide a
precise diagnostic tool in accessing cell kinetics. To target our discussion to the current experimental
system, in the following we will focus on the action of a global perturbation. The effects of a local

2The development of closed non steady-state behavior in the form of limit cycles seems infeasible in the context
of cellular structures.
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perturbation, and its ramifications for the study of cancer development, have already been briefly
discussed in the previous chapter (section 3.3).

Let us then consider the action of a global perturbation resulting from a drug treatment of the
epidermis and leading to new steady-state behavior. Referring to the birth-death process (3.2), it
is clear that, in the absence of new channels of cell division, the revised steady state behaviour may
be characterised in full by the change in the overall cell division rate, λ, the branching ratio, r,
and the fraction of A cells in the basal layer, ρ. However, if we restrict attention to the long-time
scaling regime, referring to Eq. (3.6), one may see that, when coupled to direct observations of ρ,
the change in the rate of symmetric division, rλ, is sufficient to fully specify the time-evolution
of the resulting clone size distribution. A further numerical analysis of the transient short-time
behaviour of the system may then be used to determine the independent changes to r and λ.

In the experimental system, one can envisage treatment either preceding or following label induc-
tion, each leading to different transient behaviours of observed clonal fate. If treatment is initiated
early enough, one may expect the tissue to establish a revised steady-state by the time of induction.
In this case, clonal fate data must simply reflect a modified model of cell proliferation. If, however,
drug treatment is applied some time T after label induction, then the observed clone size distri-
butions will involve a continuous, if seemingly abrupt (see below), transition between the wildtype
and drug-treated systems. When taken together, such experiments can reveal the effect of drug
treatments on cell kinetics as well as providing a mutual verification of any proposed proliferation
model for the treated system.

Staying within the framework of the critical birth-death process (3.2), of the three adjustable
parameters, λ, r and Γ, only two can be considered independent, subject to observations of the
relative population of A and B cells. To address the action of a non-disruptive drug treatment
on the properties of the clone size distribution, it is convenient to refer below to changes in the
symmetric cell division rate,

rλ → (rλ)′ = αrλ ,

and the relative population of A and B cells,

ρ → ρ′ = βρ .

For the latter, although ρ is itself slave to the relative change in the rates of cell division and
transfer, viz.

Γ′

Γ
=

λ′

λ

β(1− ρ)
1− βρ

,

by addressing experiments within the long-time limit we may focus solely on the timescale rλ/ρ
(Eq. 3.6), so that the underlying dependence of ρ on the division and transfer rates becomes
unimportant. Let us therefore emphasize this point as a motivation for focusing on the behaviour
at late times (t > 1/rλ): here the relative change β, which is readily accessible by immunostaining
of the basal layer, reflects the effective impact of the change in the rates of cell division and transfer,
which are themselves difficult to access.

To begin let us consider the simpler case in which the relative A and B cell populations are left
unchanged by drug treatment (i.e. β = ρ′/ρ = 1, and Γ′/Γ = λ′/λ). Focussing on the A-cell
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population and referring to the two experimental arrangements above, when drug treatment is
initiated prior to label induction it is easy to see that the modified clonal distribution is

p(DRUG)
n (t) = p(WT)

n (αt) ,

where p
(WT)
n (t) is given by Eq. (3.5). By contrast, when labelling is induced at some time T before

drug treatment, the size distribution will switch continuously such that

p(DRUG)
n (t ≥ T ) = p(WT)

n (T + α(t− T )).

With ρ′ = ρ, in the long-time limit, one may then recover the full basal layer clone size distribution
through the relation (3.6). As a result, one may deduce that the average size of persisting clones
changes from its wildtype dependence, 〈nWT(t)〉 = (1 + rλt)/ρ (shown in fig. 3.3, inset), to

〈nDRUG(t > T )〉 = 〈nWT(T )〉+ αrλ(t− T )/ρ ,

after drug treatment, i.e. for α > 1, there is an enhanced long-term growth in the size of persisting
clones.

Let us now consider the more general situation in which we allow the relative proportion of A
and B cells to change, i.e. β = ρ′/ρ 6= 1. Here, such a revision demands some qualification of
the underlying model. Referring to Eq. (3.2), one may note that the birth and death of A cells
takes place at equal rates, implying that the overall population of labelled A cells must remain
unchanged during drug treatment. Keeping in mind that the observed total basal layer cell density
remains approximately constant throughout the time course of the experiment, a change in the
relative weight of A and B cell populations must therefore invoke processes which lie beyond the
model: In particular, if β > 1, there must exist a transient, non-steady-state, period of adaptation
when new progenitor cells are recruited into the IFE to replace those differentiated cells shed in
the adjustment. Conversely, if β < 1, there must be a period when progenitor cells are expelled
from the IFE.

Whether this non-steady-state behaviour directly influences the labelled clone population or, in-
stead, rebalances only the unlabelled clone population, is unclear (see below) and may be drug-
dependent. In general, one may conceive of at least three mechanisms for achieving a shift from
the wildtype to the drug-treated steady-state, involving

(a) a (transient) change in the balance of symmetric division rates (in process (3.2)),

(b) the recruitment of type A cells from other parts of the tissue (such as the hair follicle), or

(c) the activation of an otherwise quiescent population of progenitor cells (such as stem cells) to
restore the appropriate A cell population.

Fortunately, whatever the transient mechanism for adjusting ρ, at sufficiently long times after
initiating drug treatment, one may show that, subject to an overall rescaling of the time coordinate,
the form of the asymptotic steady-state distribution (3.6) is invariant leading to the more general
relation,

P (DRUG)
n (t ≥ T ) = P (WT)

n (T/β + τ +
α

β
(t− T )) , (4.1)
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if drug treatment is initiated at a time T after label induction. That is, a transient period of
accelerated growth/attrophication in the A-cell compartment displaces the time coordinate of the
probability distributions by some value τ , which is set by the mechanism for changing the A cell
population, e.g. τ = 0 for case (b) above, and τ ' T (1− β−1) for cases (a) and (c). On the other
hand, if drug treatment is initiated sufficiently early prior to label induction to allow a complete
transition into the new steady-state, then the distribution maintains the wild-type form, adjusted
to reflect the modified steady-state viz.

P (DRUG)
n (t) = P (WT)

n (
α

β
t) . (4.2)

Note that Eq. 4.1, which predicts an instantaneous change in the clone size distribution upon drug
application at time T , is rigorous in the limit that the cell populations adjust instantaneously to
their new non-equilibrium values. However in the real case, where there is no abrupt change, Eq. 4.1
is only exact for times t beyond the (brief) transient period of population rebalancing.

To illustrate this behaviour, let us consider the outcome when drug treatment is initiated at a
sufficiently long time post-label induction so that, upon treatment initiation, the wildtype system
may be considered to have reached the scaling limit (3.6), i.e. we are interested in times in excess
of the symmetric cell division time, t > 1/rλ. The action of drug treatment on the basal layer
clone size distribution is shown in Fig. 4.1 for a typical parameter set (see caption) alongside that
of the corresponding distribution of the unperturbed system. Here we have supposed that A cells
are recruited from elsewhere, and do not contribute to the labelled clone distribution — option
(b) above. Upon drug application, modelled here by an abrupt change of the cell division and
transfer rates, the size distributions show a continuous, but rapid, adjustment before the system
enters a smooth long-time evolution. With τ = 0, the period of rapid change can be ascribed to the
“rebalancing” of the labelled B cell population, giving a prediction for the abrupt drop in average
clone size,

〈nDRUG(t > T )〉 ' 1
β
〈nWT(T )〉+

α

β

rλ

ρ
(t− T ) , (4.3)

which, from the properties of Eq. 4.1, is rigorously true when the transient period is negligibly
short.

Referring then to the numerical results in fig. 4.1(inset), one may indeed confirm that, following drug
treatment at T = 13 weeks, the average basal cell population for persisting clones grows linearly
with time, and in keeping with Eq. 4.3, the growth rate increases by a factor of α/β = 20/3 from its
pre-treatment value (of rλ/ρ = 0.48/week, see figure caption). Also, one may see from the figure
that the transient period associated with rebalancing the relative A and B cell populations lasts
less than 0.1 weeks, consistent with the abrupt activation of the drug assumed for the calculation,
and with the excess labelled B cells transferring from the basal layer with the modified transfer
rate of Γ′ = 29.16/week required to maintain the steady-state in the drug-treated system.

To characterise the evolution of the full clone size distributions in fig. 4.1, one may identify from
Eq. 4.1 that, following initiation of the drug treatment, the solution conforms to the universal
scaling behaviour of the wildtype system, but with the time coordinate translated as well as rescaled
due to the drug treatment, such that [t − T (1 − α−1)]/n 7→ t. This scaling behaviour is seen in
fig. 4.2, where, by replotting the data from fig. 4.1 for times t > T , one may compare the wild-type
and drug-treated systems. In particular, the two systems map onto distinct manifestations of the
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FIG. 4.1: Probability distribution showing the total number of basal layer cells per labelled clone, with drug
treatment starting from T = 13 weeks post-labelling. The solid curves show the grouped time-dependent
probability distribution of persisting clones containing two or more cells (see caption and legend of fig. 3.4).
The effect of drug treatment was modelled by increasing the overall cell division rate from its initial value of
λ = 1.1/week by a factor of 20 from time T onwards, and by increasing the transfer rate Γ to effect a change
in the relative population of A cells from an initial value of 19% to a final value of 57% post-drug treatment
(giving Γ = 0.258/week before drug treatment, and Γ′ = 29.16/week after). The probability of symmetric
cell division 2r = 0.16 was held constant throughout. The dotted curves show the evolution of the same
clone size distributions in the absence of drug treatment, and, for comparison, the data points show the
results of the preliminary investigation into the effects of ATRA treatment. Error bars show the standard
error of the mean. To obtain the figure we numerically integrated the full master equation (Eq. 3.3) starting
with exactly one cell per clone at t = 0. The initiation of drug treatment was then modelled by an abrupt
change to the rates of cell division and transfer at T = 13 weeks.
Inset: The average basal-layer population of persistent clones is shown for the same numerical experiment.
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FIG. 4.2: The clone size distribution from fig. 4.1 plotted using the rescaled time coordinate [t − T (1 −
α−1)]/n 7→ t for the drug-treated system (solid curves plotted for t ≥ T ), and using t/n 7→ t for the wild-type
system (dotted curves). See caption of fig. 3.4 for further discussion of rescaling. For the drug-treated case,
the system rapidly converges onto the long-time limit, giving an excellent fit to the universal curve (dashed),
compared to the slow convergence to the universal curve for the wild-type case (dashed-dot). The data
points, showing the preliminary results for ATRA treatment (see caption of fig. 4.1), are in good agreement
with the universal scaling curve.

universal curve (Eq. 3.6), with a peak in the universal curve located at t′WT = ρ/(2rλ ln 2) for the
wild-type case, and at t′DRUG = (β/α)t′WT for the drug-treated case. Thus, one may again quantify
the effect of the drug from the location of the two maxima, with t′WT/t′DRUG = 1.6weeks/0.24weeks,
which gives precisely the expected value of t′WT/t′DRUG = α/β = 20/3.

4.3 Experiment

To illustrate the application of these ideas, we have undertaken a pilot study of the clone size
distribution in mouse tail after treatment by all trans retinoic acid (ATRA). From earlier studies,
it is known that ATRA treatment alters substantially the proliferative capacity of progenitor cells,
resulting in epidermal thickening, particularly of the suprabasal layers [79]. Yet, observations
of mitoses within the affected tissue indicate no qualitative change in the division processes as
compared to those observed in the wildtype system. Clonal analysis gives unique insight into the
effects of the ATRA treatment, by relating the changes in clone size distributions to quantitative
changes in the cell division and differentiation rates. Following the same experimental procedure
for tracking clone fate data as that used in normal tail-skin [15], two protocols were used: In the
first, mice were treated daily for two weeks with either 0.5ml of 1mM ATRA (Sigma) in ethanol
and propanediol 70:30 or vehicle alone applied topically to the tail skin, beginning immediately
after clone label induction. In the second, mice were induced, and, after a three month interval,
were treated similarly for five days each week with either 0.33mM ATRA or vehicle alone for a
further three months. For the former case of 2 weeks’ treatment, the control resulted in smaller
clones compared to the wildtype, possibly due to transient effects associated with application of the
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ethanol and propanediol vehicle. In the latter case, the clone size distribution for the control was
consistent with the same division and transfer rates evaluated for the wild-type system in Ref. [15],
adjusted for the slight change observed in the concentration of proliferating cells, as assessed by
Ki67 immunostaining (19 ± 2% for the control compared to 22% in Ref. [15]. This change, which
may reflect some small influence of the ATRA vehicle, may also result from statistical variation
between different wild-type cohorts of mice. On the other hand, clone size was seen to increase
substantially in ATRA treated animals, in keeping with an observed increase in the concentration
of proliferating cells (ca. 57±3.7% in the ATRA treated system as compared to 19% in the control).
The corresponding clone size distributions of the ATRA treated system are shown in Figs. 4.3a and
4.3b.

Before attempting to analyse the clone size data quantitatively, we must first address the three-
fold increase in the relative population of basal layer progenitor cells on drug treatment, i.e. β ≡
ρ′/ρ = 3. Referring to the discussion in the previous section, we are faced with at least three
possible scenarios (a-c) none of which are ruled out by the available data. However, as we will see
below, since measures are restricted well into the long-time limit, the results of the pilot study are
largely insensitive to the mechanism of progenitor cell recruitment. Therefore, taking each of the
experiments in turn, let us consider first the problem of ATRA treatment at induction. If we assume
that the transition to the drug treated steady-state system is immediate (see below) and that, after
two weeks, the system has reached its asymptotic behaviour, we are lead to conclude from the fit
of Eq. 4.2 to the clone size distributions (fig. 4.3a) that the symmetric cell division rate is changed
by a factor of α ≡ (rλ)′/rλ ' 20! With rλ = 0.08 × 1.1/week for the wildtype system, we would
therefore expect the system to reach a steady-state behaviour after a time t = 1/(rλ)′ ' 4 days, a
result consistent with our assumptions above. For the control, on the other hand, the system at
two weeks is far from the long-time limit (t < 1/rλ), and the distribution is fitted by numerical
integration of wild-type master equation (3.3).

Then, turning to the second of the two experiments in which ATRA treatment occurs 3 months
after label induction, Fig. 4.3b shows that the same parameter choice (α = 20 and β = 3) shows an
excellent quantitative agreement between the predictions of theory and the experimental data at
the six month time point, if we assume that progenitor cells are recruited from outside the labelled
clone population (see the following section), viz. τ = 0. Equally, the control is fitted well by the
long-time asymptotic distribution for the wild-type system (3.6).

Finally, to consolidate the discussion from the previous section, the fit of the theory to the six
month data for the ATRA-treated system is shown in the context of the full time-evolution of the
clone size distributions in fig. 4.1, and again in the context of the long-time universal scaling in
fig. 4.2.

4.4 Predictive clonal analysis: discussion and conclusions

To conclude, we have shown that clonal analysis provides a powerful tool to explore both qualita-
tively and quantitatively the action of drug treatment on the interfollicular epidermis. Referring
to the new model of epidermal homeostasis introduced by Ref. [15], we have elucidated the clonal
characteristics associated with the action of a “benign” drug treatment leading to a global revision
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FIG. 4.3: Basal layer clone size distributions for wild-type IFE (grey) or ATRA-treated IFE (red), (a) at
two weeks post-labelling, with treatment initiated at label induction, and (b) at six months post-labelling,
with treatment initiated at three months post-labelling. Bars show the results of experiment (for details on
method, see Ref. [15]), and circles show the theoretical predictions obtained from Eq. 4.2 in (a), and Eq.
4.1 in (b) for the ATRA-treated systems (black), assuming both a 20-fold increase in the rate of symmetric
cell division when ATRA is applied (α = 20), and that the observed 3-fold increase in the relative number
of A cells is accounted for by an introduction of new unlabelled A cells (i.e. β = 3, τ = 0). For the control,
theoretical predictions (white) were obtained by direct numerical integration of Eq. 3.3.

of the cell division rates and branching ratios. These results have been used to assess quantitatively
the action of ATRA treatment on cell division rates, revealing that ATRA accelerates the rate of
symmetric cell division by a factor of α = 20. The findings have been used to successfully predict
the long-time clonal evolution in the drug treated system.

Despite the success of the single progenitor cell compartment model in resolving clone fate data
of the normal and drug-treated system, the observed changes in the volume fraction of progenitor
cells can not be accounted for entirely within the framework of the non-equilibrium process (3.2).
Unfortunately, so fast is the acceleration of the symmetric cell division rate due to the ATRA
treatment, the origin of progenitor cell recruitment at a transient stage can not be resolved with
the existing dataset. (In this context, one may note that a favourable fit of the model to the
experimental data can be obtained for a range of growth scenarios, viz. 0 < τ ' T (1 − β)−1

addressed in section 4.2.) Moreover, given the period required to fully affect a drug treatment,
it is difficult to conceive of a reliable method to probe quantitatively the transient behaviour
experimentally.

Finally, turning again to the long-term effects of ATRA treatment, there is an open question
regarding the origin of the observed change in the symmetric division rate rλ. It is unkown whether
the change can be completely accounted for by an increase in the overall rate of cell division λ, or
whether there is also a change to the symmetric branching ratio r. Although one could in principle
determine these effects separately by considering the very early-time clonal evolution following
ATRA treatment, in practice the acceleration in symmetric cell division makes access to this time
period difficult. Thus, assessment of these quantities in future studies may require independent
methods.
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Chapter 5

Spatial correlations in murine
epidermal maintenance

Chapter overview

In chapters 2 and 3 we showed that in mouse tail-skin, where proliferating cells are confined to a
two-dimensional layer, cells proliferate and differentiate according to a simple stochastic model of
cell division involving just one type of proliferating cell that may divide both symmetrically and
asymmetrically. Curiously, these simple rules provide excellent predictions of the cell population
dynamics without having to address their spatial distribution. Yet, if the spatial behaviour of cells
is addressed by allowing cells to diffuse at random, one deduces that density fluctuations destroy
tissue confluence, implying some hidden degree of spatial regulation in the physical system.

To infer the mechanism of spatial regulation, we consider here a two-dimensional model of cell
fate that preserves the form of the empirical clone size distributions. By identifying the resulting
behaviour with a three-species variation of a non-equilibrium lattice model known as the Voter
model, we predict that proliferating cells in the basal layer should cluster. Analysis of empirical
correlations of cells stained for proliferation activity confirms that the expected clustering behaviour
is indeed seen in nature. As well as explaining how cells maintain a uniform two-dimensional density,
these findings present an interesting experimental example of voter-model statistics in biology.

The contents of this chapter draw significantly upon Ref. [17], written primarily by AMK, with
experimental images provided by David P. Doupé.

5.1 Introduction

To gain insight into the processes of cancer onset, aging and wound healing, biologists have long
recognised that the spatial organisation of cells in tissue provides indirect access to the underlying
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FIG. 5.1: Cross-sections of two typical clones acquired at a late time point, showing clone cohesiveness.
The clones are viewed from the basal layer surface as indicated. Cell nuclei are labelled blue; the hereditary
clone marker (EYFP) appears yellow. Scale bar: 20µm. See also Figs. 2.2 and 3.1 for further examples.

cell behaviour. Some tissues, such as the auditory hair cells of the inner ear are arranged into
repeating units containing groups of specialised cells essential for the function of the tissue [80]. In
contrast, in other tissues cells do not organize into coherent structures that reflect their cooperative
function. Indeed, the arrangement of some cell types appears random [30]. Inferring the rules of cell
behaviour in these apparently unstructured tissues appears challenging. One may ask, therefore,
how cell behaviour in such tissues is regulated in the absence of well defined spatial roles.

In this context, let us turn again to the case of mouse tail-skin epidermis, for which the laws gov-
erning cell behaviour have now been resolved (chapters 2 and 3). As summarised by the stochastic
birth-death process (3.2), the model of epidermal maintenance describes a single population of pro-
genitor cells capable of both symmetric and asymmetric division, which give rise to a population
of non-proliferating cells that transfer from the basal layer to the suprabasal layers.

Referring to the question of the spatial organisation of cells in tissue, it is an interesting fact that
process (3.2) is capable of fitting the wide range of clone fate data within a “zero-dimensional”
framework, i.e. without having to address the spatial orientation of cells within the basal layer.
Yet, the observed uniformity of cell density implies a degree of regulation beyond that which can be
addressed in the zero dimensional framework. In particular, when augmented by spatial diffusion,
the proposed model leads to “cluster” formation in the two-dimensional system whereupon local
cell densities are predicted to diverge logarithmically [77, 78]. In biological terms, such behaviour
would correspond to a severe disruption of the epidermis, with much of the tissue dying away,
leaving only a few isolated and very thick clusters of epidermis. Significantly, the observation that
labelled families of cells remain largely cohesive (see for example Fig. 5.1), reveals that cell mobility
must be small, so that such divergences would be significant within a mammalian lifetime. These
divergences can not be regulated through a local density-dependent mobility.

Thus, the success of the zero-dimensional fit, despite the predicted divergence in two dimensions,
leaves us with an interesting challenge that is the focus of the present chapter: Can we uncover,
from the spatial distribution of basal layer cells, the mechanism by which cells regulate a uniform
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cell density without compromising the integrity of the zero-dimensional fit, as embodied in process
(3.2)?

In order to identify the underlying rules of cell division and differentiation, we shall draw upon the
results of two types of experiment. First, we shall revisit the clone fate data used in the original
zero-dimensional analysis in chapters 2 and 3, in order to examine the previously-discarded spatial
distribution of labelled basal layer cells for signatures of underlying regulation. Second, we shall
consider the statistics of the entire population of basal layer cells. In particular, by immunostaining
basal layer cells for markers of cell proliferation, it is possible to analyse the spatial distribution of
all progenitor cells.

Thus, the aim of this chapter is to elucidate how the experimental observations constrain any pro-
posed theory of spatial behaviour in the basal layer. In summary, we shall show that the dynamics
predicted by process (3.2) are indeed consistent with the constraint on uniform cell density, pro-
vided that cell division occurs only upon the migration of a nearby type B (i.e. differentiated) cell
into the basal layer. Moreover, we confirm that the clone fate data is consistent with a restricted
degree of cell mobility, whereby cell motion is not diffusive and random. Instead, differentiated
cells only migrate laterally as a response to fluctuations in the local density. Finally, to test the
validity of the proposed spatial model, we use it to predict that, while maintaining a uniform total
areal cell density, the population of progenitor cells should cluster over time. By considering the
radial correlation function for the spatial distribution of progenitor cells, we find that this predic-
tion is in good qualitative agreement with experiment. Quantitatively, the comparison reveals that
the experimental degree of progenitor cell clustering is slightly higher than that expected for the
parameter value of r = 0.08 determined previously through clonal analysis. Although several tech-
nical difficulties may challenge the reliability of these quantitative results, we speculate that such
excess clustering may be a signature of spatial regulation of cell fate during asymmetric division.
These results also shed light on previous observations of clustering of cells undergoing mitosis in
the epidermis [81, 82]. Such observations have been interpreted in the biological community to
be a signature of regulation that leads to coordinated cell division. By contrast, this work shows
that the tendency of proliferating cells (and therefore mitoses) to cluster is in fact consistent with
cells dividing independently and stochastically — indeed it is the hallmark of the proposed spatial
process.

This chapter is organised as follows. In section 5.2.1 we develop a phenomenological model of cell
behaviour that incorporates the experimental constraint on uniform cell density. We identify the
proposed model as a variation upon the so-called monomer-monomer model of surface catalysis.
We then analyse this simpler model in section 5.2.2, including an exact solution for the two-point
density correlations in the closely-related monomer-monomer model. In section 5.3 we test the
uniform-density model against a range of experimental data, first through a qualitative comparison
of the model with the empirical clone shape data (section 5.3.1), and then by analysing the spatial
correlations observed for proliferating cells (section 5.3.2). We conclude with a discussion of cell
clustering in section 5.4.
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FIG. 5.2: Schematic motivating the proposed lattice model defined in Eq. (5.1). Left: A cartoon of cells
within the basal layer, showing the exit of a cell (light grey) through upward migration into the suprabasal
layers, concurrent with the division of a nearby progenitor cell (red online). To ensure continuity of the
basal layer, it is postulated that cells rearrange to maintain a uniform cell density (wide arrow). Right: In
a simple lattice model that captures the essence of the steady-state dynamics, the exit of a cell from the
basal layer gives rise to a vacant lattice site (light grey), which rapidly diffuses by exchanging position with
adjacent cells (white). Upon coming into contact with a proliferating cell, the latter may divide and replace
the vacancy with a daughter cell (striped).

5.2 A spatial model of cell kinetics

To understand how the experimental observations constrain any proposed theory of spatial be-
haviour in the basal layer, we shall first address the constraint imposed by the observed uniform
cell density. To this end, we postulate that proliferating cells only divide upon the migration of
a nearby differentiated cell into the supra-basal layers (see Fig. 5.2). This requirement is purely
phenomenological, as it ensures a uniform density without specifying the mechanism by which it
is implemented. Indeed, a range of regulatory pathways can be seen to give rise to the same phe-
nomenology, for example by coupling cell division processes to the local stress [83, 38] or using
short-ranged morphogen gradients as well as feedback by cell-cell communication. Once this initial
constraint is accounted for in this section, we shall draw upon the further observations of clone and
basal layer morphology in order to identify additional rules governing cell behaviour.

In general, it is a challenge to couple the division and migration of basal layer cells while still
allowing for some degree of cell compressibility, whereby a dividing cell may compensate for the
exit of a non-adjacent cell through lateral motion (see Fig. 5.2, top). Several approaches have been
used in the past to overcome this problem. In the context of tissue development, one may treat the
cell tissue as an elastic medium, whereby the local cell density is coupled to the cell division process
through the stress in the surrounding tissue [83]. Such an approach is capable of accounting for a
range of realistic properties of two-dimensional cell tissue growth, such as the distribution of cell
sizes, as well as cell compressibility. Yet, for the simple problem of steady-state tissue maintenance,
involving no net growth, it is unlikely that the complexity of the elastic tissue model is required
to explain much of the experimental data. A second approach treats the two-dimensional basal
layer as a ‘foam’ of cells (a Voronoi tesselation), for which the steady-state condition may be used
to relate between the local cell topology (or more precisely, the number of nearest-neighbours in
the basal layer) and the likelihood of division or migration. Applied to the problem of epidermal
maintenance, this approach successfully predicts the steady-state topology of epidermal basal-layer
cells [36], and it identifies that cells with a larger number of neighbours are more likely undergo
division, whereas cells with a small number of neighbours are more likely to migrate in to the
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supra-basal layers. However, it is a challenge to extend this model to allow for two distinct cell
populations that are exclusively committed to either division or migration, such as described by
process (3.2). Yet a third approach draws upon simulations in which cells are modeled as quasi-
spherical particles that deform during cell division [43, 44]. However, as this approach draws upon
a wide range of (uncontrolled) parameters to describe the cell-cell interactions, it is more complex
than required for this case.

Therefore, in the following we shall suffice with a simpler description of the basal layer, by drawing
upon the non-equilibrium lattice models discussed in the recent literature. In particular, we shall
model the basal layer as a lattice in which each site is occupied by one cell. Cell compressibility is
then modeled by a population of lattice vacancies, which are created upon cell migration (B → �)
and then diffuse rapidly as compared to the cell kinetic rates (λ, Γ), before annihilating upon
the division of an adjacent cell (see Fig. 5.2). Since this rule-based model is not primarily based
on a direct physical representation of individual cells, it may overlook certain physical effects. For
example, the migration of type B cells out of the basal layer may be facilitated by mechanical forces
exerted by neighbouring cells — a situation that is hard to represent with a cellular automaton.
However, recalling that the stochastic rules embodied by process (5.1) have been experimentally
verified, it is reasonable to start by considering a similar stochastic process in two dimensions.
Later, we shall further justify the use of the lattice model by showing that the lattice geometry
does not effect the qualitative behaviour of the system (see section 5.2.2(e)).

Although a significant advantage of the lattice description of the basal layer is the ease by which it
may be simulated, a range of analytic results are also made accessible by showing that in certain
limits, the model reduces to a simple two-component model that belongs to the generalised voter
model universality class [84, 85, 86]. The voter model universality class describes lattice processes
that undergo phase separation in two dimensions in the absence of surface tension. In the context
of basal layer kinetics, this “phase separation” corresponds to the clustering of proliferating cells.
Curiously, in the special case r = 1/4, the basal layer lattice model reduces to the reaction-
limited monomer-monomer model of surface catalytic reactions, in which the classical voter model
dynamics are augmented by infinite-temperature Kawasaki exchange dynamics [87]. As well as
drawing upon a range of existing results afforded by these models, we shall derive here an exact
solution for the two-point spatial correlation function of the monomer-monomer model. These
results reveal the continuous transition between voter-like behaviour and diffusive behaviour as the
relative rates of symmetric vs. asymmetric cell division (or reactant deposition in surface catalysis)
are adjusted.

5.2.1 The lattice model

As mentioned above, we are interested in constructing a spatial model that recovers the behaviour
of process (3.2), and maintains a uniform cell density. To account for the steric repulsion of basal
layer cells, we will characterise the basal layer as a two-dimensional lattice, where each site is
host to one of the two cell types, or it remains vacant. When the vacancy fraction is very low,
then such a lattice description presents a reasonable approximation of the observed near-uniform
arrangement of basal layer cells during normal adult skin maintenance. Then, to regulate the cell
density, progenitor cells (A) are allowed to divide only when neighbouring a site vacancy, while the
migration of post-mitotic (B) cells from the basal layer leads to the creation of vacancies which are

57



free to diffuse in the basal layer through the displacement of neighbouring cells (see Fig. 5.2). In
summary, denoting a site vacancy with the symbol �, the lattice model may be written in terms
of the non-equilibrium process:

A � λ′−→


A A Prob. r
A B Prob. 1

2 − r
B A Prob. 1

2 − r
B B Prob. r

B
Γ−→ �

X � σ−→ � X ,

(5.1)

where the site hopping rate σ reflects the capacity of vacancies to diffuse within the basal layer, and
X is used to denote either a type A or a type B cell. To gain some initial insight into the dynamics,
and to identify constraints on the parameter space, one may consider the steady-state mean-field
cell densities associated with this process. It is straightforward to show that the mean-field equation
for the vacancy fraction n� is given by

∂tn� = σS∇2n� + Γ(1− ρ− n�)− λ′ρn� , (5.2)

where ρ is the (constant) A-cell fraction, and S is the area per lattice site, corresponding to the
average areal cross-section of a basal layer cell. In the following we shall work in units of the average
cell cross-section (S = 1). From here one may see that the near-uniform cell density in the basal
layer (n� � 1 and uniformly distributed) constrains us to the region of parameter space λ′ � Γ,
such that any vacancy created through the migration of a type B cell out of the basal layer is rapidly
removed upon coming into contact with a proliferating cell. In this limit, the numerical value of
the parameter λ′ becomes irrelevant, as may be seen by calculating the effective local division rate
λ ≡ λ′n�, which takes the value λ = Γ(1− ρ)/ρ, independent of λ′. This relationship between the
rate of cell division and migration is identical to that obtained in process (3.2) [16].

Although the uniform vacancy density is a stable fixed point of the mean-field dynamics (Eq. 5.2),
one may worry whether fluctuations about the mean-field solution are capable of compromising the
uniform density of the basal layer cell lattice in actual manifestations of process (5.1). To eliminate
this concern, one requires rapid dissipation of density fluctuations independently of the cell kinetics,
from which we infer a that the lattice vacancy population must diffuse rapidly compared to the
time-scale of cell division and upward migration, viz. σ � Γ, as stated earlier. Biologically, this
condition corresponds to the assumption that cells are largely incompressible, so that local density
fluctuations lead to the rearrangement of cells on a time-scale that is significantly faster than that
of cell division (cf. Ref. [83]). In section 5.3.1 we shall show that the empirical clone fate data
further constrain the parameter space to the region λ′ � σ, whereby the exit of a type B cell is
compensated for by a nearby cell division.

With these definitions, in the parameter space λ′ � σ � Γ one may see that the spatial model
introduces no new relevant parameters compared to process (3.2). That is, the model behaviour
depends only on the (known) zero-dimensional parameters (r, λ, Γ), with the contribution of the
new parameters (λ′, σ) entering through the dimensionless ratios Γ/λ′, Γ/σ and σ/λ′, all of which
may be made arbitrarily small. But, as a precondition on its validity, does the model also reproduce
the observed ‘zero-dimensional’ basal layer clone size distributions? This is by no means obvious,
given the critical (and therefore delicate) nature of process (3.2) [16]. For example, a high density
of progenitor cells in the lattice model may lead to vacancy depletion and jamming, an effect that
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has no analog in the zero-dimensional system. Therefore, in section 5.3 we shall show, using Monte-
Carlo simulations, that the proposed lattice model indeed succeeds in reproducing the empirical
clonal statistics from Ref. [15]. With this basic confidence in the validity of the model, we now
proceed to analyse its behaviour in more detail.

In general, the cell kinetics in process (5.1) describe a hard-core non-equilibrium system involving
three cell species. Recent progress in the field of non-equilibrium statistical mechanics has resulted
in several possible formalisms with which to study such systems [47, 88, 89]. However, for the
case at hand, these approaches are unnecessarily complex. Rather than analysing the current
microscopic model, it is convenient to recast the cell kinetics into a simpler form that describes
the same phenomenology. In particular, for the parameter space of interest (λ′ � σ � Γ), it is
sufficient to consider a lattice fully occupied by A and B cells, without addressing the population of
lattice vacancies. To see this, one may see from Eq. (5.2) that the vacancy dynamics occur on a fast
time scale compared to that of cell migration (1/Γ), and division (1/λ). Therefore, referring back
to the lattice process (5.1), we may (heuristically) eliminate the vacancy population by replacing
the cell division process (A � → X Y) with a direct cell-cell ‘reaction’ process (A B → X Y), and
by replacing the A-cell division rate λ′ with the effective rate λ(x) = λ′n�(x) = Γ[1− ρ(x)]/ρ(x).
Here, the local A-cell fraction ρ(x) refers to the A-cell number density coarse-grained over the
nearby lattice neighbourhood. For example, denoting the number of type A cells on a lattice site
as nx, we have ρ(x) =

∑
x′ nx′w(|x− x′|) where w(x) is some suitably chosen normalised envelope

function. Within this framework, one may then replace process (5.1) with the more simplified form

A B
λ(x)−→


A A Prob. r
A B Prob. 1

2 − r
B A Prob. 1

2 − r
B B Prob. r

. (5.3)

The degree to which this heuristic simplification is indeed justified will be discussed at the end of
section 5.2.2, together with a quantitative comparison of the behaviour of the exact and simplified
models. It is already clear that process (5.3) cannot describe the explicit upward migration of post-
mitotic cells from the basal layer. However, in the physically relevant limit λ′ � σ, eliminating the
vacancy population has no qualitative effect on the statistics of the progenitor cell compartment,
and therefore processes (5.1) and (5.3) are expected to result in the same basal layer phenomenology.

Interestingly, process (5.3) is closely related to the model of monomer-monomer surface catalysis [90,
91]. In particular, when the coarse-grained distribution of type A cells is effectively uniform,
such that λ(x) ' const., then one may identify the symmetric branches of process (5.3) with
the classical zero-temperature voter model, while the asymmetric division channel A B → B A,
describes the Kawaski dynamics of an infinite-temperature Ising spin model. Later it will become
clear that for the empirical value of r = 0.08, the significant contribution of the latter will justify
the approximation of near-constant λ.

This analogy provides access to several known results. In Ref. [87], Krapivsky showed that starting
from random initial conditions, the classical voter model (i.e. with r = 1/2) will lead to a lattice of
N sites becoming completely saturated with either type A or type B cells after a time λt ∼ N lnN .
Moreover, Frachebourg and Krapivski gave an exact solution for the two-point spatial correlations
in this case [90], from which they inferred that, in the time leading up to saturation (λt � N lnN),
the different cell types separate into domains of ever-increasing size, with a typical lengthscale
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growing as L ∼ lnλt, and with the density of interfaces cAB between type A and type B cells
dropping as cAB ∼ 1/ lnλt. As the system approaches saturation (t ∼ N lnN), one of the cell
types comes to dominate. The classical voter model is an example of domain growth in the absence
of surface tension [91]. Therefore, the boundaries between domains rich in A and B cells are
completely unstable, leading to strikingly different and irregular domain morphologies, compared
to the smooth phase-separated shapes resulting from surface-tension mediated domain growth.

Qualitatively, the results found for the classical voter model (r = 1/2) allow us to make several
interesting predictions relating to the spatial distribution of A and B cells. In particular, some
degree of clustering of proliferating cells is to be expected in adult mice, resulting from the growth
of domains rich in progenitor cells. Moreover, the ongoing growth of the domain size L suggests
that larger clusters are expected in old vs. young epidermis. Yet, to make full contact between
process (5.1) and the empirical data, it becomes necessary to calculate the model properties whilst
allowing for the relatively low value of r = 0.08 found in the experimental system. Therefore, in
the following, we shall extend the analysis of Frachebourg and Krapivsky to obtain results valid
for arbitrary r. Indeed, with r = 1/4, the following analysis results in the exact solution to the
reaction-limited monomer-monomer surface catalysis model.

5.2.2 Exact solution for two-point correlations

In the following, we will follow the same approach as taken in Refs. [87, 90] for the r = 1/2 case,
but we generalise to allow for arbitrary r and different lattice geometries. For completeness, we
include here aspects of the solution that were also described in some detail in Ref. [87], such as
the Master equation and the dynamical equations required to define the problem. We start by
identifying type A cells with state 1 and type B cells with state 0, so that a lattice with site index
i may be described in terms of the Ising variables Φ = {ni}, ni ∈ {0, 1}. Referring to Ref. [87], the
Master equation for the probability distribution P (Φ, t) for the system to occupy state Φ at time
t is given by,

d

dt
P (Φ, t) =

λ

2

∑
i, e

{
r
[
U

(e)
i (F̂iΦ)P (F̂iΦ, t) + U

(e)
i (F̂i+eΦ)P (F̂i+eΦ, t)

]

+(
1
2
− r)U (e)

i (F̂iF̂i+eΦ)P (F̂iF̂i+eΦ, t)− (
1
2

+ r)U (e)
i (Φ)P (Φ, t)

}
. (5.4)

Here, {e} represent the nearest-neighbour lattice vectors (|e| = 1), and U
(e)
i (Φ) ∈ {0, 1} indicates

whether the cells at sites i and i + e are a ‘reactive’ pair, viz.

U
(e)
i (Φ) = ni + ni+e − 2nini+e .

The “spin-flip” operator is defined by F̂iΦ = {nj for all j 6= i; 1 − ni}, so that F̂iΦ and F̂i+eΦ
correspond to the symmetric division channels and F̂iF̂i+eΦ corresponds to an asymmetric division
in which the location of the type A and B cells is reversed (viz. A B → B A).

From here, recalling that 〈ninj〉 =
∑

Φ ninjP (Φ, t), it is simple to show that the two-site correlation
function evolves according to the discretized diffusion equation for non-neighbouring sites,

d

dt
〈ninj〉 =

λ

2
(∆i + ∆j)〈ninj〉, (5.5)
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where ∆i is the discrete Laplacian operator, defined by ∆ini =
∑

e(ni+e−ni). However, the diffusion
equation is modified for nearest-neighbour correlations, giving

d

dt
〈nini+e〉 =

λ

2
(∆i + ∆i+e)〈nini+e〉

+ (
1
2
− r)λ[2〈nini+e〉 − 〈ni+e〉

− 〈ni〉], (5.6)

and the on-site moment is trivially 〈nini〉 = 〈ni〉.

Making the simplifying assumption that the initial distribution P (Φ, 0) is translationally invariant,
then the fraction of type A cells is given by 〈ni〉 = ρ = const., and 〈ninj〉 depends on (i − j) at
all times. Therefore, introducing the correlation function Ci = 〈njnj+i〉, we can rewrite Eqs. (5.5)
and (5.6) as follows:

d

dt
Ci = λ∆iCi −

∑
e

δi,e(1− 2r)λ(ρ− Ce) , (5.7)

for |i| ≥ 1, subject to the constraint C0 = ρ = const. That is, the correlation function evolves
according to a discrete diffusion equation with sink terms at the nearest-neighbour sites and with
a fixed boundary condition at the origin. The linear nature of the problem allows one to seek a
solution in terms of the relevant Green’s function, e.g. ∆̂−1

i ≡ G(ix,iy)(t) = e−4λtIix(2λt)Iiy(2λt) for
a square lattice i = (ix, iy). For uncorrelated initial conditions, viz. Ci(t = 0) = ρ2 + δi,0(ρ− ρ2) ,
one may write down a general solution in the form

Ci(t) = ρ2 + (ρ− ρ2)Gi(t)

+
∑
j

∫ t

0
dτJj(τ)Gi−j(t− τ) , (5.8)

where Ji(t) is the source distribution required to both maintain C0 = const, and also to incorporate
the sink terms from Eq. (5.7). Thus, Ji(t) = 0 for |i| > 1, Je = −(1 − 2r)λ(ρ − Ce), and J0 =
zλ(ρ − Ce), where z is the number of nearest neighbours, and the initial conditions imply that
Ce is the same for all nearest neighbours. For now we will explicity consider the square lattice
(z = 4), however the effect of changing lattice geometry will be discussed near the end of this
section. Making use of Eq. (5.8), one may write down a set of self-consistent equations for the
source terms, viz.

J0(t) = 4λ

{
ρ− ρ2 −

∫ t

0
[J0(t− τ)G(0,1)(τ) (5.9)

+ Je(t− τ)
(
G(0,0)(τ) + G(0,2)(τ) + 2G(1,1)(τ)

)
]
}

Je(t) = −1− 2r

4
J0(t) , (5.10)

which, upon taking the Laplace transform j(p) = L[J(t)], g(p) = L[G(t)], gives the expression for
the source term,

j0(p) =
4λ(ρ− ρ2)

p(1 + 4λg(0,1) − (1− 2r)λh)
, (5.11)
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where we have defined h(p) = g(0,0)(p) + g(0,2)(p) + 2g(1,1)(p) for the square lattice.

Note that in the classical voter model (r = 1/2), the sink terms vanish (je = 0), and a single
source is located at the origin. The calculation may then proceed exactly as described in Ref. [90].
On the other hand, for the infinite-temperature Kawasaki dynamics (r = 0), the source and sink
terms create no net correlation (je = −j0/4), and they serve only to maintain the stationary state
C0 = ρ, Ci 6=0 = ρ2.

The discussion so far has been exact. We now turn to the long-time asymptotic solution of the
correlation function, for which it is sufficient to consider the behaviour of j0, je at small p (p � λ).
In the following we shall make use of the following expansions:

lim
p/λ→0

g(0,0)(p) =
1

4πλ
ln(32λ/p) +O[p ln(p)] ,

and (for the same limit p/λ → 0)

g(0,0)(p)− g(0,1)(p) =
1
4λ

+O[p ln(p)]

g(0,0)(p)− g(1,1)(p) =
1

πλ
+O[p ln(p)]

g(0,0)(p)− g(0,2)(p) =
1− 2/π

λ
+O[p ln(p)] .

With these expansions, the source terms take the long-time asymptotic values

lim
p/λ→0

j0(p) =
4πλ(ρ− ρ2)

p [π(1− 2r) + 2r ln(32λ/p)]
. (5.12)

The corresponding long-time behaviour is therefore

lim
t�1/λ

J0(t) =
4πλ(ρ− ρ2)

π (1− 2r) + 2r ln(32λt)
, (5.13)

giving the expected 1/ ln t decay. Now the effect of Kawasaki dynamics becomes clear: one may see
that reducing r from its maximal value of 1/2 has the opposing effect of weakening the magnitude
of the net source (J0 − 4Je ∝ 2r) while extending the time over which the source decays, tr ∼
(tr=1/2)1/2r. In the trivial limit r = 0, the system becomes stationary as expected, whereas when
r = 1/2 one retrieves the same expression as in Ref. [90].

Taken together, Eqs. (5.8), (5.10) and (5.13) give the solution for the long-time asymptotic be-
haviour of the two-point correlation function. With a mind towards experiment, as well as to
compare with the known results for r = 1/2, we now summarise the features of this solution:

(a) The density of interfaces cAB between A and B cells drops asymptotically as cAB ∼ 1/2r ln t.
The density of interfaces between adjacent A and B cells, cAB(t) ≡ 2(ρ−Ce(t)), is an order param-
eter used to describe the transition from an uncorrelated initial state with cAB = 2(ρ− ρ2), to the
jammed absorbing state cAB(t →∞) = 0. For r = 1/2, it was previously shown that cAB ∼ 1/ ln t.

From its definition, we identify the order parameter to be proportional to the source term, viz.
cAB(t) = J0/2λ, so that the long-time asymptotic behaviour is found from Eq. (5.13). This expres-
sion reveals the continuous transition between Kawasaki dynamics (r = 0, cAB = const) and voter
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dynamics (r = 1/2, cAB ∼ 1/ ln t). In particular, as t → ∞, the absorbing-state phase transition
occurs at r = 0.

(b) The spatial correlation function Ci(t) decays as a(t) − b(t) ln |i| at short distances, and as a
Gaussian at long distances.
Away from the origin, where a continuum description suffices, then the correlation function depends
only on the distance x = |i|, and all sources appear to be located at the origin, viz. J

(eff.)
i =

δi,0(J0+4Je). Replacing the discrete problem with a continuous one simplifies the Green’s function,
with limx�1 Gi(t) → G(x, t) = e−x2/4λt/(4πλt) for a square lattice. As a consequence, the long-time
asymptotic correlation function may be approximated as limt�1/λ,x�1 Ci(t) = C(x, t), with

C(x, t) = ρ2 − 2r(ρ− ρ2)
π (1− 2r) + 2r ln(32λt)

Ei
(
− x2

4λt

)
, (5.14)

where Ei(x) = −
∫∞
−x dt e−t/t is the exponential integral. From the small-argument expansion of

this integral, we find

lim
t�1/λ, x2�λt

C(x, t)− ρ2

ρ− ρ2
= a(t)− b(t) ln x , (5.15)

with
a(t) = 1− 1− 2r(π − γe − ln 8)

2r ln(32λt) + π (1− 2r)
,

b(t) = 4r/[2r ln(32λt) + π (1− 2r)], and γe is the Euler constant.

At long times, C(1, t) ≥ Ce(t), so one may infer that the correlation function is concave near
the origin. Away from the origin, it is useful to define a correlation length ξ to characterise the
short-range correlations, viz.

ξ−1 ≡ (ρ− ρ2)
∂C

∂x

∣∣∣∣
x=1

= b , (5.16)

corresponding to the typical size of A-cell rich domains growing as ξ ∼ ln t. One may see that
when r > 0, a variation in r merely adjusts the correlation length by a constant, in contrast to its
effect on the order parameter cAB. For r = 0, the lattice configuration is random and C(x, t) = ρ2,
corresponding to an “infinite” correlation length.

(c) The time to saturation T of a lattice of N sites is approximately T ∼ N(lnN + 1/(2r))/λ.
As mentioned earlier, the classical voter model predicts that any finite-sized system inevitably
approaches an absorbing state, in which the lattice is either completely saturated by type A cells
or else they have become extinct. Fortunately, the time-scale T in which the absorbing state is
reached is T ∼ (N lnN)/λ for r = 1/2, which, for a biological system with 1/λ ∼ 1 week and
N � 1, far exceeds the lifetime of a mammalian organism.

For arbitrary r, the time-scale T may be estimated by repeating the calculation in Ref. [87]:
The saturation condition is

∑
i Ci(T ) = Nρ. Replacing the summation by integration,

∑
i Ci →∫∞

0 xC(x, t)dx, we arrive at the asymptotic relation

lim
λt�1

∑
i

Ci − ρ2

ρ− ρ2
' 4rλT

π(1− 2r) + 2r ln(32λT )
,
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and the result for T follows. Interestingly, this result predicts that in even a reasonably large
system and finite r, when N � eπ/2r, then the time to saturation is insensitive to the value of r.
Indeed, for such systems the cross-over to non-voter-like behaviour only occurs at very small values
of r ∼ 1/ lnN .

(d) The product of the correlation length and interface density gives a time-invariant characteristic
of voter-like coarsening.
It has been previously noted that in voter-like coarsening, the characteristic length-scale of domains
is inversely proportional to the interface density cAB [85]. An important implication of this obser-
vation is that at asymptotically long times, one may identify a time-invariant characteristic of the
correlations, which we define as Ω ≡ (ρ− ρ2)/(cABξ) = 2r/π.

To characterise the Ω-constant, one may identify its definition as the ratio between the domain
size ξ and domain circumference, as calculated from the number of A-B interfaces associated with
each domain cABξ2. Thus, the domain perimeter has a trivial fractal dimension of one, with Ω
indicating the perimeter roughness, or curvature. Values of Ω ' 1 may be associated with cohesive
and smooth domains (i.e. with a large area-to-interface ratio), whereas systems with Ω → 0 have
highly fragmented, or rough, domains. Not surprisingly, smaller values of r lead to rougher domains
as a result of the Kawasaki dynamics. Yet, one may see that even at the maximum value of r = 1/2,
the voter model predicts rough domains (Ω < 1/2) — an observation readily seen in simulations,
see e.g. Ref. [91].

With an eye to the empirical analysis in the next section, let us note that the Ω-constant allows us
to characterise static observations of type A cell correlations, and thus provides a valuable test of
whether a given data set is consistent with the long-time behaviour of process (5.3).

(e) The lattice geometry influences only the timescale of clustering, with higher coordination number
corresponding to a faster timescale.
For lattice geometries with different coordination number z 6= 4 (and one site per unit cell), the
calculation proceeds as for a square lattice, but now three modifications must be made: First, as
mentioned above, the central source term is J0 = zλ(ρ−Ce), and there are now z sink terms Je at
nearest neighbouring sites. Second, the appropriate Green’s function now has the (non-separable)
form

Gi(t) =
1

4π2

∫
d2q exp

[
iq · i− λt

(
z −

∑
e

eiq·e

)]
,

from which we obtain the general form of the small-p (long-time) expansion of the Laplace transform
limp/λ→0 g0(p) ∼ ln(λ/p) + d0/2λ and gi(p) = g0(p)− di/2λ, where di are numerical constants, e.g.
de = 2/z. Third, the sum over sink terms in Eq. (5.9) is revised to reflect the lattice geometry.
With these three modifications, one finds that the order parameter cAB takes the general form
cAB = 2π(ρ− ρ2)/[α(1− 2r) + 2r ln(βλt)], where α and β are geometry-dependent constants. One
is led to conclude that the lattice geometry only serves to rescale the time variable by some constant,
t → βeα(1−2r)t. It is interesting to contrast this with the more significant effect of modifying the
branching ratio r, which instead rescales ln t.

With regards to the experimental system, the apparent insensitivity of the results to details of the
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FIG. 5.3: Comparison of the exact basal layer lattice model (5.1) (red curves) with the simplified model
(5.3) (black). (a) The order parameter 1/cAB is plotted against ln t. The curves correspond to the simplified
model with r = 1/2 (dashed black) and r = 1/4 (dotted), and to the exact model with r = 1/2 (dashed red)
and r = 0.08 (solid curve). For the simplified model, the analytical expression for cAB was used. For the exact
model, the results were obtained from numerical simulation on hexagonal lattices of size N = 1024× 1024,
with ρ = 0.22 and setting λ = 1. Inset : The correlation function plotted against logarithm of the distance
lnx, evaluated from numerical simulation and Eq. (5.17). The time-invariant ratio (ρ−C(x, t))/cAB is plotted
at λt = 50, 100, 1000 for the classical voter model (dashed), and at λt = 350, 3500, 7000 for the exact model
with r = 1/2 (solid curves). Consistent with the expected behaviour (see Eq. (5.14)), the curves overlap
and are convex near x = 1, becoming linear at x > 1. (b) The long-time asymptotic roughness constant
Ω plotted against r for both models. Data points correspond to the values calculated using Eq. 5.17 from
numerical simulations such as shown in Fig. 5.4, using the algorithm described in section 5.3.1. Error bars
result from fluctuations due to finite-size effects, as evaluated by considering the random variation in Ω over
the time of the simulation. The black curve gives the theoretical value of Ω for the simplified (monomer)
model on a hexagonal lattice, while the red curve gives the best-fit to the numerical results for the exact
model.

lattice geometry reinforces the validity of a lattice-based description of the basal layer. Namely,
while it is clear that the basal-layer is not a periodic lattice of uniform cell size and coordination
number, it may nonetheless be modeled as such.

Finally, because the average coordination number of z = 6 is expected for the biological system,
we have calculated the order parameter exactly for a hexagonal lattice, giving α(hex) ' 0.98π, and
β(hex) = 51.

This completes our theoretical discussion of process (5.3), and of the monomer-monomer surface
catalysis model. It now remains to be seen whether the exact model of cell division (5.1) is indeed
described by the properties of the approximate process (5.3) (with uniform λ). Let us recall that
the latter is a reasonable approximation assuming that the density of type A cells is approximately
uniform. Thus, although the approximation must fail on the time-scale λT ∼ N lnN associated
with the jamming transition, the logarithmically slow growth of correlations suggests that at shorter
times (t � T ) the degree of progenitor cell clustering should be sufficiently low as to make the
analysis self-consistent.
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To test whether the model indeed satisfies the expected behaviour, in Fig. 5.3 we compare the
spatial correlation of type A cells, as given by the properties derived above, with the results of
process (5.1) as obtained by numerical simulation using a Gillespie-like algorithm (described below
in section 5.3.1). An example of the cellular automata simulations used for the comparison is
shown in Fig. 5.4, where the distribution of type A cells (black) is shown on a hexagonal lattice.
Qualitatively, one may see from this figure that process (5.1) does indeed give rise to some clustering.
By extracting the correlation function from such figures, we obtained the quantitative comparison
shown in Fig. 5.3. In Fig. 5.3a, we compare the evolution of the inverse order parameter 1/cAB

against ln t for the two models. One may see from the linear behaviour of the exact model (red
online), that the order parameter indeed shows the expected 1/ ln t decay. Equally, we may confirm
that the radial correlation function C(x, t) has the functional form a − b lnx, with parameters
(1 − a), b both proportiaonal to cAB, as demonstrated by plotting (C(x, t) − ρ)/cAB in Fig. 5.3a
(inset). Finally, we may confirm that both models have the same long-time r-dependence by
plotting Ω against r in Fig. 5.3b. Here, one may see that indeed Ω depends linearly on r.

Yet, although Fig. 5.3 reveals that processes (5.1) and (5.3) result in the same functional dependence
of the correlation function on r and t, it is striking that the exact model (5.1) results in a slower
growth in correlations compared to the simplified model, characterised both by a slower decay of
cAB seen in Fig. 5.3a, and by rougher domains (or lower Ω) seen in Fig. 5.3b. How might one
explain this change? Referring to the discussion in section 5.2.1, let us recall that the simplified
model is connected to the exact model by relating the local division rate to the mean-field vacancy
density (λ(x) = λ′n�(x)), with the two models becoming equivalent when n�(x) = const for an
arbitrarily small degree of coarse-graining. This condition is satisfied in the limit σ � λ′ with the
process A � → � A removed. However, for the physically meaningful case σ � λ′ one can no longer
treat the vacancy density as uniform, leading to quantitative (but not qualitative) differences in the
behaviour of the two models. As shown schematically in Fig. 5.5, the vacancy population has the
effect of accelerating cell division on the edge of smooth progenitor cell clusters, as a result of the
higher concentration of nearby post-mitotic cells migrating into the super-basal layers. Conversely,
cell division on rough cluster edges is slowed down. In total, rough A-B interfaces remain stable
over a longer period of time, leading to the observed differences between the two models.

5.3 Empirical analysis of cell distributions in the basal layer

We are now in a position to turn to the experimental analysis of the IFE. In order to identify the
underlying rules of cell division and differentiation, one can envision two types of experiment:

• First, one may track the fate of individual cells and their progeny, and then look for a cell
kinetic description compatible with their observed behaviour. Such an approach was used
with considerable success in the definition of the zero-dimensional process (3.2) through clonal
analysis, and we shall extend it to the analysis of the spatial process in section 5.3.1.

• Second, in section 5.3.2 we shall consider the statistics of the entire population of basal layer
cells. In particular, by immunostaining basal layer cells for markers of cell proliferation, it
is possible to analyse the spatial distribution of all progenitor cells within the layer. Then,
referring to the theoretical discussion in section 5.2, one may look for a signature of the
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FIG. 5.4: Cellular automaton simulation of process (5.1), showing the distribution of progenitor cells (black
hexagons) on a lattice of N = 200×200, and using the experimental branching ratio r = 0.08 and progenitor
cell fraction ρ = 0.22. The frame shown corresponds to an evolution time of t = 30/λ, where t = 0
corresponds to random initial conditions. White areas are fully occupied by post-mitotic cells.

FIG. 5.5: Schematic demonstrating the variation in the effective division rate in process (5.1), accounting
for the quantitative variation in behaviour between processes (5.1) and (5.3). The reactive interface between
progenitor cells (light grey, red online) and post-mitotic cells (dark grey, blue online) is indicated by the thick
grey line, with a faster division rate shown in light grey and slower division rate shown in dark grey. On the
left, a smooth interface results in faster cell division, as few progenitors on the boundary must compensate
for the migration of many post-mitotic cells in the bulk. On the right, the “rough” interface results in a
variation between fast and slow division rates, due to restricted access of vacancies into the rough interfacial
regions. Referring to the discussion at the end of section 5.2.2, this leads to increased stability of rough
compared to smooth interfaces.
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FIG. 5.6: (a) Comparison of the empirical clone size distribution (data points) to predictions of process
(5.1) (solid curves), as obtained from Monte-Carlo simulations of 104 labelled clones. The distributions are
plotted in terms of the probability Pk(t) for a clone to have between 2k−1 + 1 and 2k basal layer cells at
time t after labelling, normalised to include only clones with 2 or more cells in the basal layer (k ≥ 1). The
empirical data is reproduced from Ref. [15]. (b) Examples of the basal layer structure of several large late-
stage clones evolving according to process (5.1), starting from a uniform random distribution of unlabelled
cells, with one single type-A cell labelled at t = 0. Light and dark grey hexagons (red and blue online)
indicate sites occupied by type A and B cells, respectively. White areas are populated by unlabelled cells.
Each frame corresponds to the progeny of one initially labelled cell.

underlying cell kinetics in the spatial correlation of proliferating cells.

Note that the two types of experiment give access to independent aspects of cell behaviour: The
former probes the temporal evolution of cell lineages, whereas the latter reveals the static basal
layer morphology. As such, the experiments provide a significant degree of mutual verification of
any proposed theory of cell behaviour. Yet, even the best of such experiments leave room for some
ambiguity: For example, it is far from clear what importance should be assigned to the embryonic
development of the IFE in predetermining the spatial distribution of cells. Moreover, one may in
principle conceive of regulatory pathways that leave no signature on the spatial distribution of cells,
or which may not be distinguished from an independent stochastic process. Thus, in the following
we will look for the simplest possible model of cell behaviour that succeeds in capturing the known
biological constraints.

5.3.1 Clonal analysis

To begin our analysis of the empirical data, we start by considering the fate of individual labelled
cells and their progeny (clonal fate data), using the data reported in chapter 2: As discussed in
section 5.2, we must first establish, for any proposed model of spatial behaviour, that the zero-
dimensional clone size distributions are faithfully reproduced, together with the long-time scaling
form

lim
rλt�1

Pn>0(t) =
ρ

rλt
exp

( ρ n

rλt

)
68



FIG. 5.7: The loss of cohesiveness with increasing the relative hopping rate σ/λ′ is shown through examples
of late-stage clone simulations. Light and dark grey hexagons (red and blue online) indicate sites occupied
by type A and B cells, respectively, from the same clone. White areas are populated by unlabelled cells. The
simulations used the same parameter set as described above for the clones in Fig. 5.6, but using the parameter
values: σ = 20/week, σ = 200/week with λ′ = 10, 000/week for the top-left and top-right clones respectively;
σ = 200/week, σ = 2000/week with λ′ = 200/week for the bottom-left and bottom-right clones. For the
latter, which is clearly unphysical, the scale has been reduced twofold to demonstrate the wide dispersion of
labelled cells. The examples demonstrate that clones are cohesive when σ/λ′ � 1, but dispersive otherwise.

identified in chapter 3.

To this end, we conducted multiple simulations of process (5.1) as an asynchronous cellular au-
tomata evolving on a hexagonal lattice of N = 60× 60 sites over a period corresponding to T = 60
weeks in the experimental system (recall that λ = 1.1/week [15]). At t = 0, the lattice was fully
occupied by randomly-placed type A and type B cells. A single, randomly chosen, type A-cell
was assigned a hereditary ‘label’ at the start of each simulation. In effect, each such simulation
mimics the evolution of one labelled clone, so that repeated simulations may be used to sample the
full clonal statistics, viz. Monte-Carlo sampling. In particular, by tracking the number of labelled
cells as a function of time over 104 such clone simulations, we could compare the clonal statistics
predicted by process (5.1) with those expected from the zero-dimensional process (3.2). In keeping
with the empirical fit from the previous section, we used a B-cell migration rate of Γ = 0.31/week,
and an initial A-cell fraction of ρ = 0.22. The ‘fast’ rates of cell division and hole diffusion were set
to be λ′ = 104/week and σ = 200/week, although the precise values are unimportant provided that
λ′ � σ � Γ, as discussed in section 5.2. The results are plotted in Fig. 5.6(a), where we compare
the clone size distribution Pn>0(t) to the empirical data. One may see that the fit is remarkably
good, and, within the current empirical resolution is indistinguishable from the predictions of zero-
dimensional model (cf. Ref. [16]). In summary, the fit provides a first validation of process (5.1) as
a viable model of spatial behaviour in the basal layer.

We may now revisit the clone fate data with a view to study spatial structure. Unfortunately,
although the clone size data was stored for all clones, images showing their spatial structure were
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retained only for a small number of clone samples (see, for example, Fig. 5.1). Therefore we
are not in a position to conduct a comprehensive quantitative analysis of clone shape evolution.
Nevertheless, a striking qualitative feature of clones is that they remain largely cohesive, as shown
in the example in Fig. 5.1. (Indeed, without this property the very enterprise of clonal analysis
would have proved difficult). Therefore, to challenge the validity of the proposed lattice model of
cell division, we test, using additional Monte-Carlo simulations, the ability of the model to produce
cohesive clones over the one-year time period of the experiment. Representative results are shown
in Fig. 5.6 for large clones at 60 weeks post-labelling. When λ′ � σ � Γ, clones were seen to remain
largely cohesive throughout the period of the simulation. We may therefore conclude that, at least
with respect to the existing clonal fate data, process (5.1) presents a reasonable phenomenological
description of the spatial behaviour of basal layer cells. In particular, the cohesive nature of clones
may be completely explained in terms of an independent stochastic process, with no evidence for
further forms of regulation.

Yet, to what extent is the observation of cohesiveness sensitive to modifications of the basal layer
lattice model? To test the degree to which cohesiveness constrains the model, we allowed for
a degree of cell mobility within the basal layer, by introducing the additional exchange process
AB → BA with rate γ ∼ Γ. The exchange process is a reasonable candidate for cell behaviour,
motivated by the observation that keratinocytes in culture are highly motile, which leads one to
postulate whether cells in vivo are capable of independent lateral migration in the basal layer.
We found that for any non-small value of γ, (i.e. γ & Γ), the progeny of labelled clones rapidly
dispersed, as shown in Fig. 5.7. We are led to conclude that epidermal cells in vivo move only in
response to a local density gradient resulting from cell division and migration. Moreover, a second
investigation in which the hard-core mobility σ was made larger than λ′ (and keeping γ = 0) again
led to a loss of clone cohesiveness. We are therefore led to conclude that, within the framework of
the non-interacting lattice model, progenitor cells undergo division rather than lateral migration as
a response to a local drop in density.

In conclusion, the observation of clone cohesiveness imposes a severe constraint on cell behaviour,
which allows us to rule out several variations of the basic lattice model. Yet, at least qualitatively,
there is no clear evidence either for or against additional regulation of cell division in the clone shape
data. So to what extent is the lattice model truly capable of shedding new light on the mechanism of
cell fate regulation? To do better, we must look for quantitative data for comparison. Fortunately,
such data can be found in the readily-available spatial distribution of progenitor cells.

5.3.2 Correlation analysis

As mentioned earlier, an intriguing feature of the non-interacting lattice model is the prediction
of clustering of proliferating cells. How does this prediction compare with experiment? Before we
turn to consider new results for mouse tail-skin, it is interesting to first consider results presented
in past work. In a detailed study of proliferating cells in Hamster cheek epidermis by Gibbs and
Casarett [81], a subset of progenitor cells were labelled using a radioactive marker for DNA syn-
thesis (S-phase). By measuring the number of unlabeled cells separating consecutive labeled ones
in one-dimensional basal layer cross-sections, it was possible to access the full radial distribution
for the separation between adjacent cells undergoing S-phase. Remarkably, while the large-interval
distribution decayed exponentially as expected for an uncorrelated random distribution, the proba-
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FIG. 5.8: (a) Confocal micrograph of wholemounted mouse tail skin IFE, showing the two-dimensional
basal layer immunostained for the nuclear marker DAPI (dark grey, or blue online) and the proliferation
marker Ki67 (light grey, or red online). The area surrounding the stained nuclei is occupied by unstained
cell cytoplasm (black). (b) The empirical radial correlation function C(x), as defined in Eq. (5.18). Data
points show results obtained by analysis of the Ki67-stained epidermal wholemounts exemplified in (a), taken
from a mouse aged 8 weeks; the dashed line shows the fit to the analytical form of the correlation function
predicted by process (5.1), C(x, t) = a(t)− ξ−1(t) lnx (see Eqs. 5.14, 5.16), where the single time point t is
fixed by the age of the mouse and by initial conditions (see discussion in section 5.4). From the fitted slope
one may extract the correlation length ξ(t) defined in Eq. (5.16), giving ξ = 14.7 cell diameters.
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bility of finding a nearby cell in S-phase was significantly higher at short distances, indicating that
proliferating cells were clustered. A second study addressing the distribution of S-phase cells in
mouse esophagus also revealed identical qualitative results [82].

Not surprisingly, in the absence of the intuition afforded by the voter model, such clustering has
been interpreted in the biological community as evidence of an underlying regulatory process, which
leads to the synchronous division of nearby cells [82]. On the other hand, analysis of clone fate
data (chapter 3) has revealed that cell division within clones occurs independently rather than
synchronously. It is therefore satisfying to note that the tendency of proliferating cells to cluster is
in fact consistent with independent division — indeed it is the hallmark of voter-model dynamics.

To extract the spatial correlation between progenitor cells in mouse tail skin, we analysed confocal
micrographs of basal layer cross-sections of IFE that were stained for the proliferation marker
Ki67, such as shown in Fig. 5.8(a). Cells bright in Ki67 are designated as type A (progenitor)
cells, whereas Ki67-dull cells were designated as type B (i.e. differentiated) cells, with no capacity
to divide. Using image analysis software (ImageJ), the coordinates of each Ki67-bright cell were
extracted. This data allows a full statistical analysis of the spatial distribution of progenitor cells.
In particular, we shall focus on the radial correlation function

C(x) =
〈

1
A

∫ 2π

0

dθ

2π

∫
A

dx′ n(x′) n(x′ + x(x, θ))
〉

(5.17)

where A denotes the area of each sample, n(x) denotes the areal density of proliferating cells at
position x, and the brackets 〈·〉 indicate averaging over all basal layer samples.

Using Eq. (5.17), the aim of the correlation analysis is to assess whether basal layer progenitor cells
in adult mice do indeed cluster, and if so, to assess whether the experimental correlation function
is consistent with the predictions made in section 5.2.2. In principle, one may look to the data
for signatures of the expected spatial dependence C(x, t) ∼ a(t)− b(t) ln x (for a given value of t),
as well as for evidence of increased clustering with time, viz. cAB(t) ∼ 1/(2r ln t). For the latter,
however, the temporal analysis is difficult to implement due to the sensitivity required to resolve
the 1/ ln t decrease in cAB at long times. In particular, the predicted increase in clustering over a
biologically-relevant period of λt ∼ 101−102 cell cycles corresponds to a decrease in cAB of < 10%,
whereas variations in the efficiency of Ki67 labelling between different mice introduce systematic
errors of the same order. Therefore, in the following we shall restrict ourselves to the quantitative
analysis of tissue samples taken from a single adult mouse (aged 8 weeks).

To incorporate the empirical coordinates of proliferating cells into Eq. (5.17), we replace the prod-
uct n(x′)n(x′ + x) with the sum

∑
i, j δ(x′ −Ri)f(x′ + x−Rj), where δ(x) is the Dirac delta

function, {Ri} is the set of all progenitor cell coordinates, and f(X) is a two-dimensional Gaussian
envelope with width w. With this substitution, the integrals in Eq. (5.17) can be solved exactly.
Then, explicitly accounting for the averaging procedure over sample of variable size, we obtain the
expression

C(x) =

〈
ρ

2πw2NA(x)

NA∑
i=1

NA(x)∑
j 6=i

exp

(
−

x2 + R2
ij

2w2

)

×I0

(
−xRij

w2

)〉
. (5.18)
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Here, the sum i, j over all progenitor cell coordinates arises from the empirical expression for
n(x′)n(x′ + x) given above, and we have defined Rij ≡ |Ri−Rj |. The prefactor, exponential factor
and modified Bessel function (I0) result from solving the integrals in Eq. (5.17). The total number of
progenitor cells found in each sample is NA, and NA(x) is the number of progenitor cells at a distance
x or more from the sample edges. As defined, the correlation function avoids errors resulting from
edge effects by averaging each sample over the NA(x) progenitor cells that are unaffected by the
finite sample size. To correctly average over different samples, as indicated by 〈·〉, the sample results
are weighted by NA(x), e.g. C(1+2)(x) = [N (1)

A (x)C(1)(x) + N
(2)
A (x)C(2)(x)]/[N (1)

A (x) + N
(2)
A (x)].

Making use of Eq. (5.18), the experimental correlation between progenitor cells was averaged over
10 samples of approximately 30×30 cells each, see Fig. 5.8(b). Remarkably, the data indeed shows
a significant degree of progenitor cell clustering, in good agreement with the linear decay in lnx
expected from Eq. (5.14). In real terms, one may infer from the value of the nearest-neighbour
correlation C(1) that each progenitor cell is in contact, on average, with approximately two adjacent
progenitor cells, compared to 1.3 progenitor cells expected for an uncorrelated random distribution
(at ρ = 0.22).

For a more careful test of the theory, one may extract from Fig. 5.8(b) the order parameter cAB =
0.29 ± 0.02, and the correlation length of ξ = 14.7 ± 0.7 cells, from which we find the empirical
roughness constant, Ω = 0.04 ± 0.01. Repeating the analysis with samples taken from different
mice results in the same value of cAB, but with values of Ω in the range Ω = 0.02− 0.04. Referring
to Fig. 5.3(b), where the empirical value of Ω is compared to the model predictions (dashed),
we see that the model indeed recovers the correct order of magnitude of the roughness constant.
Qualitatively, then, it appears that the model is consistent with the observed clustering. Let us
emphasise that this fit requires no additional parameters, and is purely a result of mapping the cell
kinetics onto a lattice.

5.4 Spatial regulation: discussion and conclusions

To summarise, we have demonstrated that the zero-dimensional model of cell division is consistent
with the maintenance of the basal layer at uniform density, and we have shown that the size
distribution and qualitative shapes of labelled clones are consistent with a simple stochastic model
of cell division and differentiation on a two-dimensional lattice. These results explain why the
“zero-dimensional” model of chapters 2-4 gives such an excellent fit to the clone fate data despite
taking no account of additional regulatory pathways. Significantly, despite the many forms of cell
fate regulation known to exist in development and adult tissue, the only extra-cellular regulation
required to understand the existing observations of clone fate in normal IFE is steric, viz. the
coupling of cell division to the local cell density.

Beyond the success of the model in explaining the observed clone fate data, we have also identified
that the degree of progenitor cell clustering, as measured by Ki67 staining, is in good qualitative
agreement with the predictions of the spatial process. In particular, there are two features that
allow us to characterise the spatial process. First, the empirical roughness constant Ω = 0.04±0.01
has the expected order of magnitude predicted by the model (Fig. 5.3b), and second, the correlation
function is in excellent agreement with the expected decay form a(t)− b(t) ln x (at fixed t), as seen
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in Fig. 5.8.

Taken together, these results have two important implications for future investigations of epider-
mal cell fate regulation: First, by demonstrating that the zero-dimensional process (3.2) is indeed
capable of maintaining a uniform total basal layer cell density, the spatial process consolidates the
proposed stochastic model as a robust platform for investigating biochemical constituents in future
work. For example, by over/under-expressing specific genes and then studying the resulting change
in the empirical parameters (r, λ, ρ), one may attempt to identify the role of each constituent in
regulating cell behaviour. Second, the new model introduces a set of spatial measures (such as the
roughness constant Ω) that yield further information in such investigations of the biochemistry, be-
yond that which may be obtained through empirical evaluation of the zero-dimensional parameters
alone.

Beyond the qualitative features of the dynamics, one may ask whether there are any implications to
the quantitative features of the correlation analysis. Unfortunately, as mentioned earlier, variations
in the efficiency of Ki67 labelling prevent us from generating the comprehensive statistics necessary
to accurately quantify the universal values of the system parameters. Nevertheless, taken at face
value, it appears that the empirical value of Ω obtained from the sample analysed in section 5.3.2
is only consistent with process (5.1) when one imposes a branching ratio r = 0.19 ± 0.04, which
differs significantly from the value of r = 0.08 established through clonal analysis (see fig. 5.3b).
This value is further consistent with the observed AB interface concentration of cAB = 0.29 and
the correlation length of ξ = 14.7 cells, which correspond to a long evolution time of λt ≈ 104−106

for r = 0.08, but a realistic biological time-scale of λt ≈ 101 − 102 for r = 0.19.

Although it is possible that the discrepancy in the inferred value of r results from errors in progenitor
cell classification as discussed in section 5.3.2, the difference is large enough to call into question the
reliability of the correlation analysis. Beyond the issue of progenitor cell labelling efficiency, there
is also the more basic question of whether Ki67 is at all effective as a marker of progenitor cells.
In particular, it is widely accepted that Ki67 is a marker of cell growth as well as proliferation,
which may imply that differentiated cells remain Ki67-bright for some time after division, or that
progenitor cells may fail to continuously express Ki67 [92, 93]. However, assuming that Ki67 is
indeed a faulty marker, it becomes difficult to explain why the analysis nevertheless results in an
excellent fit to the ‘a(t)− b(t) ln x’ decay form of correlations (at fixed t).

We may also challenge our assumption of using “random initial conditions” to model steady-state
maintenance. If initial conditions are at all relevant, then the observed clustering may be a signature
of development and growth processes that are no longer active in the adult system. To test the
importance of initial conditions, we have compared the order parameter cAB between adult mice
aged 8 and 60 weeks (corresponding to yound and old adult mice). If clustering is inherent to initial
conditions, then one would expect cAB to grow over time as the memory of initial conditions erodes.
On the other hand, as mentioned in section 5.3.2, steady-state maintenance results in < 10% change
in the order parameter over this time period, which would be undetectable given the systematic
errors in Ki67 labelling. Indeed, we find no change from cAB = 0.29± 0.02 at 60 weeks, so there is
no indication that the observed clustering is a signature of tissue development.

Finally, it is interesting to speculate whether additional forms of regulation may be capable of
reconciling the higher value of r = 0.19 found for the spatial process, with the lower value of
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r = 0.08 found from the zero-dimensional analysis. We propose a simple revision of the model
that is capable of reconciling the spatial and zero-dimensional data: Referring to process (5.1),
if the two channels of asymmetric division in process (5.1) occur with different probabilities (viz.
PA�→AB 6= PA�→BA 6= 1/2− r, and PA�→AB + PA�→BA = 1− 2r), then the effective value of the
branching ratio r is effectively renormalised in the spatial process, while leaving it unchanged in
zero-dimensions. To reconcile the two empirical values of r, it is simple to show that one requires
PA�→AB ' 7PA�→BA ' (1 − 2r)/8. Thus, one might speculate that the increase in clustering is
associated with a spatial asymmetry in daughter cell fate during asymmetric division. It would be
an interesting challenge to devise an experiment with which to test this asymmetry.
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Chapter 6

Patterning as a signature of human
epidermal stem cell regulation

Chapter overview

While the preceding chapters have focused on the question of epidermal maintenance in mouse tail-
skin, the discovery of a new paradigm of tissue maintenance compels us to consider whether similar
rules may govern the behaviour of human keratinocytes. Yet, despite the similarities between the
epidermis of mice and men, the two systems also differ sufficiently to demand a fresh look for
evidence of a simple process governing cell fate in human epidermis.

In the basal layer of human epidermis, it has been shown that quiescent stem cells spontaneously
organise into clusters separated by proliferating and differentiating keratinocytes. In this chapter
(and the next), we will show that a wide range of experimental phenomenology, including such stem
cell patterning, can be explained by attributing stem cells with just two non-trivial characteristics,
which are the end result of intricate molecular regulation. The organisational principles that result
from these characteristics can be captured by a coarse-grained or hydrodynamic theory of cell fate.

This chapter is organised as follows: In section 6.1 we survey the existing experimental phenomenol-
ogy in human epidermis. With this background, in section 6.2 we propose a new model of cell fate,
consisting of two populations of progenitor cells that undergo a stochastic birth-death process.
Although this model provides only a caricature of the underlying complex molecular circuitry in-
volved in the regulation of division, differentiation, and cell migration, it is sufficiently rich to fully
characterise the large-scale dynamics. To relate the proposed model to the patterning phenomenon,
in section 6.3 we develop a hydrodynamic theory for the coarse-grained cell densities in the basal
layer, with the properties of the system equations, including predictions for the steady-state pattern
morphology, discussed in sections 6.4 and 6.5.

The early sections of this chapter (6.1-6.3) have been written to form the basis of a paper aimed
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at the biological community. In particular, sections 6.1 and 6.2 were co-written with PHJ1. The
experimental results presented in section 6.2 were generated by DPD2 and PHJ.

6.1 Introduction: Human IFE

Historically, human interfollicular epidermis has been thought to be maintained by slow-cycling self-
renewing stem cells, which generate a population of transit amplifying (TA) cells that differentiate
after a limited number of cell divisions (see chapter 1 and Refs. [27, 28, 25]). However, the
cumulative work of chapters 2–5, describing the analysis of clonal fate data in the tail skin of adult
mice, has significantly challenged this classical stem/TA cell model. As discussed in chapter 2,
although this work does not preclude the existence of a traditional stem cell population within IFE
it implies that, if present, such a population remains quiescent in homeostatic tissue.

Experimental phenomenology in human IFE
Although the general architecture of human IFE parallels that of mouse, there is strong evidence
for proliferative heterogeneity within the basal layer cell population. As described in chapter 1, a
pioneering study has demonstrated that, when single cell-derived colonies of cultured human ker-
atinocytes are subcloned, three types of colony develop [24]; large circular colonies with a very high
proliferative potential (holoclones), small irregularly shaped colonies with very limited proliferative
potential (paraclones); and colonies with intermediate properties (meroclones). Subsequent studies
showed that cultured keratinocytes could be fractionated on the basis of their expression of the
β1 integrin family of extracellular matrix receptors [94]. Cells expressing high levels of β1 integrin
formed large actively growing colonies, whilst those expressing lower levels formed small abortive
colonies in which all cells underwent terminal differentiation. β1 integrin-bright cells can be isolated
directly from human epidermis as they adhere rapidly to extracellular matrix proteins [95]. These
cells are able to found large actively growing colonies in vitro and regenerate human epidermis
when grafted onto immunocompromised mice. By contrast slowly adhering cells, low in β1 integrin
expression, form small colonies that undergo terminal differentiation and are unable to regenerate
epidermis in xenografts [95].

Subsequent studies of integrin expression in human epidermis [95] revealed that the basal layer was
organised into irregular clusters of keratinocytes expressing high levels of β1 integrin, interspersed
with regions of lower integrin expression (Fig. 6.2). Moreover, cells expressing high levels of the
notch ligand Delta and the cell surface proteins MCSP and LRIG1 are also clustered, and co-localise
with β1 integrin-bright cells [96, 97, 98, 99]. In contrast, the desmosomal protein, desmoglein3,
has a reciprocal distribution localising in regions of low integrin expression [100]. Consistent with
clustering, Delta and MCSP have both been shown to promote the cohesiveness of cultured human
keratinocytes [96, 98].

A striking feature of the clusters is that the great majority of the constituent cells appear quiescent,
as evidenced by immunostaining for the proliferation markers Ki67 and BrdU (Fig. 6.2), [101, 98].
Both the proliferating cell population, and post-mitotic basal layer cells (identified by expression

1Phil H Jones
2David P. Doupé
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FIG. 6.1: The Stem/CP cell hypothesis. a, Stem cell division and differentiation: stem cells (S) give rise to
two daughter stem cells, or they may differentiate into progenitor cells, committed to terminal differentiation
(CP). b, CP cell division and differentiation: CP cells give rise to either two daughter progenitor cells, or one
progenitor cell and one post-mitotic (B) cell, or two post-mitotic cells. With the symmetric division rates
equal (γAA = γBB), as observed in mouse tail skin, the CP cell compartment is self-sustaining allowing a stem
cell population to remain quiescent during homeostasis. An imbalance in these rates (γAA < γBB) activates
the stem cell compartment and limits the lifetime of CP cell-derived clones. c, Stratification: Post-mitotic
cells migrate out of the basal layer. The parameters γXY denote the bare average rates of cell division,
differentiation, and stratification. d,e, Lateral displacement and stem cell adhesion: Local rearrangement
of cells may result from several distinct mechanisms of lateral mobility (see main text and appendix 6.B),
leading to an effective diffusion (grey cells indicate unspecified neighbouring cells). Stem cells are constrained
in their motion by their tendency to aggregate (e).
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FIG. 6.2: In vivo patterning and quiescence of stem cells. a Confocal wholemount of human breast epidermis
stained for the stem cell marker β1 integrin (green) and BrdU (red). b Similar wholemounts of human
foreskin epidermis stained for the stem cell marker β1 integrin (green) and Keratin 10 (red), a protein that is
expressed in cells undergoing terminal differentiation. Both panels (a, b) are reproduced from Ref. [101]. The
wholemounts reveal that stem cells lie in cohesive quiescent clusters surrounded by cycling and differentiating
cells. Scale bars = 100µm. c Further evidence for patterning is seen in human breast epidermis wholemounts
stained for the stem cell marker MCSP (green) and the Ki67 proliferation marker (red), reproduced from
Ref. [98]. d, Typical realisation of the stem/CP cell model (Fig. 6.1) obtained through a cellular automata
simulation (see section 7.1). The simulation shows that the simple rules in Fig. 6.1 give rise to irregular yet
distinct clusters of stem cells (green) within a sea of CP (red) and post-mitotic cells (white).
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of the terminal differentiation marker Keratin 10), appear to lie between the clusters [101]. Taken
together, these results suggest that, in human IFE, stem cells aggregate into cohesive clusters of
near-quiescent cells, interspersed with cycling and differentiating cells with a much lower prolifer-
ative potential [101, 95].

Superficially, the evidence for stem cell clustering within a reciprocal pattern of proliferating and
differentiating cells in human IFE is in marked contrast to murine epidermis where proliferating
and differentiating cells appear to be scattered randomly throughout the IFE [30]. Whether the
apparent differences between mouse and human IFE are capable of revealing new aspects of stem
cell behaviour depends, in part, on whether stem cells are responsible for clustering, or whether
the pattern results from some external process that is not influenced by stem cell behaviour. It is
therefore significant that, when placed in culture, keratinocytes spontaneously reconstitute the in
vivo pattern even when seeded at clonal density3 [95].

Historically, the experimental phenomenology of human epidermis has been interpreted within
the framework of the classical stem/TA hypothesis [95]. Cells residing between stem cell clusters
have been thought to represent the short-lived TA cell population that is continuously replenished
by the stem cell compartment. However, this interpretation has been challenged recently by a
powerful experiment that provides access to clone fate data in xenografted human IFE. In this
experiment, human skin was grafted onto nude mice and then transduced with lentiviral reporter
vectors. When the epidermis was examined six months later, the persisting cell clones were found
to have a wide range of size and shape, and appeared to originate not only from basal cells within
β1 integrin-bright clusters, but also from cells between clusters [102]. While one assumes that
long-lived clones can only arise from the stem cell population, a tenet of the classical stem/TA cell
hypothesis, these findings appear to conflict with the evidence for stem cell clustering. However, if
ordinary progenitor cells have the potential to undergo a significant number of cell divisions prior to
differentiation, as seen in murine IFE [15], long-lived clones could arise from both stem cell clusters
and the intervening cells.

6.2 The Stem/CP cell model

Although the classical stem/TA cell model has been used widely as a platform to interpret ex-
periment, it does not attempt to engage with the apparent spatial organisation (clustering) and
regulation (quiescence) of cells in human tissue. Yet, the regeneration of stem cell patterning and
quiescence in culture, which occurs without external signals from other cell types (such as dermal
fibroblasts), is suggestive of a simple organisational principle involving the cooperative behaviour
of the keratinocyte population. As well as their defining property of long-term self-renewal, we will
show that the wide range of experimental phenomenology can be explained by attributing stem
cells with just two further characteristics, which are the end result of intricate molecular regulation.
If we suppose that symmetric stem cell division is inhibited by the accumulation of neighbouring
cells and, as observed, stem cells adhere more strongly to each other than to other cell types, one
can:

3A sufficiently low seeding density such that the resulting macroscopic colonies may be identified as clones deriving
from single cells.

81



• Elucidate the origin of spatial stem cell patterning and quiescence in homeostatic tissue;

• Explain the facility of stem cells to reconstitute their niche and regenerate patterning and
quiescence in culture;

• Reveal how the maintenance of human and murine epidermal homeostasis can be embraced
within a single framework.

In the following, we will show that the organisational principles that underpin epidermal mainte-
nance can be captured by a coarse-grained or hydrodynamic theory of cell fate. To identify the
central ingredients of the theory, we will orient our discussion around a particular stochastic model,
a ‘caricature’ of the underlying complex molecular circuitry.

Motivated by the experimental phenomenology outlined above, and the known properties of murine
IFE, we will suppose that the basal layer of human IFE is characterised by a stem and CP cell
population. To characterise the properties of these populations, we can draw upon the observed
behaviour of keratinocytes in culture:

Stem cell compartment: As a largely quiescent cell population in homeostatic tissue, the divi-
sion and differentiation properties of the epidermal stem cell compartment are difficult to discern
and open to debate. However, an objective definition of a stem cell must include the capacity
for self-renewal, and the potential to generate differentiated progeny [49]. These characteristics
are embodied by stem cells that either undergo symmetric division into two daughter stem cells,
or differentiate to form a progenitor cell (CP) committed to terminal differentiation (Fig. 6.1a).
Although one could conceive of other channels of stem cell fate, such as asymmetric division, we
will find that such characteristics do not effect the large-scale organisation of the tissue, the focus
of the present investigation (see appendix 6.D).

In addition to their division and differentiation potential, we must also address the observed ten-
dency of stem cells to aggregate into clusters. As mentioned above, stem cells are more adherent to
underlying extracellular matrix proteins than other basal cells as they express high levels of func-
tional β1 integrins, restricting their mobility [101, 95, 94]. Stem cells also adhere more tightly to
each other than to other basal cells by virtue of expressing factors that promote cohesiveness, such
as the Notch receptor Delta and the cell surface proteoglycan MCSP [96, 98, 103]. In the following,
we will suppose that the adhesiveness of stem cells to the underlying basement membrane and to
their neighbours constrains the motion of stem cells and promotes clustering (Fig. 6.1e).

Committed progenitor cell compartment: In addition to the stem cell population, we will
suppose that human IFE contains a compartment of CP cells whose behaviour resembles that
found in murine IFE in that they undergo division that is stochastic, independent of past history,
and with cell fate (symmetric versus asymmetric) chosen at random from a fixed distribution
(Fig. 6.1b) [104]. Several lines of evidence support this assertion: Firstly, immunostaining two cell
clones for the proliferation marker Ki67 in vitro reveals that, as in the murine system, progenitor cell
division may lead to either symmetric or asymmetric cell fate (Fig. 6.3). Secondly, earlier studies
have shown that the cell cycle time in vitro is broadly distributed, consistent with the stochastic
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FIG. 6.3: Two-cell clones of human keratinocytes in vitro, stained for the proliferation marker Ki67 (red),
nuclear stain DAPI (blue), and membrane stain WGA (wheat germ agglutinin, green), show three different
proliferative outcomes of division. From the distribution of Ki67, one may see that division gives rise to two
proliferating cells (a), one proliferating and one non-proliferating cell (b), or two non-proliferating cells (c).
Images courtesy of David P. Doupé and Phil H. Jones.

and independent behaviour of CP cells [71, 16]. Thirdly, although not conclusive, the observation of
long-lived clones residing outside stem cell clusters in human epidermal xenografts [102] is typical of
cells capable of an unlimited number of rounds of division before terminal differentiation [15, 16].
Fourthly, in the same xenograft experiments, the observation of a wide range of clone sizes six
months after labelling, which seems incompatible with the “clonal unit” predicted by the classical
stem/TA cell model, is consistent with a CP cell population [104, 105]. Based on extensive analysis
of mouse IFE, we will assume that, in adult epidermis, the vast majority of basal cell divisions
are in-plane generating two basal cells [15, 106, 57]. The existence of mitoses perpendicular to the
basement membrane would not influence the structure of the hydrodynamics.

Regulation of cell division: Homeostasis of tissue places severe constraints on cell behaviour.
Within the basal layer, the cell density remains approximately uniform indicating that proliferation
is tightly regulated during normal tissue turnover: On average, for each cell division, one cell must
leave the basal layer through upward migration. One approach to analysing this form of regulation
is to relate the average cell cycle time to the local cell density, with proliferation being halted
when the density becomes too high. Indeed, this form of regulation can be motivated by a range
of biochemical regulatory mechanisms, such as cell-cell trans-membrane signalling, gradients of
short-range diffusible signalling factors, or mechanical stress-based control [83].
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This completes our definition of the stochastic stem/CP cell model as applied to human IFE. In
seeking to address the origin of stem cell patterning and quiescence, previous works have introduced
alternative stochastic models of cell fate that place emphasis on adhesion and regulation [42]. Here
we have focussed on the simplest model that stays within the general paradigm laid down by
the organisational principles outlined above, and is consistent with the observed properties of the
experimental system.

Although one can conceive of numerous variants of the model that stay within the same general
paradigm, we have focussed on the simplest model that is consistent with the observed properties
of the experimental system, and which characterises the hydrodynamics in full.

6.2.1 The stem/CP cell principle of epidermal maintenance

To understand the organisational principle of stem cell regulation, let us show how the stem/CP
cell model can explain patterning of tissue. To this end, let us first consider a limit of the model
in which stem cell division and differentiation are fully suppressed. In this case, the symmetric
division rates associated with the CP cell population must be balanced, as observed in the murine
system, so that the migration of post-mitotic cells from the basal layer is wholly compensated by
the production of cells through CP cell division. If present, the adhesive properties of (quiescent)
stem cells would lead to their gradual aggregation into dense stem cell-rich clusters through the
process of spinodal decomposition [107]. Without stem cell division or differentiation, this process
would continue leading to the formation of ever-larger clusters.

By contrast, if symmetric CP cell division is biased towards terminal differentiation, stem cells
must differentiate to maintain the CP cell population. This has the effect of arresting the growth of
stem cell clusters: While small clusters form through the combined effects of stem cell adhesion and
proliferation, when clusters become too large, stem cell differentiation leads to their fragmentation.
Together, the cell division and differentiation processes impose a characteristic cluster size set by
the balance between the depletion of stem cells within a cluster through differentiation, and their
self-renewal through symmetric division. As a result of the mutual adhesion of stem cells, newly
created CP cells are expelled from clusters. Combined with the effect of upward migration of post-
mitotic cells, we will show that this exclusion leads to an effective repulsion between neighbouring
clusters leading to large-scale pattern formation (section 6.4).

In summary, the rules of cell division and differentiation provide a mechanism for stem cells to ag-
gregate into stable cohesive clusters that is robust to changes in the rates of division, differentiation
and migration. This architecture provides a means to regulate stem cell division by allowing the
majority of stem cells (contained within clusters) to remain quiescent. In the normal (steady-state)
system, epidermal homeostasis is maintained predominantly through the turnover of CP cells with
a small contribution from the slow turnover of stem cells on the boundaries of stem cell-rich clusters
and their differentiation. Disruption of tissue serves to activate the stem cell population until the
spatial pattern is restored.

However, although these qualitative properties of the tissue (the spatial organisation of cells and
their activity) can be inferred from simple arguments, the power of the stem/CP model lies in its
potential to provide new predictive insights into cell behaviour: How sensitive is the large-scale
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behaviour of the stem and CP cell populations (such as the stem cell cluster size) to changes in
stem cell behaviour? What predictions can be made about the function of stem and CP cells when
tissue is damaged, or driven far from steady-state (as in culture)? To address issues such as these,
one must develop a more formal theory.

6.3 Stem/CP cell hydrodynamic theory

Although the stochastic stem/CP cell model (Fig. 6.1) provides insight into the organisational
principle of epidermal homeostasis, its potential range of validity is limited. Further channels of
division or differentiation, or different regulatory processes may alter the detailed characteristics
of the tissue. To overcome the potentially complex and stochastic behaviour of individual cells,
we may develop a predictive theory of cell fate by addressing the coarse-grained cell dynamics,
i.e. the dynamics of local basal layer cell densities, c(r, t), averaged over several cell diameters
(and measured in units of the cross-sectional area of a typical basal cell). To discriminate between
different cell types, the density may be subdivided into the sum, c(r, t) = cS(r, t)+cA(r, t)+cB(r, t),
of local stem, (S), committed progenitor (A), and post-mitotic (B) cell densities. Changes in the
local cell densities can then be expressed by the continuity equations for each of the three cell types,
X = S,A or B,

∂tcX = RX −∇ · JX (6.1)

Processes that change the overall cell population give rise to rates, RX, which incorporate the
average rates of cell division, differentiation, and upward migration. Changes to the local density
may also result from the lateral motion of cells within the basal layer. The resulting redistribution of
cell density is associated with a flux JX. In steady-state, the local cell densities become stationary,
∂tcX = 0, implying that the local division and differentiation rates are exactly balanced by the
flux (see Fig. 6.4). To relate the contributions of the rate and flux terms in (6.1) to the behaviour
of stem and CP cells in human epidermis, it is once again helpful to begin by considering a case
that is similar but well understood, that of murine IFE that has been discussed extensively in the
preceding chapters.

6.3.1 Hydrodynamics of the murine CP cell model

If present, stem cells in mouse tail IFE do not appear to contribute to tissue homeostasis. Instead,
CP cells maintain tissue through ongoing division, leading to symmetric or asymmetric cell fate
(Fig. 6.1b). Let us therefore begin by considering a tissue where stem cells are altogether absent,
cS(r, t) = 0. While CP cell division serves to increase the overall cell density, c(r, t), the migration
of post-mitotic cells from the basal layer leads to its reduction (Fig. 6.1c). Together, referring
to Fig. 6.1, the processes of progenitor cell division and post-mitotic cell migration translate,
respectively, to the rates RA = −∆cA and RB = ΓcA − γB�cB. Here ∆ = γBB − γAA represents
the effective differentiation rate of CP cells into post-mitotic cells, Γ = 2γBB + γAB denotes the net
rate at which CP cells generate post-mitotic cells, and γB� is the rate of migration of post-mitotic
cells from the basal layer. Where stem cells make no contribution to homeostasis, maintenance of
the CP cell population is achieved by balancing the symmetric division rates, ∆ = 0.
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FIG. 6.4: Stratification, proliferation, and lateral displacement in homeostatic epidermis. Schematic of
the basal epidermal layer illustrating the steady-state dynamics of Eq. (6.1). To maintain uniform coarse-
grained cell density, the upward migration of a post-mitotic cell must be compensated by a cell division in
a neighbouring part of the tissue combined with a flow, or flux, of cells. In the schematic, an asymmetric
cell division (red) leads to a net flux of post-mitotic cells (wide arrow, JB) towards the vacancy left by
migration (grey). In steady-state, the local division and differentiation rates are exactly balanced by their
flux, (RB = ∇JB). Referring to Fig. 6.1, the average rates contributing to the local kinetic term RB(r, t) are
denoted by γAB and γB0 for the processes of CP cell division and post-mitotic cell migration, respectively.

The observed uniformity of the basal layer cell density requires regulation of the net cell division
rate, Γ. As mentioned above, one approach to incorporating this constraint is to ensure that cells
stop dividing when the local cell density becomes too high. Such regulation can be enforced by
defining the local division rate, Γ(r, t) = [1 − c(r, t)]Γ∗, where Γ∗ denotes the bare rate. As the
total density approaches unity, the division rate shuts down. Although one can not exclude further
nonlinear dependencies of the division rate on cell density, c(r, t), their presence would not affect the
qualitative behaviour. Moreover, this form of regulation is consistent with recent studies of murine
tail IFE, where the observation that (genetically-labelled) clones remain highly cohesive rules out
long-distance lateral cell motion that would be required to maintain density in an unregulated
environment [17].

Several mechanisms are responsible for slow lateral migration of cell density (see appendix 6.B):
firstly, basal layer cells must continuously undergo local rearrangement to ensure that upward
migration of post-mitotic cells is compensated by growth and division of progenitor cells (compare
this with the rearrangement resulting from hole motion in chapter chapter 5); secondly, variations
in daughter cell fate following division leads to a local random rearrangement of cell density (cf.
Eq. (5.1)); thirdly, small-scale variations in tissue density give rise to an elastic response inducing
motion of nearby cells (again, note the correspondence with rapid hole diffusion in chapter 5). Taken
together, at leading order, such processes contribute to a slow diffusive dynamics. To incorporate
the both fast (elastic) and slow (rearrangement) diffusion processes, it is useful to define a free
energy F0[{cX}],

F0[{cX}] =
∫

dr

{∑
X

cX ln cX + χ(1− c) ln(1− c)

}
, (6.2)

from which the flux is obtained as,

JX = −
∑
Y

MXY∇
δF0

δcY
.

(see appendix 6.B), with the Onsager mobility MXY = σcX(δXY − cY). The parameter χ gives the
relative contribution of the fast elastic response compared to the slower diffusion processes (with
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χ � 1). Here the sum over Y=S, A, and B ensures that the different cell types move in contrary
directions so that the local cell density remains bound (c(r, t) < 1). For simplicity, we will suppose
that the mobilities of the constituent CP and post-mitotic cell densities are equal with a value σ.
Generalisations to include variations between different cell types, which require terms higher order
in density, do not change the qualitative behaviour (see appendix 6.B).

With all elements of the continuity equation (6.1) defined, we are now in a position to explore the
large-scale properties of the murine epidermal system and compare them with the known properties
of the CP cell model and the experimental system:

• Murine CP cells follow a critical birth-death process: As mentioned above, maintenance of
the cell population demands that the symmetric CP cell division rates are equal, ∆ = 0. An
imbalance in these rates would lead rapidly to a disruption of the tissue, with the basal layer
cell population becoming extinct (∆ > 0), or saturated by an ever-increasing population of
progenitor cells (∆ < 0).

• Murine IFE admits a stable spatially-uniform mean-field solution: The diffusion of the CP
and post-mitotic cell populations results in a uniform steady-state distribution of the average
basal layer cell densities cA and cB ≈ (1− cA) allowing the cell division and migration rates
to be related as Γ ≈ (1− cA)γB�/cA. Even without stem cells, the murine system is capable
of maintaining a stable and seemingly uniform solution for the average cell densities.

• Critical fluctuations are significant in murine epidermal maintenance: The exponential de-
pendence of the dynamics on the imbalance in division rates, ∆, translates to an extreme
sensitivity on local cell density. While the average density of CP and post-mitotic cells in-
deed remains uniform, their actual values exhibit fluctuations that cannot be captured by
the long-range hydrodynamics implied by Eq. (6.1). Such critical fluctuations are a generic
feature of theories that exhibit the type of balance found here, and they have been studied
extensively in the literature [47]. Indeed, it is such critical fluctuations that are responsible
for the hallmark scaling behaviour observed in the clone size distributions of murine IFE
(chapters 2 and 3), as well as a weak clustering of the CP cell population (chapter 5).

In summary, when stem cells play no role in normal IFE maintenance, the large-scale dynamics
result in a stable, spatially uniform distribution of the average CP and post-mitotic cell densities.

6.3.2 Human epidermis and the stem/CP cell model

Using the murine system as a platform, we are now in a position to address cell dynamics in
human epidermis, and the role of the stem cell compartment. Here, the process of slow stem cell
differentiation demands the development of a small imbalance in symmetric CP cell division rates
(i.e. ∆ > 0) to maintain a constant population of CP cells. In this case, referring to Fig. 6.1, stem
cell division and differentiation lead to a generalisation of the rate terms with,

RS = (γSS − γSA)cS,

RA = γSAcS −∆cA,

RB = ΓcA − γB�cB.
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As with the murine system, we will further suppose that the cell division rates are regulated by the
local cell density such that γSS(r, t) = [1 − c(r, t)]γ∗SS and ∆(r, t) = [1 − c(r, t)]∆∗. In the absence
of stem cell adhesion, it is then straightforward to show that the continuity equations exhibit a
stable, spatially uniform, steady-state solution for the stem, CP and post-mitotic cell densities (this
solution will be given below in section 6.4). Moreover, in this case, as a result of the imbalance in
the symmetric CP division rates, the stability of the steady-state solution is not compromised by
the type of critical fluctuations that influence the long-time behaviour of murine IFE.

To fully specify the dynamics of human IFE, we must finally incorporate the effects of stem cell
adhesion (Fig. 6.1e). To do so, it is useful to define a revised free energy F0[{cX}] 7→ F [{cX}], from
which the flux is obtained as above, JX = −

∑
Y MXY∇ δF

δcY
. Both the diffusive cell motion and the

effect of stem cell adhesion can be captured by a free energy density of Cahn-Hilliard type,

F [{cX}] = F0[{cX}]−
J

2

∫
dr
{

c2
S − α(∇cS)2

}
, (6.3)

Here the diffusive dynamics are augmented by terms that capture the effect of stem cell adhe-
sion [107]. The dimensionless parameter, J , characterises the strength of adhesion (generally
J � 1), and the constant α is a measure of the surface tension of stem cells, i.e. a measure
of the smoothness of the boundaries of stem cell clusters. Once again, for simplicity, we have
assumed that the different cell populations are characterised by the same mobility, σ.

This completes the definition of the hydrodynamic theory of stem/CP cell dynamics in epidermal
maintenance. With all of elements of the continuity equation (6.1) now in place, we are now in a
position to explore the large-scale properties of the human epidermal system.

6.4 Properties of the hydrodynamic model in human IFE

To understand how the processes encoded in Eq. (6.1) relate to the principles of epidermal main-
tenance and pattern formation described in section 6.2.1, one may proceed by isolating separate
components of the dynamics. Firstly, noting that the stem cell population evolves on a slow time
scale relative to CP and post-mitotic cells (γSA � Γ), then the survival of the cell population
demands that the symmetric division rates associated with the CP cell population are nearly equal,
viz. ∆/Γ � 1. Therefore, on short time scales the cell population conforms to the stem/CP model
of murine IFE maintenance outlined above, as described in earlier chapters. Secondly, as we will
soon show, the adhesion properties of the stem cell compartment lead to a gradual segregation of
cells through the development of dense, stem cell-rich, clusters of ever-increasing size through the
process of spinodal decomposition [107]. In the absence of stem cell differentiation, this segregation
would, in principle, proceed unchecked until phase separation between a stem cell-rich domain and
the remaining cells was complete. Crucially, the inclusion of cell differentiation processes (γSA 6= 0)
has the effect of arresting cluster growth and leads to pattern formation according to a Turing-like
mechanism that is reminiscent of patterning in chemically reactive mixtures [108]. For a more
quantitative description of this process, we proceed to analyse Eq. (6.1) in more detail.
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FIG. 6.5: Dispersion relation for the response of the system to fluctuations about the fixed point, showing
stability at small k and spinodal-like instability at larger values of k. Inset: Focus on the long-wavelength
region of the dispersion relation, with vertical axis magnified ×166. The system shows a weak stable
response at long wavelengths, in contrast to the spinodal-like case when reactions are turned off (red
curve). The wavelength k∗ indicates the cross-over to spinodal-like behaviour. Parameters used for plotting:
Γ = 200, ∆ = 2, γSA = 0.02, γSS = 4, γB� = 1, J = 12, α = 0.33.

6.4.1 Stability and pattern formation

To explore the stability properties of the kinetic theory embodied by Eq. (6.1), one must first
identify the fixed points of the dynamics. As well as the trivial fixed points of the empty system,
c = 0, and the “jammed” system, c = cA = 14, Eq. (6.1) admits the uniform steady-state solution
RX = 0 with c̄A = γSS

∆ c̄S, c̄B = ΓγSA
∆γB�

c̄S, and c̄ = c̄S + c̄A + c̄B = 1− γSA
γSS

.

Linearising the mean-field equations in fluctuations δcX ∝ eν(k)t+ik·r, one obtains an eigenvalue
equation for the growth rate of modes k. Although the formal analytical expressions for the
eigenvalues, ν(k), are unwieldy, the stability properties can be easily inferred for the physical
system. In particular, for k large, the stability behaviour is dictated by the adhesion properties of
the stem cell compartment alone. As a result, one finds that ν(k) ' σk2[Jc̄S(1− c̄S)(1−αk2)k2−1]
with the most unstable mode set by

kmax '
Jc̄S(1− c̄S)− 1
2αJc̄S(1− c̄S)

.

However, for small k, the stability properties are instead dictated by division/differentiation where
the fixed point is stable (see Fig. 6.5). Such a cross-over between reaction-induced stability and
adhesion-induced instability appears to be typical for systems involving both reactions and spinodal
decomposition [108, 109]. Referring to the schematic in Fig. 6.6, one may qualitatively interpret

4One may worry whether the existence of a jammed fixed point compromises the validity of the model, however
in practice it is irrelevant: Although the “jammed” fixed point is clearly unphysical, it is unstable with respect to
density fluctuations (barring those in nS only). It is therefore irrelevant when focussing on density configurations far
from the jammed fixed point.

89



(a)

(b)

FIG. 6.6: Schematic showing of (in)stability of the homogeneous stem-cell density with respect to fluctua-
tions at a, short and b, long wavelengths. Adhesive stem cells flow from low-density to high-density regions
(black arrows), while cell division and differentiation act to restore the density to its homogeneous value.
Starting with an initial fluctuation (solid curve), the system response is shown by the dotted curve. At short
wavelengths the flux is large, leading to phase separation, whereas at long wavelengths the system remains
stable due to a small flux.

the behaviour as follows: The adhesiveness of stem cells always favours instability at short wave-
lengths, which leads to spinodal decomposition. However the division/differentiation of cells has
the effect of replenishing (diminishing) the local cell populations back towards their equilibrium
values. As a result, at large wavelengths, the flux resulting from stem cell adhesion is slower than
the division/differentiation activity of the cells, so that patterns do not form. The same processes
are responsible for arresting the coarsening as the instability matures.

Next we turn to consider the nature of the adhesion-mediated transition from the homogeneous
to the patterned state. In the absence of stem cell division and differentiation, the clustering of
adhesive stem cells may be mapped directly onto the Ising model (Kawasaki dynamics). This
mapping reveals a first-order phase transition as the adhesion strength is gradually increased5,
with a single stable homogeneous solution when J < J

(0)
min., (J (0)

min. ≥ 4)6, which becomes unstable
when J > J

(0)
c = 1/[c̄S(1 − c̄S)]. As seen in Fig. 6.7, the inclusion of reactions does not alter the

first-order nature of the transition, but merely revises the conditions for phase coexistence: Firstly,
by stabilising the long-wavelength solution (Re[ν(k → 0)] < 0), the reactions raise the value of
the critical adhesiveness required to destabilise the homogeneous solution, viz. Jc > J

(0)
c , and

they consequently shift the critical instability to a finite wavelength kmax > 07. Secondly, the fact
that the average stem cell density is no longer conserved demands consideration of fluctuations
in which the average stem cell density (in some area A), 〈cS〉 = 1

A

∫
A csd

2r, is modified from the
homogeneous fixed-point density c̄S. When the average stem cell density is revised towards the
maximally unstable value of 〈cS〉 = 1/2, then the bare critical adhesion strength is reduced towards
its minimum value of J = 4, allowing for phase separation to proceed even when the adhesion
strength drops below its homogeneous-state critical value. Conversely, depending on the details

5In the special case c̄S = 1/2, the transition is second-order by nature.
6In the coexistence region J

(0)
min. < J < Jc, stable stem-cell rich clusters first nucleate with density c∗S, where c∗S

and J
(0)
min. are given by the simultaneous solution of the equations F [c̄S] = F [c∗S], δF

δc̄S
= δF

δc∗S
.

7The numerical values of Jc, kmax can be easily obtained by solving the conditions for criticality ν = 0, dν
dk

= 0.
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FIG. 6.7: A first-order transition occurs from a homogeneous to an ordered state as the stem cell adhesion
strength J is varied. The plot shows the difference in stem-cell concentration between stem cell-rich and
depleted domains m = cmax

S − cmin
S as a function of J . For J > Jc, the spatially-homogeneous state is

unstable, so that the only solutions allowed contain periodic stem cell clusters (m > 0). For J < Jmin.,
only the homogeneous fixed point solution is stable (m = 0). In the nucleation (or co-existence) interval
Jmin < J < Jc, both the homogeneous and the patterned solutions are stable. Data points show results
obtained by numerically integrating Eq. (6.1) as described in section 6.4.2. Dotted curves are included as
a guide to the eye. The parameters used for the simulations are σ = 1, α = 0.33, γSA = 0.01, γB� =
0.5, Γ = 200, γSS = ∆ = 2.0, corresponding to the fixed point 2c̄S = 2c̄A = c̄B = 0.4975, and the critical
point value Jc = 5.652. The the nucleation transition is estimated from the numerical solution to occur at
Jmin = 5.0± 0.05, and c∗S ' 0.57, which varies from the transition values J

(0)
min = 4.4, c∗S = 0.75 evaluated for

the reaction-free system for the same value of c̄S.

of the cell kinetics, the average stem cell density may change away from 〈cS〉 = 1/2, so that Jmin.

grows (see Fig. 6.7). Applied to the experimental system, the robustness of stem cell adhesion
observed in experiment suggests that J � 1, so that the possibility of phase coexistence is largely
academic.

To complete our discussion of the instability, it is insightful to compare the long-time behaviour of
the system with that of a system undergoing spinodal decomposition in the absence of reactions.
For the latter, the short-time instability gives rise to long-time coarsening of the phase-separated
domains, in which the domain size scales with time. By contrast, consider the effect of reactions deep
within a large phase-separated domain. In this phase-separated region, where the local curvature of
the densities cX is small, the cell populations evolve according to the behaviour of the homogeneous
system for which the attractive fixed point is (c̄S, c̄A, c̄B). It follows that the system is incapable of
fully separating into large-scale, locally-uniform domains of stem cells and non-stem cells. If we rule
out the existence of a limit cycle, then we are led to conclude that the only possible steady-state
solution is one that accommodates some form of spatial modulation. This mechanism for pattern
formation is illustrated in Fig. 6.8. Here, the evolution of the stem-cell and A-cell density is shown
as a set of flow lines in the phase diagram. For clarity, the density of B-cells and lattice vacancies
are not shown. Irrespective of the initial homogeneous density, one may see that the flow lines
(dashed) always flow to the fixed point. However, we have seen that the adhesiveness of stem cells
destabilises the homogeneous system, instead driving phase separation into the metastable region
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FIG. 6.8: The state diagram for the homogeneous-density solution to Eq. (6.1), projected onto the (cS, cA)
plane. The system exhibits two unstable fixed points (red) and one stable fixed point (blue). Spatial
fluctuations induce phase separation (grey arrows) into the metastable regions (hashed), which are them-
selves incapable of sustaining an extended homogeneous domain. One is led to conclude that the system is
characterised by a spatially-modulated steady-state (see main text).

of the phase diagram (hashed regions), which flow, in return, back to the fixed point. The nature
of this steady-state is the focus of sections 6.4.2–6.4.3.

6.4.2 Interlude: Numerical integration of a 4-th order reaction-diffusion equa-
tion

To verify the analysis of the mean-field coarse-grained model, we numerically integrated Eq. (6.1)
in order to calculate the spatial and temporal evolution of the cell densities cX. The method used
for this numerical integration is described in this technical section, much of which may be skipped
at first reading.

Equation (6.1) describes a set of three non-linear coupled 4-th order reaction-diffusion equations.
To numerically solve these equations, we discretized the time and space variables in Eq. (6.1) onto
a square lattice with space coordinates (i, j) and time coordinate tn, viz. cX(r, t) 7→ c

(i,j)
X (tn), and

then used an explicit second-order Runge-Kutta method to evaluate the density fields at progressive
time points [70].
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According to this procedure, the discretized dynamical equations acquire the form8:

c
(i,j)
X (tn+1) = c

(i,j)
X (tn)− [∇ · JX(tn)]i,jδt + RX[{c(i,j)

X (tn)}]δt , (6.4)

where δt was the variable time increment, and the local rate terms RX are the same as defined
above in section 6.3. Spatially periodic boundary conditions were used throughout. To explicitly
ensure flux conservation, the flux divergence ∇ · JX was discretized using a symmetric derivative
expansion, ∂xc

(i,j)
X 7→ 1

2(c(i+1,j)
X −c

(i−1,j)
X ), which explicitly satisfies

∑
i,j [∇·JX]i,j = 0. For example,

for χ = 1 and a lattice spacing w, we have

[∇ · JS]i,j =
1
2

[
∆̂i,j

(
M

(i,j)
SS µ

(i,j)
S

)
+ M

(i,j)
SS ∆̂i,j

(
µ

(i,j)
S

)
− ∆̂i,j

(
M

(i,j)
SS

)
µ

(i,j)
S

]
+ σ∆̂i,j

(
c
(i,j)
S

)
,

and,

µ
(i,j)
S = −J

[
c
(i,j)
S + α∆̂i,j(c

(i,j)
S )

]
,

∆̂i,j(x) =
1

w2

4∑
k=1

(
x(i,j)+ek − x(i,j)

)
,

where µ
(i,j)
S is the adhesive component of the chemical potential, M

(i,j)
SS = σc

(i,j)
S

(
1− c

(i,j)
S

)
is the lo-

cal stem cell mobility, and ∆̂i,j(x) is the discrete Laplacian operator, with e{k} = {(±1, 0), (0,±1)}.

Although the explicit (forward) integration scheme shown in Eq. (6.4) suffers from instability when
δt and the spatial grid spacing δx are large, it is nonetheless effective (but slow) for sufficiently
small space and time intervals [70]. In particular, solutions are stable provided that δx � W ∼

√
α

(the thickness of a domain wall) and δt � maxi,j,X[||(∇ · JX)i,j − RX||/ min[cX, (1 − cX)]]−1. For
the solutions presented in Figs. 6.9, 6.10 and 6.13 below, we used δx = 0.3−0.4, and we adapted δt
between time steps to satisfy the stability condition. For added accuracy, we implemented Eq. (6.4)
to second order in time using the Runge-Kutta method [70].

To observe the dynamics of instability and pattern formation described in the previous section, we
applied the numerical integration scheme (6.4) starting with initial conditions c

(i,j)
X (t0) = c̄X+η

(i,j)
X ,

corresponding to the homogenous fixed point with added random noise |η(i,j)
X | ≤ 0.01c̄X ,

∑
X η

(i,j)
X <

1− c̄. An example of the results are shown in Fig. 6.9, where the stem cell density is plotted over a
region corresponding to 60× 60 cell diameters for a time series that converges upon the patterned
steady-state. The figure shows spinodal-like instability at short-times, leading to formation of
cohesive stem cell-rich domains. At progressive time points, domain growth is arrested, and the
pattern forms as the domains repel each other and undergo ordering.

6.4.3 Properties of the steady-state basal layer

Although linear stability analysis (section 6.4.1) describes the onset of the transition from a uniform
to a patterned state, it says little about the morphology of the steady-state. From the numerical

8This form is first-order in time; it is straightforward to obtain the associated second-order Runge-Kutta equation,
see for example Ref. [70].
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a b

c d

e f

FIG. 6.9: Example of numerical solution to Eq. (6.1), showing the two-dimension stem cell density profile
starting from the homogenous fixed point (c̄X) with random fluctuations at t = 0, and converging onto
the patterned steady-state solution. Frames a-f correspond to state of the basal layer at times γB�t =
0, 3, 8, 50, 350 and 1, 250, respectively. Bright regions correspond to high stem cell density. The short-time
behaviour a-d is reminiscent of spinodal decomposition of phase-separating mixtures, however the stem-cell
population undergoes ordering at long times e-f. In f, the pattern has not yet fully ordered. See caption of
Fig. 6.10 for system parameters. Scale bar = 10 cell diameters.
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solution described above for the reaction-diffusion equations (6.1), shown in Fig. 6.10, one may
see that the steady-state involves a near phase-separated periodic structure of hexagonal lattice
symmetry and wavelength Λ. Within each lattice period, the system separates into a homogeneous
circular stem cell-rich domain of area aS and density c̄S ' 1, and a stem cell-depleted region of
relative area aAB = Λ2 − aS and density c̄S ' 0, i.e., in the steady state, stem cell proliferation is
limited to the boundary region around the stem cell-rich clusters (as seen directly in Fig. 6.10a).

To maintain each stem cell-rich domain at its steady-state size, the rate of stem cell differentiation
within the domain is matched by stem cell creation at the domain wall. Since we are in the deep-
quench limit J � 1, then the width, W , of the domain wall is controlled only by the adhesion
properties of stem cells, with W '

√
α ∼ O[1]. As a result, one obtains a natural condition for the

total density c̄ inside the stem cell-depleted domain,

W
√

aSΩ γSS (1− c̄) = aS γSA , (6.5)

where Ω = 2
√

π
W

∫
W dr cS(r)[1 − cS(r)] is a dimensionless number of order unity, which is defined

by integrating along a path
∫
W dr perpendicular to the domain wall (see Fig. 6.11). Similarly,

integrating the system equations (6.1) over the near-uniform stem-cell depleted region up to the
domain wall, one obtains the following relations for the remaining effective transition rates,

aAB∆ c̄A(1− c̄) ' aSγSA

Γ c̄A(1− c̄) ' γB�c̄B , (6.6)

where c̄A and c̄B (c̄ = c̄A + c̄B) denote the (constant) densities of progenitor and post-mitotic cells
inside the stem cell-depleted domain.

To estimate the size of the stem cell-rich domains, we note that the dynamics within the stem-
cell rich regions are dominated by the processes of stem cell differentiation and diffusion. From
dimensional analysis, we therefore expect the growth of the stem cell-rich domains to be arrested
at a typical size of aS ∝ σ/γSA, which is the size when the type A cells created within the domain
begin to destabilise the domain. The experimental observation that clusters have a diameter of 6-9
cells suggests that the timescale of stem cell differentiation γSA is small, viz. γSA/σ � 1. Therefore,
the steady-state solution may be associated with a constrained minimum of the free energy F [{c}]
(i.e. we may treat the system as if it were in equilibrium), from which we obtain the relationship
(see section 6.C and Fig. 6.12),

aS ' πW

(
2
√

σ

γSA
e(1−J)/4 +

W

2

)
+ 4π

σ

γSA
e(1−J)/2 . (6.7)

Taken together Eqs. (6.5), (6.6) and (6.7) characterise key features of the steady-state morphology,
giving access to the stem cell cluster size, the periodicity of the pattern Λ2 = aS + aAB, as well
as the fraction of progenitor cells and post-mitotic cells in the stem-cell depleted regions (c̄A, c̄B),
as shown in Fig. 6.12. For example, a reduction in the ratio γSAΓ/∆γB� ' aAB/aS + O[a−1/2

S ]
has the capacity to invert the steady-state pattern, leading to the formation of a lattice of stem
cell-depleted domains within a sea of stem cells (Fig. 6.13).

Qualitatively, the mechanism of stem-cell patterning is reminiscent of pattern formation predicted
for decaying particles in solution [110]. Once clusters are formed, they order into a periodic lat-
tice due to a repulsive interaction that is mediated by the non-stem cell compartment, as shown

95



C

A !SS

B

FIG. 6.10: a Solution for the stationary stem cell density as obtained from the numerical solution of the
hydrodynamic equations (6.1). Stem cells aggregate into a periodic array of dense clusters (green), within
a sea of committed progenitor and post-mitotic cells (pink). The proliferative activity of stem cells, as
assessed by the local division rate, is shown inset (black) for the same stationary state revealing that stem
cells within each cluster are quiescent. The slow creation of new stem cells through division compensates
for the loss of stem cells through differentiation in the bulk of the cluster, and gives a natural mechanism
for maintaining the cluster size. b The variation of local density of stem (S), committed progenitor (A)
and post-mitotic (B) cells along the cross-section shown dashed. The results were evaluated by numerically
integrating a discrete form of Eq. (6.1) until a steady-state was achieved (see section 6.4.2). To reduce the
required computation time, the system was seeded with homogenous cell densities cX = c̄X and a hexagonal
density modulation corresponding to the wavelength estimated from Eqs. (6.5), (6.6) and (6.7). The results
appear to converge onto the same solution starting from random initial conditions (see Fig. 6.9). Parameters
used for this calculation are σ = 2, J = 12, α = 0.33, χ = 1, Γ = 200, γSS/Γ = 0.02, ∆/Γ = 0.01, γB� = 1
and γSA = 0.01.
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FIG. 6.11: One-dimensional cross-section perpendicular to the domain wall separating stem cell-rich and
stem cell-depleted regions. Stem cell division is localised to the boundary region W . The green curve shows
the stem cell density, and the effect of stem cell division enters the steady-state equations through the integral
Ω ∼ O[1] (see main text), shown as the shaded area under the black curve.

schematically in Fig. 6.14. In effect, each stem cell-rich domain acts as a source of type A cells,
which emerge into the stem cell-depleted region to maintain the total cell density c̄. When two
stem-cell domains become too close, then the density between the domains is higher than the
surroundings, leading to a local decrease in the stem cell division rate γSS = γ∗SS(1 − c). The re-
sulting gradient in the stem cell division rates biases the creation of new stem cells away from the
neighbouring cluster, leading the clusters to drift away from each-other. As a result, the period of
time associated with long-range ordering of the mean-field pattern is significantly longer than the
effective stem cell division rate.

To verify the steady-state analysis, we applied the numerical integration scheme described in sec-
tion 6.4.2 with a range of different system parameters, starting from initial conditions that closely
mimicked the patterned steady-state predicted from Eqs. (6.5), (6.6) and (6.7). The numerical
solution was considered to reflect a steady-state of the system when the resulting pattern was seen
to remain stable over an extensive period of time t ∼ 10/γSA. The parameter dependence of the
stable pattern morphology was found to be in good agreement with analytical predictions, as shown
by the data points in Fig. 6.12.

6.4.4 Parameter estimation in the stem/CP model

Turning to existing experimental data, such as embodied in the confocal micrographs in Fig. 6.2
and earlier studies, to what extent may we constrain the model parameters?

First, motivated by the in vivo murine system, we may estimate the CP cell cycle time to be
Γ ' 1/week. Second, a rough estimate of the non-proliferating fraction of integrin-dull cells in the
basal layer as approximately 50−80% (see e.g. Fig. 6.2), allows us to estimate the upward migration
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FIG. 6.12: Parameter dependence of the patterned steady-state morphology, demonstrated by plotting a,
Λ2, aS, and b-d, aS/Λ2, c̄A/c̄B against variations in the system parameters γSA (for a, b), ∆ (c) and γSS

(d). The solid curves correspond to the analytic approximations given by Eqs. (6.5), (6.6) and (6.7). The
solid data points (red) were obtained from the numerical solution to the system equations (6.1), as described
in the main text. Error bars indicate the tolerance of the system to variations in the pattern wavelength, as
estimated by varying the initial conditions and then testing the stability of the patterned state. Referring
to section 7.1, the crosses (×) indicate the results obtained from cellular automata simulations of a specific
manifestation the stem/CP model that is capable of accounting for the effects of fluctuations, as described in
the following chapter (7). The plots correspond to the parameter sets described in the captions of Fig. 6.10(for
the coarse-grained model) and Fig. 7.1 (for the cellular automata). To evaluate the analytical solution, the
values of W and Ω were estimated from the numerical results to be W = 2.5, Ω = 1.5.
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FIG. 6.13: Left: Example of steady-state pattern inversion, showing a pattern of stem cell-depleted clusters
(bright) in a stem cell-rich background (dark). The figure shows the two-dimensional steady-state stem cell
density profile, as obtained from numerical integration of Eq. (6.1) (see caption Fig. 6.10). The growth in
stem cell fraction and the resulting pattern inversion occur due to a revision of the model parameters: the
same parameters were used as in Fig. 6.10, but setting ∆ = 4 and γSA = 0.01. Right: The steady-state
pattern associated with the same parameter set, obtained from cellular automata simulations that capture
the effect of fluctuations about the mean-field. The figure shows stem, CP and post-mitotic cells in green,
red and white respectively (see section 7.1). One may see that, as a result of their small size, the isolated
domains of CP and post-mitotic cells are susceptible to fluctuations that result from jamming by CP cells.
This fluctuation effect results in a deviation from the predicted mean-field solution, as may be seen by the
increased stem cell fraction compared to the hydrodynamics.

S SS

A, B

FIG. 6.14: Schematic of stem-cell domain repulsion. Stem cell domains (S) act as uniform sources of A cells,
which in turn generate post-mitotic (B) cells to support a uniform cell density in the stem cell-depleted region
(grey). When a the distance between stem-cell domains is higher or lower than the equilibrium separation,
then the cell density between the domains becomes saturated (dark) or it drops (light), respectively. As a
result, the effective density-dependent stem cell division rate γSA = γ∗SA(1− c) at the domain wall becomes
non-uniform, which leads to an effective motion of the stem cell clusters back to their equilibrium positions.
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rate, γB� = (c̄A/c̄A)Γ ' 0.25 − 1/week. These rates describe properties of the stem-cell depleted
region of the epidermis, which dominate the short-time dynamics of epidermal maintenance.

Next, drawing upon previous assessments of the size of β1 integrin-bright clusters as 6-9 cells
diameter (Fig. 6.2(a,b) and Ref. [101]), one may estimate the ratio between stem cell division and
differentiation rates in the steady state to be γSS/γSA = (WΩ)/

√
aS ∼ 5 − 10. This assessment is

in qualitative agreement with that obtained by examining stem cell clusters stained for the second
stem cell marker MCSP (Fig. 6.2c and Ref. [98]).

Finally, drawing upon earlier estimates of the basal layer stem cell volume fraction aS/Λ2 = 10 −
40% [101], we may infer the ratio of stem and CP differentiation rates, viz. ∆/γSA ' (Λ2/aS −
1)/
(
1 + c̄A

c̄B

)
' 1− 10, revealing that the rate of CP cell differentiation is comparable or one order

of magnitude faster than that of stem cells. Although these estimates are crude, they constitute
clear (if preliminary) predictions of the cell kinetics, and they may readily be tested and refined in
future measurements of the basal layer morphology.

6.5 Chapter summary: Predictions and limitations of the hydro-
dynamic theory

In summary, we have developed a stem/CP cell model of epidermal maintenance that provides a
unified framework in which one may address the maintenance of both murine and human epidermis.
This model introduces two minimal ingredients for stem cell behaviour in the IFE, beyond their
defining properties of self-renewal and differentiation: We have postulated that self-renewal through
symmetric stem cell division is strongly inhibited by the local (coarse-grained) cell density; and that
stem cells adhere to one another more strongly than to other cell types, consistent with observations
of stem cell aggregation. With these additional ingredients, we have developed a hydrodynamic
theory that reveals how stem cells spontaneously create a robust patterned morphology, independent
of the detailed rates of cell division, differentiation and migration.

Although this coincidence of experiment and theory is encouraging, the strength of the theory
hinges on its predictive power. In particular, the relations derived above between the pattern mor-
phology and the rates of cell division and differentiation suggest a range of possible experiments
in homeostatic tissue analogs such as organotypic cultures. One may characterise the role of indi-
vidual biochemical constituents by studying their effect on the steady-state pattern in organotypic
cultures or epidermal xenografts. For example, experiments leading to an increase in the rate of
stem cell division relative to differentiation should result in an increase in the size of cohesive stem
cell clusters (see Fig. 6.12). Similarly, an increase in the rate of CP cell differentiation, ∆, should
result in a corresponding increase in the stem cell fraction.

Yet, despite the predictive power of the hydrodynamics, several open questions remain beyond the
scope of the hydrodynamic theory:

• How do fluctuations affect the dynamics in comparison to the coarse-grained description?
Referring to Fig. 6.2, it appears that the biological patterns do not exhibit long-range ordering

100



of the type seen for the mean-field hydrodynamic solution. Therefore, to what extent can we
indeed apply the hydrodynamic theory to the biological system? To answer this question,
in the following chapter we shall estimate the importance of fluctuations by considering the
dynamics of a microscopic model of cell fate.

• What are the implications of the stem/CP model for cell fate in tissue that is perturbed from
the steady state? In practice, the range of possible experimental systems for studying steady-
state human epidermis is restricted. On the other hand, it is far easier to conduct experiments
on non-steady-state systems such in culture. Therefore, it is important to understand how
the current homeostatic theory may be applied in such situations. This will be the focus of
section 7.2.

• What are the implications of the stem/CP cell model for clonal analysis experiments? Ulti-
mately, perhaps the most direct and reliable method for exploring cell fate in homeostatic
tissue is through lineage tracing experiments. Although it is obviously not possible to design
controlled in vivo lineage tracing experiments in human epidermis, xenografts of human epi-
dermis on mouse offer the potential for quantitative analysis [102]. We will briefly address
the question of clonal analysis in section 7.3.

Engaging with these questions will be the focus of the following chapter.
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Chapter appendix

6.A Large-scale equivalence of regulatory mechanisms

In this section we address the validity of the coarse-grained form of the cell division rates, which
have the general form γXY = γ∗XY(1− c) during homeostasis. When coarse-grained over an area of
several cells (smaller than the typical stem cell cluster size), the intra- and inter-cellular biochemical
circuitry may lead, in principle, to regulation of cell division processes that depends on the local
areal cell density, but also on intrinsic and extrinsic factors that are independent of the cell density.
By definition, however, the latter factors cannot account for the near-uniform cell density in the
basal layer, nor for stem cell quiescence within stem cell-rich domains. Therefore, to incorporate the
constraint on uniform density and to explain the patterning phenomena, we introduce the coarse-
grained division rates, γXY = γXY(c, cS, cA) that incorporate the effect of density-independent
processes, while varying explicitly with the local coarse-grained cell densities9.

It is important to emphasise that a large number of detailed mechanisms may result in density-
dependence of the cell kinetics. For example, provided that cell division depends on cell growth,
then regions where cell growth is constrained will contain a high density of small cells that are
incapable of division. In a more direct example, trans-membrane signalling pathways may allow
extrinsic control of cell fate, where the strength and effect of the trans-membrane signals are set
by the number and type of neighbouring cells. Such effects have been observed in the context
of Delta-Notch signalling [103, 97, 42]. Further examples of density regulation may be found in
the stress-related mechanism proposed by Shraiman [83], and also in the topological mechanism
proposed by Dubertret and Rivier [36].

Accepting that some form of density regulation exists, we must then address the specific form of
density regulation that was introduced in the main text, viz. γXY = γ∗XY × (1 − c). When the
epidermal tissue is in homeostasis, then the cell density is observed to be near-uniform, say c ≈ 1
corresponding to one cell per unit area. In this case, despite the possibly complex and non-linear
form of the density dependence γXY(c, cS, cA), we are justified in considering a leading-order (linear)
expansion of the density-dependence, γXY = γ∗XY × (1 − c) +

∑
Z γ

(Z)
XY × (c̄Z − cZ). Applied to the

particular case of stem cells, the observation of stem cell quiescence within clusters justifies the
expansions γSS = γ(S)(c̄S − cS) + γ∗SS(1 − c). However, noting that c̄S ' c = 1 within the clusters,
the effect of both terms would be to allow stem cell division only on the cluster boundaries, and
so the full range of known homeostatic behaviour may be described by considering the second
term alone. Similar arguments follow for the CP cell compartment; see [17] for a comprehensive
discussion of the latter in the context of murine tail-skin maintenance.

To conclude, we present a hypothetical example that demonstrates a possible form of density
regulation using a rapidly-diffusing trans-membrane signalling molecule. Consider a molecule that
is generated by cells of type X and which remains confined to the basal layer before degrading into
inactive constituents. Denoting the concentration of the molecule as x, one may conceive of cell

9In principle, one may incorporate non-local effects through the introduction of derivative terms, viz. γXY =
γXY(c, cS, cA,∇c,∇cS,∇cA,∇2c, . . .).
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division processes conditional on the signalling molecule such that γXY = γXY(x). However, the
local concentration x(r, t) depends on the detailed position of type X cells within the basal layer
at some time t, so that γXY may be considered to be a function of cX. To identify the explicit
density-dependence of the cell division rate, it is necessary to relate the concentration profile x(r, t)
to the density profile cX(r, t). For illustrative purposes, let us assume that a simple reaction-
diffusion equation governs the dynamics of the signalling molecule, viz. ∂x/∂t = D∇2x+αcX−βx,
where the molecular diffusion rate D greatly exceeds the cell mobility σ, and likewise the rate of
creation α and degradation β of the signalling molecule greatly exceed the average rates of cell
division and differentiation. In this case, x(r, t) responds instantaneously to changes in the cell
concentration profile, so that ∂x/∂t = 0, and the spatial concentration profile of the molecule is
x(r, t) = (α/2πD)

∫
d2r′cX(r′, t)K0(|r − r′|/ξ), where K0(x) is the zeroth-order modified Bessel

function of the second kind, and ξ =
√

D/β is the RMS diffusion distance over the lifetime of the
signalling molecule. Due to the inevitable degradation of the molecule, K0(x) decays exponentially10

at distances much larger than ξ, so that the local concentration profile x(r, t) is simply proportional
to the density of type X cells, averaged over a radius ξ about r, viz. x(r, t) ∝ 〈cX〉ξ, where the
averaging procedure is 〈f(r)〉ξ ≡ ξ−2

∫
d2r′f(r)K0(|r − r′|/ξ). However, provided that ξ is much

shorter than the typical pattern size, then this average simply mimics the coarse-graining procedure,
and x(r, t) ∝ cx(r, t). In summary, a rapidly-diffusing signalling molecule may directly relate the
local division rate to the local cell density.

6.B Diffusive cell motion in basal layer IFE

There is a considerable literature discussing models of cell diffusion in a range of scenarios, including
keratinocyte motion during wound healing processes [40, 111, 112, 113, 114], and the explicit effects
of cell-cell adhesion [115]. Conceptually, lateral cell motion in the basal layer may result from (i)
external forces exerted on a cell by the surrounding tissue, (ii) rearrangement during division and
stratification of nearby cells, and (iii) autonomous cell motion. While the former two are likely
to play a significant role in basal layer maintenance, there is no evidence (to our knowledge) that
self-mobilisation of keratinocytes contributes significantly to cell motion in confluent tissue. Either
way, provided that these mechanisms result in cell displacement that is uncorrelated (at long times)
with the displacement of neighbouring cells, then their effect on the coarse-grained cell density is
diffusive.

In this context, the aim of the current section is to consider the mechanisms leading to cell displace-
ment (i, ii), in order to motivate the diffusive approximations for the coarse-grained cell densities
cX. We shall highlight what we believe to be the dominant physics for each of these mechanisms,
with a more systematic analysis lying beyond the scope of this work.

To begin, let us denote the local lateral displacement of a coarse-grained section of the basal layer
at position r as u(r), so that the local velocity is v(r) = u̇(r). We can then express the total cell
flux, J =

∑
X JX, in terms of the coarse-grained displacement velocity, viz. J = cv. To account

for the effect of external forces exerted upon a cell by the surrounding tissue (i.e. mechanism
(i)), it is then a matter of solving for the velocity v in response to pressure gradients within the
tissue. As one may expect such pressure gradients to relax over a period of time much shorter than

10To be precise, limx→∞K0(x) = e−x/
√

x.
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the average cell cycle time, we may access the velocity profile by treating the basal layer tissue
as a two-dimensional compressible viscous fluid, for which the dynamics are given by a Navier-
Stokes equation. An approach similar to this one is detailed in Refs. [83, 38], in the context of
(two-dimensional) wing disc development in Drosophila. However, to avoid entering a technical
discussion at this stage, let us merely outline the expected form for v and J in confluent tissue:
One expects the network of cell-cell interfaces and adhesion to the basement membrane to localise
the velocity response and introduce significant damping, so that, approximately, the velocity will
depend linearly on the pressure gradient, v ∝ −∇p, where p is the local two-dimensional pressure
in the basal layer. To estimate the pressure, we assume that the volume of basal layer cells is
largely uniform, so that variations in the pressure will result from compression that accompanies
variations in the cell density c, viz. p(c) ≈ p0−p1(1−c)+ · · ·. Significantly, the cell density remains
close to unity at all times, so that only the leading order terms in p(c) are relevant. From here we
find J ≈ η c∇(1 − c) ' η∇(1 − c), which is diffusive with a diffusion constant η. The separation
of time-scales of cell division and relaxation implies η � Γ. Note that outside of confluence these
approximations are no longer valid, and it is not clear whether cell motion results in a simple
diffusion.

Next we turn to the effect of cell division and stratification on the local cell densities (ii). Here
one must distinguish between two different mechanisms leading to a flux in the coarse-grained cell
density: Firstly, referring to Fig. 6.4, the ongoing processes of cell division and upward migration
(stratification) give rise to short-ranged pressure gradients that lead to the displacement and re-
arrangement of nearby cells in accordance to the fluid dynamics outlined above. Without such
motion, tissue confluence would be rapidly disrupted [17]. Secondly, a flux results from the the
stochastic fate of daughter cells during CP cell division (Fig. 6.1), and from the random orientation
of the mitotic spindle that sets the relative position of the two daughter cells within the basal layer.
We shall label this a ‘false’ flux as it does not arise from the actual displacement of cells within the
basal layer, but is instead a consequence of the (assumed) stochastic nature of cell division [17].

For the former mechanism, the combination of division and stratification of nearby cells implies
that a given cell is subject to a large number of short-lived density gradients within its lifetime,
each resulting in a small displacement (less than or equal to one cell diameter, see schematic in
Fig. 6.4), and with a direction that is set by the relative positions of the nearby dividing and
stratifying cells. This situation results in an effective Brownian motion of the cells, so that cell
motion over sufficiently long periods of time resembles a diffusive random walk. Noting that the
maximum displacement of each cell is one cell diameter per division/migration event, we are led to
conclude that the magnitude of the effective diffusion constant that results (say β) is of same order
as the cell division rate (in units of the average cell area), viz. β ∼ Γ.

For the latter mechanism leading to a ‘false’ flux, the combined effect of symmetric CP cell division
into either two CP cells or two post-mitotic cells results in an effective diffusion of the CP cell
density, viz. ∂cA/∂t = 2γAA∇2cA, as may be seen by considering the basal layer as a lattice of
non-overlapping cells, see Ref. [17]. Moreover, asymmetric CP cell division into one CP daughter
cell and one post-mitotic daughter may result in further effective diffusion of the CP cell density as
a result of randomly placing the daughter CP cell on one side of the mitotic spindle or the other [17].
Therefore, to the extent that the fate of the two daughter cells may be considered stochastic, the
result of cell division is to randomly mix the cell populations even in the absence of further cell
motion, resulting in diffusive dynamics. In the case γAA = γBB, the combined diffusion constant
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can be shown to be Γ (in units of the average cell area) [17].

In summary, we have identified one mechanism for ‘fast’ diffusion of the overall cell density, which
results from short-lived pressure gradients in the basal layer, and two mechanisms for ‘slow’ diffusion
of cells relative to their neighbours as a result of the processes of cell division and stratification.
To combine these processes within the framework of a single set of fluxes JX that is capable of
accounting for the variation between the diffusion constants (or mobilities) of the different cell
types, and to restore the effect of stem cell adhesion, let us define the coarse-grained effective free
energy,

F =
∫

d2r

{∑
X

cX ln cX + χ(1− c) ln(1− c) +
J

2
[
c2
S + α∇2cS

]}
,

where χ = η/(β+Γ) � 1 gives the relative magnitude of “fast” diffusion compared to the time-scale
of the cell cycle. With this definition, the flux is JX = −

∑
Y MXY∇(δF/δcY), where

MXY = mX(cX)
(

δXY −
mY(cY)∑

Z mZ(cZ) + m∗(1− c)

)
is an Onsager-type mobility constructed from the individual cell mobilities, mX, and from a mobility
of the total density, m∗ [116].

Although this construction is sufficiently general to allow the properties of each of the cell types
to be addressed individually, the collective patterning phenomenon in which we are interested does
not depend on detailed variations between the species. Therefore, for simplicity we shall consider
a uniform cell mobility mX(cX) = σcX, m∗(1 − c) = σ(1 − c), where σ ' β + Γ serves as the
effective diffusion constant. With this approximation, MXY reduces to the simple form of the
Onsager mobility σcX(δXY − cY). Making one final simplification χ = 1, we find JX = −σ∇cX+
stem cell-adhesion terms, as presented in the main text.

6.C Stem cell cluster size

We calculate here the mean-field stem cell cluster size aS for the steady-state patterned solution of
Eq. (6.1). For strong stem cell adhesion and a slow differentiation rate (βJ � 1, γ∗SA/σ � 1), the
center of the stem cell-rich domain will be near saturation, 1− cS � 1. Expanding Eq. (6.1) to first
order in (1 − cS) and imposing the steady-state condition ∂tcX = 0, we obtain a simple Poisson’s
equation for the stem-cell density within the domain,

∇2cS =
γSA

σ
cS , (6.8)

subject to the symmetry condition ∇cS = 0 at the center of the domain. One may see that stem
cell motion is entirely diffusive far from the domain walls, and c = cS + cA = 1 in the stem cell-rich
domain. The radial density profile within the stem cell-rich domain is therefore

cS(r) = cS(R)
I0

(√
γSA/σ r

)
I0

(√
γSA/σ R

) , (6.9)
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where R is the domain radius (defined such that aS = πR2 + 1
2× domain wall area) and I0(x) is the

zeroth-order modified Bessel function of the first kind. Consistent with the condition γSA/σ � 1,
the saturation condition cS(0) ∼ cS(R) ∼ 1 allows us to expand Eq. 6.9, viz. cS(r) ' 1+ γSA

4σ (r2−R2).

To evaluate the domain radius R, it now remains to minimise the free energy F [{cX}] associated
with a fixed area of the basal layer. From the definition of the free energy given in the main text,
and the observation that aAB/aS = Γ∗γ∗SA/∆γB� + O[1/R] is constant to leading order in 1/R
(Eqs. 6.5 and 6.6), we have an average energy density

f ∼ [FS(R)]/R2 + fAB ,

where

FS '
∫

aS

d2r

[
cS ln cS + (1− cS) ln(1− cS) +

J

2
cS(1− cS)

]
is the free energy associated with each stem cell-rich domain (with an added symmetrising factor
−J cS/2, equivalent to shifting the chemical potential by a constant factor J/2); fAB is the free
energy density in the stem cell-depleted region, which is independent of R. Using the steady-state
form of cS(r) as an ansatz, we find that the free energy is minimised when R ' 2

√
σ/γSAe(1−βJ)/4.

Finally, estimating the stem cell population in the domain wall area to be 2π(R + W/2)W × 1
2 , we

obtain the result shown in Eq. (6.7).

6.D Channels of stem cell fate

As well as the channels of symmetric stem cell division into two daughter stem cells (S → S + S)
and direct stem cell differentiation (S → A), one may conceive of additional channels of stem cell
fate including asymmetric division into one stem cell and one CP cell (S → S + A), or symmetric
division into two CP cells (S → A + A). We shall denote the coarse-grained average division rates
for these channels as λSA and λAA respectively (not to be confused with the rates γSA, γAA, for
direct stem cell differentiation and symmetric CP cell division, see Fig. 6.1).

With these rates, we may now compare the full coarse-grained cell kinetics with the simpler theory
presented in the main text. Addressing the stem cell compartment first, the relevant kinetic term
becomes RS = (γ′SS−γSA)cS, where the stem cell growth rate is now renormalised to account for the
effect of symmetric stem cell differentiation, viz. γ′SS = γSS− λAA. That is, other than a numerical
revision of the division rate, there is no effective change to the coarse-grained dynamics of the stem
cell population. Turning next to the CP cell compartment, the new channels of stem cell fate result
in a similar revision of the kinetic rates, viz. RA = (γSA + λ′SA)cS −∆cA, where the combined rate
λ′SA = 2λAA + λSA explicitly accounts for the density-dependent rate of stem cell differentiation
through division at the cluster boundaries11. The kinetic term RB is unchanged.

With these revised cell kinetics, and allowing for the same form of density regulation of the division
rates, λXY = (1 − c)λ∗XY, it is then straightforward to re-derive the steady-state relations for the

11More generally, the rate γSA is set by processes that lead to direct stem cell differentiation independently of the
local density, whereas the density-dependent rate λ′SA = (λ′SA)∗(1− c) reflects the contribution of density-dependent
processes. For stable pattern formation we require γSA > 0, and −γSA < (λ′SA)∗.
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basal layer morphology (Eqs. 6.5, 6.6 and 6.7). One may see that the condition on the average
steady-state cluster size aS is unchanged (Eq. 6.7), as it depends on no kinetic rates other than the
differentiation rate within the quiescent stem cell clusters (γSA). On the other hand, the steady-
state condition (∂cX/∂t = 0) undergoes minor revisions, with Eq. (6.5) unchanged save for the
relabelling γSS → γ′SS , and Eq. (6.6) gaining an additional term,

aAB∆ c̄A ' aSγSA + W
√

aSΩ λ′SA ,

reflecting the creation of CP cells at the cluster boundaries through stem cell division (or other
density-dependent pathways). However, drawing upon Eq. (6.5), the latter may be rewritten as

aAB∆ c̄A ' aSγSA

(
1 +

λ′SA

γ′SS

)
,

which has the same functional form as the original steady-state condition (6.6), but now replacing
γSA with γSA(1 + λ′SA/γ′SS). Finally, referring to the steady-state relations for the volume fractions
φX (X = S,A,B) that are given in the main text, it is clear that these do not change barring a
revision of the model parameters, viz. φA/φS = γSA(1 + λ′SA/γ′SS)/∆, and

√
φS ∝ γ′SS/γSA.
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Chapter 7

Beyond hydrodynamics: Implications
of the stem/CP model

Chapter overview

In the preceding chapter we proposed a universal model of epidermal maintenance in mice and men,
involving a cycling population of committed progenitor cells that maintain epidermis by undergoing
a stochastic birth-death process, whilst a second population of stem cells remains largely quiescent
until activated by spatial disruption of the steady-state tissue.

In this chapter, we look beyond the steady-state hydrodynamics of the proposed stem/CP model,
in order to generae further predictions that may be compared with experiment. In particular, we
engage with three questions raised in section 6.5: How does the discrete and stochastic nature of the
cells affect the dynamics in comparison to the coarse-grained description? What are the implications
of the stem/CP model for the fate of cell colonies incubated in culture? What are the implications
of the stem/CP cell model for clonal analysis experiments in human epidermal xenografts? These
questions are discussed, respectively, in sections 7.1, 7.2 and 7.3. Finally, in section 7.4 we discuss
the implications of the stem/CP model for understanding adult tissue maintenance in epidermis
and in other tissue types.

The experimental results presented in section 7.2 were generated by DPD1 and PHJ.

7.1 Microscopic model and fluctuations

An important aspect of the hydrodynamic model developed in section 6.3 is the fact that it iden-
tifies the minimal ingredients required to explain the mechanism of large-scale patterning, making
minimal assumptions regarding the large number of microscopic interactions that may give rise to

1David P. Doupé
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the large-scale behaviour. Such a “phenomenological” approach makes contact between mean cell
division and differentiation rates and the average features of the steady-state pattern. To establish
the degree to which the steady-state characteristics of the basal layer morphology are reliable, one
may in principle consider three factors that contribute to fluctuations: First, the discrete nature of
the cells (and therefore of the cell density c) compels one to consider small-number (and extinction)
statistics. Second, the effectively stochastic nature of the processes of cell division, differentiation
and migration, as seen in experiment [16] result in a wide distribution of cell kinetic rates that
directly contributes to stochastic fluctuations. Third, a wide range of microscopic processes may
contribute to variations in behaviour at the scale of a single cell without affecting the mean-field hy-
drodynamics. Such effects may include slowly-changing intra-cellular conditions, local inter-cellular
interactions, or external factors such as variations in nutrient supplies.

To develop a microscopic model of cell behaviour, one may draw upon a range of different approaches
that have been developed to model cell-based processes. These include off-lattice models, in which
cells are modeled as quasispherical particles that deform during cell division (e.g. [43]), and space-
filling (Voronoi) tesselation models, in which cells are modeled as a ‘foam’ of convex polygons [117,
118, 119, 120, 121, 38]. These models treat cells as discrete entities capable of growth, division,
differentiation, even memory, and that are influenced by the interaction between their internal and
external environments.

However, in the absence of further constraints on cell behaviour at the single-cell level, one may
conceive of a considerable number of valid microscopic models within the framework of the exist-
ing literature — models which are consistent with the large-scale hydrodynamics, but that differ
dramatically at the microscopic level. Without further experimental investigation, any microscopic
model will be at best over-specified, and at worst uncontrolled. Therefore, rather than proposing a
specific microscopic mechanism for cell behaviour that would lie beyond the current experimental
resolution, in the following we shall conduct a qualitative study of fluctuations by considering a
simple and pedagogical lattice model of cell behaviour, which, while following closely the lattice
model described in chapter 5, demonstrates the effects of the discrete and stochastic nature of
biological cells on the hydrodynamics.

7.1.1 Lattice model

Referring to the organisational principles described in section 6.2 and to the lattice model introduced
in chapter 5 to model murine epidermal maintenance, we shall incorporate the observed near-
uniform cell density by modelling the basal layer as a two-dimensional (hexagonal) lattice where
each site may host one of the three cell types or it may be vacant (�) — note that, without
vacancies, cell proliferation and migration becomes impossible. To further maintain a uniform cell
density through density-dependent cell division rates, we will suppose that progenitor cell are only
capable of division when neighbouring a vacancy. Thus, symmetric and asymmetric division of
committed-progenitor compartment may be summarised by the processes

A � γAA−→ A A
A � γAB−→ A B ,

A � γBB−→ B B
(7.1)
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while post-mitotic cells may migrate out of the basal layer,

B
γB�−→ � . (7.2)

Here γXY represents the respective reaction rates, related to the hydrodynamic parameters through
the identity Γ = z(γAB + 2γBB), and ∆ = z(γBB − γAA), where z = 6 is the number of nearest
neighbours for cells on the lattice.

To accommodate for the different processes of lateral cell mobility, we include the diffusion process,

A B σ′−→ B A

X � χσ′−→ � X .
(7.3)

where X = A,B, and the hopping rate σ′ ∝ σ/(1 cell area) is related to the hydrodynamic mobility
through a constant numerical factor of order unity (for example, σ = 3

2σ′ for a hexagonal lattice2).

Without stem cells, when γAA = γBB, processes (7.1), (7.2) and (7.3) describe a critical birth-
death process belonging to the Generalised Voter universality class, which recovers the observed
population dynamics in murine IFE [17].

Turning to the stem cell compartment, and allowing for symmetric stem cell division or differenti-
ation, the lattice model is related to the hydrodynamics through the processes

S � γSS/z−→ S S
S

γSA−→ A .
(7.4)

Finally, turning to the processes of stem cell mobility and clustering, there does not exist (to our
knowledge) any microscopic model for which the Cahn-Hilliard dynamics of Eqs. (6.1), (6.3) gives
the exact macroscopic description [122]. Nevertheless, the same qualitative behaviour (and much
of the quantitative behaviour, see below) is captured by the constrained diffusion processes

Si Xj
wij−→ Xi Sj

Si �j
χwij−→ �i Sj

(7.5)

with the exchange rate wij reflecting the change in surface energy from the initial state to the
target. The exact form of wij is to some extent arbitrary, but it should satisfy the detailed balance
condition: wije

−βEi = wjie
−βEj , where βEi = βJ

∑
k∈N(i) nS,k is the relative surface energy of the

system when the stem cell is at its initial site i, βEj is the energy evaluated when the stem cell
has hopped to its neighbouring site, and wji is the hopping rate in the reverse direction. Here
N(i) denotes the neighbours of lattice site i and nS,k is the stem cell occupancy at site k. A
convenient choice of transition rates satisfying detailed balance is Glauber’s hyperbolic tangent
rule wij = σ′

2 {1 − tanh[β(Ej − Ei − J)]}. With respect to stem cell motion, this model is simply
the dynamic Ising model with conserved particle number (the Kawasaki model) [123].

The lattice model encoded by processes (7.1)-(7.5) constitutes a non-equilibrium process for which
the average site occupancies cX for each of the respective cell types are closely related to the

2To see this, compare the long wavelength limit of the discrete and continuous diffusion equations.
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hydrodynamics in Eq. (6.1). In particular, identifying the vacancy fraction as c� = 1− c, it is clear
that processes (7.1), (7.2) and (7.4) translate directly to the mean-field reaction terms RX. Equally,
near the critical point for stem-cell segregation (e.g. βJ → 1/[c̄S(1− c̄S)] for χ = 1), the migration
processes (7.3), (7.5) result in a mean-field dynamics that maps directly to the hydrodynamic
flux JX [124, 125]. In the deep-quench limit (βJ � 1), then the Kawaski dynamics of the stem
cell compartment no longer maps rigourously onto Eq. (6.1), however there is no change to the
qualitative behaviour of the lattice model, and the long-time coarsening dynamics of the stem
cell clusters is quantitatively unaffected [124]. Therefore, by simulating the lattice model as an
asynchronous cellular automaton, we are now in a position to assess the importance of fluctuations
in determining the steady-state basal layer morphology.

To implement the basal layer lattice simulation, we use a Gillespie algorithm as follows. We define
a hexagonal lattice of N ×N sites, starting with each lattice site occupied at random by a cell of
S, A or B at t = 0. At each time step, we evaluate the stochastic “reaction” rates ri,j associated
with each lattice site i and with each process j given by processes (7.1)-(7.5), as determined from
the occupancy of each site and of its nearest-neighbours. The next event to occur (viz. division,
differentiation, etc.) is then chosen at random, with probability pi,j = ri,j/

∑
i,j ri,j for event j

to occur at site i, and the time ∆t leading up to the event is determined by drawing from an
inverse exponential distribution (∆t = ln(Θ)/

∑
i,j ri,j , where θ is a uniformly-distributed random

variable Θ ∈ {0, 1}). The lattice is then updated and the process repeated using the new lattice
configuration.

Using this algorithm, the system was allowed to evolve over a time t � γSA until a steady-state
was reached, as determined by requiring that the average fraction fX of cells of type X ∈ S, A and
B become stationary3. By varying the choice of system parameters, it was possible to study the
nature of the steady state associated with the microscopic model.

Results of the lattice simulation are demonstrated in figs. 7.1, 7.2 and 7.3 . In the figures, we see
that S cells form obtuse clusters; in between the S-cell clusters there is a region of A and B cells.
The A-cells appear to be localised more closely to the S-cell cluster boundaries, however many of
them are also dispersed in the inter-cluster region.

Qualitatively, we may conclude that although the long-ranged hexagonal symmetry is lost in the
lattice model, the patterning predicted by the hydrodynamics is nonetheless robust with respect
to the fluctuations that arise from discrete cell statistics, as well as from the apparently stochastic
nature of the events of cell division and differentiation. Strikingly, a comparison of Figs. 6.2 and 7.1
reveals that once fluctuations are accounted for by the simple lattice model, the resulting stem cell
patterns indeed resemble the experiment results.

To confirm the validity of the analysis, we studied the variation in the pattern morphology with
system parameters, and compared the results to the hydrodynamic theory in Fig. 6.12(b). In the
figure, the cellular automata results for the steady-state fraction of stem, CP and post-mitotic cells
(aS/Λ2, c̄A and c̄B) are shown by the data points (×). One may see that for the same parameter
set (see caption of Fig. 7.1 for details), the lattice simulations appear to be in reasonable agreement

3More accurately for smaller system sizes, a second condition was added, with the system considered stationary
when the total time of evolution was much longer than the coherence time for fluctuations in the the average fraction
of cells of type S, A and B.
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FIG. 7.1: Examples of steady-state basal layer morphology obtained from cellular automata simulations of
processes (7.1)-(7.5) on a lattice of 128×128 cells, showing the effects of increasing the stem cell differentiation
rate. Panels a-d correspond to the values γSA/γB� = 0.01 (a), 0.02 (b), 0.04 (c) and 0.08 (d). Stem
cells (green) form irregular domains within a background of committed progeniter (type A) cells (red) and
post-mitotic (type B) cells (grey). The panels correspond to the data points (×) shown in Fig. 6.12(a, b).
Parameters used for the simulation are the same as in the caption of Fig. 6.10, except for the following changes
that take advantage of the faster simulation time but do not affect the predicted basal layer morphology:
The vacancy diffusion rate is restored to the physical limit χ = 100(� 1) and we set γAA/Γ = 0.1. The
‘bare’ division rate Γ is increased to Γ = 6000, while the ratios of γSS/Γ, ∆/Γ are unchanged. The latter
changes have the effect of minimising the vacancy density (1− c) without otherwise altering the dynamics.
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FIG. 7.2: Further examples of steady-state basal layer morphology obtained from cellular automata sim-
ulations, showing the effects of increasing the CP cell differentiation rate ∆/Γ, with ∆/Γ = 0.01 (a), 0.02
(b), 0.04 (c) and 0.08 (d). The panels correspond to the data points (×) shown in Fig. 6.12(c). The stem
cell differentiation rate was held constant at γSA/γB� = 0.04. See caption of Fig. 7.1 for legend and full
parameter set.
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FIG. 7.3: Further examples of steady-state basal layer morphology obtained from cellular automata simu-
lations, showing the effects of increasing the bare stem cell division rate γSS/Γ, with γSS/Γ = 0.01 (a), 0.02
(b), 0.04 (c) and 0.08 (d). The panels correspond to the data points (×) shown in Fig. 6.12(d). The stem
and CP cell differentiation rates were held constant at γSA/γB� = 0.04 and ∆/Γ = 0.02 respectively. See
caption of Fig. 7.1 for legend and full parameter set.
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with the hydrodynamic theory. Significantly, the nature of the response to parametric variations is
unchanged.

7.2 The stem/CP cell model in clonal cultures

Although the model, as it is currently embodied in Eq. (6.1), has been designed to describe cell
division, differentiation and stratification during homeostasis, the same underlying principles can
nonetheless be applied when the tissue is disturbed through injury, or artificially, as in culture. As
mentioned earlier, a hallmark of the stem/CP cell model is its ability to restore patterning when
driven from steady-state. While this prediction is difficult to study in vivo, experiments in culture
offer the potential to study both the dynamics of pattern formation within a growing colony, and
the developing morphology at a clone edge. This provides a strong motivation to turn to colony
growth experiments.

Previous studies have revealed that, when cultured at clonal density, isolated human epidermal
stem cells generate large growing colonies, which grow exponentially in area for an initial period
lasting several days, before switching to quadratic growth as proliferation becomes localised to the
outer-most cell layers of the clone [126]. In the subcloning experiments discussed in section 1.2, the
appearance of secondary colonies sheds light on the proliferative potential of the cell that founded
the primary clone, with circular holoclones having a higher proliferative potential than irregularly
shaped meroclones [24]. How do these observations compare with that expected within stem/CP
cell model?

Although one may conceive of both stem and CP cell proliferation on the perimeter, the latter
are capable of only linear colony growth and are not expected to contribute to clonal expansion.
Indeed, focusing on the rapidly-proliferating clone perimeter, we will show below that the clone
edge is sensitive to the accumulation of CP and post-mitotic cells on the perimeter, both of which
obstruct stem cells and lead to the in vitro growth of smaller clones with a wrinkled morphology.
Applying the principles of the stem/CP model in this case, we find that such accumulation of CP
and post-mitotic cells occurs when the stem cell capacity for self-renewal is reduced by even a
modest fraction (of order 10-20%, see Fig. 7.5). It is striking that such behaviour sheds light on
the long-standing puzzle surrounding meroclones and their wrinkled indicator colonies [24].

Yet, beyond a description of the edge morphology in holoclones and meroclones, it is not possible to
describe the detailed proliferative activity on the clone perimeter without a further characterisation
of the non-steady state behaviour, which is beyond the limits of the hydrodynamic theory. Instead,
one may focus on the clone centre, where cell confluence restricts division. Here, provided that the
rules embodied by Eq. (6.1) again become valid, one would expect the colony centre to contain
clusters of quiescent stem cells within an active CP cell and post-mitotic population. Below (sec-
tion 7.2.2) we report on preliminary experiments that explore the dynamics of pattern formation
within the clone centre.
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FIG. 7.4: Schematic of experiment used to define cell proliferative capacity (after Barrandon and Green [24]).
Single keratinocytes are cultured at clonal density for seven days a, giving rise to an exponentially growing
cell colony. The cells are then transferred to indicator dishes at clonal density b, where they are allowed to
grow for a further twelve days a. The fraction of terminally-differentiated colonies (fTD) in the indicator
dishes is used to characterise the proliferative capacity of the original cell. Clones with fTD ≤ 0.05 are
designated holoclones; these typically give rise to macroscopic and smooth indicator colonies (H). Clones
with fTD = 1 are designated as paraclones (P). The range of clones with 0.05 < fTD < 1 are designated
as meroclones, and typically give rise macroscopic indicator colonies that are smaller and wrinkled in shape
(M).

7.2.1 Edge morphology of clonal cultures

In subcloning experiments, isolated keratinocytes are cultured for a preliminary period (seven days)
and the resulting colonies are counted and then re-plated into indicator dishes for a further twelve
days. The experiments reveal a distribution in the size of the seven-day clones, which is reflected
in both the fraction (fTD) of terminally-differentiated indicator colonies resulting from each clone,
and in the edge morphology of the surviving indicator colonies. Let us now use the stem/CP cell
model to relate between the proliferative potential of a clone and its observed edge morphology.

Following the classification scheme introduced in Ref. [24], the proliferative potential of the initially-
isolated cells is defined in terms of the fraction of progeny (1 − fTD) that themselves give rise
to macroscopic colonies in the indicator dishes. Holoclones score fTD < 0.05, i.e. over 95%
of their seven-day progeny give rise to macroscopic clones. Meroclones score 0.05 < fTD < 1,
and paraclones fTD = 1. Upon re-plating one finds that holoclone progeny have similarly high
proliferative potential, with secondary clones forming smooth and round cell colonies. By contrast,
meroclones give rise to smaller (but still macroscopic) colonies, which are characteristically wrinkled
in shape. To understand this variation in edge morphology, let us a consider a simple coarse-grained
model of clone growth.

Coarse-grained model of clone growth
The observation that the clone radius grows linearly at long times, and that proliferating cells are
localised at the cell perimeter [126], implies that either the clone centre becomes devoid of cycling
stem cells at late times, or alternatively, that the clone centre converges onto the steady-state
for normal tissue maintenance. Either way, to make contact with experimental results describing
late-stage colony growth it is sufficient to consider the cell kinetics of the proliferating outer-most
layers of the colony. When the different cell types are homogeneously mixed within these outer
layers, then the average rate of clone growth is determined by the fraction fX (X = S, A, B) of the
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different cell types on the clone perimeter. Denoting the average number of proliferating layers on
the clone perimeter as nl, and the clone radius as R, the dynamical equations for clone growth are

lim
R�nl

dR

dt
= λnl(fS + fA)

d

dt
(fX R) =

∑
Y

rXY fYR− Ω(t)fXR , (7.6)

where Ω(t) is the rate at which cells are transferred from the proliferating layers into the clone
interior. The average kinetic rates are rSY = δYS(λ − γSA), rAS = γSA, rAA = −∆, rAB = 0, and
rBY = δYA(λ + ∆). To avoid confusion with the steady-state system described in the main text,
here we have introduced λ to be the average progenitor cell division rate on the clone edge (assumed
to be identical for both stem and CP cells)4; γSA is again the rate of stem cell differentiation, and
1/∆ � 1/λ is the average lifetime of a clone of committed progenitor cells in vitro. From the
condition

∑
X fX = 1 and Eq. (7.6), one may evaluate the transfer rate

Ω(t) = λ(fS + fCP)(1− nl/R).

Analysis of large clones stained for the proliferation marker Ki675 reveals that the number of
proliferating layers is nl ' 5− 10.

Referring to Eq. (7.6), one may see that the condition for late-stage steady-state growth corresponds
to the constraint fX(t) ≡ f̄X = const. Imposing this condition (with ∆ � λ), one finds the steady-
state fractions f̄S = (1−γSA/λ)2, f̄B = γSA/λ, f̄A = 1− f̄S− f̄B, and the steady-state radial growth
rate of the clone is

Ṙ = nl(λ− γSA) = λnl

√
f̄S.

These results merely reflect the obvious relation that exists between the growth rate and the fraction
of stem cells on the clone perimeter. Comparing to the experimental results in Ref. [24], where the
late-stage growth of circular colonies proceeds with Ṙ = 0.21mm/day ' 8 cell layers/day, we see
that the the late stage growth is consistent with the values of λ ' 1/day and nl ' 10 cell layers
obtained in earlier studies [126].

Edge ‘wrinkling’ as a failure of the coarse-grained dynamics
Although the steady-state relationships give access to the cell division and differentiation rates in
large clones, it is important to recall that they derive from a mean-field description of the clone
perimeter, which is strictly valid when the stem, CP and post-mitotic cells are uniformly distributed
within the nl proliferating layers. Should the mean-field description fail through fluctuations of the
stem cell fraction fS on the perimeter, then one might expect the clone to become non-circular and
irregular due to variations in the radial growth rate (c.f. Eq. 7.6).

To assess the importance of fluctuations, one may compare the average survival time of an indi-
vidual stem cell within the proliferating layer ts = 1/(γSA + Ω), with the ‘homogenisation’ time th,
corresponding to the time required for a stem cell to diffuse around the perimeter by the average
distance separating stem cells. Migration is expected to be diffusive due to random lateral rear-
rangement upon division of adjacent cells. As we shall now show, the ratio χ ≡ th/ts serves as a

4Direct measurement of clone growth rates in earlier studies reveals that the cell division rate is λ ' 1 day [126].
5David P. Doupé and Philip H. Jones, unpublished data.
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good measure for the magnitude of fluctuations. When χ � 1 fluctuations in fS may be neglected
as stem cells diffuse many times the nearest neighbour separation within one lifetime. On the other
hand, when χ � 1 then stem cells fail to separate from each other between cell divisions, leading
to clustering and, significantly, to a failure of the mean-field description. A continuous transition
from smooth to ‘wrinkled’ clones occurs when χ ∼ 1.

To assess the homogenisation time th, we note that the mean lateral stem cell separation within
the perimeter region is (1 − fS)/(nlfS). Drawing upon the literature of non-equilibrium lattice
processes (see section 6.B and Ref. [17]), one may show that diffusion of the mean-field density
results from asymmetric division as well as from the combined effect of symmetric division and
differentiation [17], so that the mean-field diffusion constant is λ(1 −

√
fS) = γSA. Therefore, the

homogenisation time is estimated as th ∼ (1− fS)2/(γSAn2
l f

2
S). From here we obtain the estimate

for the relative magnitude of fluctuations,

lim
R�nl

χ ∼ (1− fS)(1 +
√

fS)
n2

l f
2
S

. (7.7)

Thus, when fS = 1, then one may see that fluctuations are irrelevant (χ = 0), whereas fluctuations
dominate when fS � 1/nl (giving χ � 1). The transition between smooth and ‘wrinkled’ growth
occurs when fS ∼ 1/nl.

Referring back to the clone fate experiment, this transition clarifies the relationship that exists
between a high fraction of terminally differentiated indicator colonies (corresponding to γSA ∼ λ)
and the abundance of ‘wrinkled’ macroscopic colonies.

Numerical simulations of holoclone vs. meroclone growth
To demonstrate the ‘wrinkling’ transition, we used a simple lattice automata to simulate the growth
of colonies with the same approximate mean-field behaviour as embodied by Eq. (7.6). Cells were
allowed to evolve according to the same rules as for a confluent sheet (see main text, caption of
Fig. 6.1), with the addition of new rules that allowed cells to divide into vacant sites beyond the
edge of the clone, e.g. S �(edge) → S S. Due to the constraints imposed by the simple (but artificial)
lattice description of the colony, these simulations cannot account for the local compressibility of
cells near the clone perimeter, so that in effect only the outer-most layer of cells is proliferating, viz.
nl = 1. Nevertheless, the simulated clones succeed in capturing many of the qualitative aspects of
clone growth, as shown in Fig. 7.5.

In Fig. 7.5(a), where we have chosen a parameter set consistent with fS ∼ 1 (see figure caption), one
may see the late-stage development of a large and circular clone. Although the lattice simulation
results in some roughness of the clone perimeter, the large-scale properties of the simulation appear
consistent with the hydrodynamics predicted by Eqs. (6.1) and (7.6). In particular, the clone is
circular, with a high stem cell fraction driving growth at the clone perimeter. It is striking to note
the difference in morphology between the clone perimeter and its centre, which consists of stem cell
clusters interspersed with CP (red) and post-mitotic cells (grey).

Turning to Fig. 7.5(b) with lower stem cell fraction on the perimeter, one may see that, over the
same period of growth, the clone is smaller in size with a perimeter that is highly irregular, showing
‘wrinkles’ on a length scale of many cells. Consistent with the mechanism described above, the
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wrinkled morphology is associated with the localisation of clone growth to stem-cell rich domains
on the perimeter. Yet, as with the smooth clone, the morphology at the clone centre mimicks that
of the steady-state in vivo system.

To conclude, we have shown that the ability of stem cells to maintain a high density at the clone
perimeter is central in determining the clone morphology, and we have related between the pro-
liferative potential of a stem cell, as embodied by the parameter γSA/λ, and the transition from
smooth to wrinkled clone morphology. These relations reconcile the stem/CP model with obser-
vations reported two decades ago in Ref. [24], and have remained unclear throughout this time.
In particular, we are now in a position to understand the correlation between a high fraction of
terminally-differentiated indicator clones, which implies larger values of γSA/λ, and the growth of
macroscopic but wrinkled clones. Conversely, it is clear that a low fraction of terminally differen-
tiated clones will correlate to the growth of large and circular clones.

7.2.2 Patterning in clonal cultures

To consolidate the existing phenomenology of holoclone and meroclone growth with the model of
stem/CP behaviour in steady-state conditions, we have looked at colonies seeded at clonal density
cultured over a period of twelve days, focusing both on the distribution of stem and progenitor cells
both at the clone perimeter and at the clone centre.

Experimental results are shown in Fig. 7.6, where a twelve-day colony has been stained for the
stem cell marker MCSP as well as the Ki67 proliferation marker. One may see that the clone
edges are indeed characterised by high MCSP expression. Away from the clone edge, MCSP-bright
cells are clustered as expected. Significantly, Ki67 staining reveals that MCSP-bright cells on the
clone perimeter are in cycle, whereas in the clone centre the Ki67 activity is significantly reduced
in MCSP-labelled cells that have form strong bonds with their neighbours. Although there is no
evidence of a periodic spatial pattern at twelve days, technical difficulties have not allowed us to
maintain the colony to later time points. Nonetheless, these preliminary observations, including
the appearance of small, quiescent stem cell clusters, are consistent with the stem/CP model.

7.3 Clonal analysis in human epidermal xenografts

The results reported in previous chapters demonstrate that ultimately, quantitative analysis of
genetically-labelled clones populations is perhaps the most powerful method for inferring the laws
of cell fate in mammalian tissue. Although it is obviously not possible to design controlled in vivo
lineage tracing experiments in human epidermis, xenografts of human epidermis on mouse offer the
potential for quantitative analysis [102].

Let us first consider the fate of a population of genetically labelled CP cells: According to the
stem/CP cell model, the stochastic nature of CP cell division would lead to an increasingly broad
distribution in clone size at early times, mimicking that seen in murine IFE (chapter 2). At later
times, however, the imbalance in the symmetric CP cell division rates (∆) would lead to the
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FIG. 7.5: Wrinkled clones result from reduced efficiency of stem cell self-renewal. Cellular automata
simulations demonstrate the transition from a, smooth and circular clone growth to b, irregular and wrinkled
development. Starting with a single stem cell, all stem cell divisions on the perimeter give rise to two stem
cell daughters in (a), whereas in (b) 10% of divisions give rise to two CP cells. The two clones are shown at
the same time post-seeding. Stem cells are shown in green, CP cells in red and post-mitotic cells in white.
In both cases, clone growth proceeds with the same average rate of stem cell division on the clone perimeter.
The framed sections in (a) compare to the experimental results in Fig. 7.6.
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FIG. 7.6: Typical sections of a keratinocyte clone derived from isolated human stem cells in vitro at 12
days post-seeding, stained for the stem-cell markers integrin α2 (a) and MCSP (b), (green), the proliferation
marker Ki67 (red), and the nuclear marker DAPI (blue). a Typical section showing cells in the vicinity of the
clone perimeter. The cell density is high near the clone edge, consisting mainly of integrin-bright cells that
show a high level of proliferative activity. By contrast, stem cells appear clustered within the integrin-dull
interior, where, consistent with the steady-state theory, proliferation appears on the edges of integrin-bright
clusters or in the integrin-dull regions. b Two further sections of a keratinocyte clone, showing cells deep
within the clone interior. The stem cell marker appears clustered, with Ki67 activity is significantly reduced
in MCSP-labelled cells that have form strong bonds with their neighbours.
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inevitable extinction of CP cell-derived clones, which are then compensated for by proliferation of
the stem cell compartment.

Turning next to a labelled stem cell population, it is clear that, in contrast to the stem/TA hy-
pothesis, the stem cell-derived clones in the stem/CP model do not become stationary. Instead, at
late times one stem cell must divide symmetrically for each stem cell that differentiates, so that,
ultimately, clone fate adheres to a critical birth-death process. Thus, drawing upon the analysis
in chapter 3, one would expect to observe the hallmark scaling distribution in the number of cells
per clone, with the labelled basal layer population consolidating in an ever-decreasing number of
clones. However now the characteristic timescale of the birth-death process is γSA/aS, rather than
the symmetric division rate rλ/ρ (or γAA/ρ) found in the murine case.

Testing these predictions remains the focus of potential future work.

7.4 Chapter summary: A universal principle for tissue mainte-
nance?

In chapters 6 and 7 we have developed a model of epidermal maintenance that accounts for the
wide range of experimental phenomenology in human epidermis, including the observations of stem
cell patterning and quiescence, and the variation between smooth and wrinkled clones in vitro. The
hydrodynamic theory developed in chapter 6 has provided a single framework with which one may
address the maintenance of both murine and human epidermis. In both cases, normal adult IFE is
largely maintained by a committed progenitor cell population, allowing the majority of stem cells
to remain quiescent in homeostatic tissue. The regulatory processes responsible for maintaining
stem quiescence allow cells to become active when tissue is disrupted by injury or when cells are
transferred to culture.

It is interesting to consider the implications of a model of tissue maintenance by a stochastic
committed progenitor compartment, as opposed to the classical, highly regulated stem and TA
cell model. Firstly, in the stem/TA model, continual stem cell proliferation is required, exposing
stem cells to the risk of oncogenic mutation during DNA replication. The presence of the CP
compartment allows stem cell quiescence, avoiding this risk. Secondly, a stochastic CP compartment
is far more adaptable to circumstances such as injury than a TA compartment whose behaviour is
fixed.

Finally, it is interesting to speculate whether the organising principle applies to other tissues as well
as the epidermis: Is homeostasis always maintained by a stochastic progenitor cell compartment,
whilst the function of stem cells is tissue repair?
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Chapter 8

Conclusions and outlook

8.1 Key lessons

In this work, we have identified a model of tissue maintenance in mouse and human epidermis that
identifies the mechanism of steady-state tissue regeneration, defining the roles of stem cells and
committed progenitors. The proposed model has a degree of quantitative rigour that is unusual in
the field of cell tissue biology, as seen, for example, by the ability of clonal analysis to quantify the
division and differentiation rates of cells in the epidermis in vivo (chapter 3), and by the ability of
the same techniques to predict the effect of a topical drug treatment over the period of a six-month
experiment (chapter 4).

Taken in full, the new model challenges many basic concepts of the stem/TA paradigm:

• Stem cells were believed to directly support steady-state tissue maintenance; our results
suggest that their role is confined to tissue growth and repair.

• Transit-amplifying cells were believed to age through a limited number of rounds of cell
division; our empirical analysis suggests that the fate of progenitor cells is stochastic, with
no memory of past events.

• Epidermal tissue was thought to consist of spatially distinct proliferative units containing
a well defined number of cells; instead, we have identified that the size distribution of cell
families (clones) is non-stationary and is dominated by fluctuations that scale with time.

• It was widely held that stem cells reside in a niche, or micro-environment, that supports their
unique function; by analysing the mechanism of collective stem cell patterning in vivo and in
vitro, we have found that stem cells are capable of creating their own niche.

• More generally, we have shown that progenitor cells adhere to a set of simple rules, which
may be end result of rather complex molecular regulation. These rules include the inhibition
of stem cell symmetric division by the local cell denisty, and the preferred mutual adhesion
of stem cells (see chapter 6).
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Thus, in this thesis we have defined a new and predictive “stem/CP” model to replace the traditional
qualitative stem/TA hypothesis of epidermal maintenance.

8.2 Outlook: Open questions and new experiments

This thesis has presented a predictive model for cell fate in steady-state epidermal maintenance in
mouse and human skin. Using this stem/CP cell model as a platform, one may conceive of three
avenues for future investigation:

• Characterising the molecular circuitry that underlies progenitor cell fate, and the effects of
drugs and mutations on steady-state epidermal maintenance:
Although the stem/CP cell model makes no reference to the biochemical circuitry underlying
cell fate, one may study the role of individual biochemical constituents, or drugs, by altering
gene expression (or treating with a drug), and then studying the resulting changes to the
experimental phenomenology addressed in this thesis. This approach is exemplified in the
study of the effects of all-trans retinoic acid in chapter 4.

In this context, one specific area of further interest is to characterise the molecular mechanism
underlying the stochastic nature of CP cell fate. What sets the probabilities for CP cells to
give rise to either two differentiated cells, two progenitor cells, or one progenitor and one
differentiated cell? In mouse tail-skin these appear to be hard-wired at 8%, 8% and 84%
respectively (chapters 2 and 3). Identifying and controlling the origin of this stochastic
behaviour has important medical implications.

• Characterising progenitor cell fate outside of the steady-state:
Although the stem/CP model is capable of generating quantitative predictions for clonal
analysis in homeostasis, it says little about the behaviour of cells in cases where the tissue
is disrupted, for example through injury, cancer growth or during in vitro culture growth.
Although the absence of steady-state constraints may imply that the analysis of cell fate
becomes increasingly complex, it is clear that such conditions are of significant medical and
fundamental interest. In particular, being able to relate between the laws of cell fate in vivo
and in vitro may enable more investigations to be carried out in culture.

• Exploring the universality of the stem/CP model:
The stem/CP model predicts that tissue is maintained by a population of CP cells that under-
goes division and differentiation according to a stochastic process, with no active contribution
from the stem cell compartment. It is interesting to assess the extent to which this model
may apply to other tissue types.
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[47] G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76, 663
(2004).

[48] L. Alonso and E. Fuchs, Stem cells of the skin epithelium, Proc. Natl. Acad. Sci. USA
100 Suppl 1, 11830 (2003).

[49] L. Lajtha, Stem cell concepts, Differentiation 14, 23 (1979).

129



[50] K. M. Braun and F. M. Watt, Epidermal label-retaining cells: background and recent
applications, J Investig Dermatol Symp Proc 9, 196 (2004).

[51] Unpublished.

[52] G.H. Williams et al., Improved cervical smear assessment using antibodies against proteins
that regulate DNA replication, Proc. Natl. Acad. Sci. USA 95, 14932 (1998).

[53] P. Birner et al., Immunohistochemical detection of cell growth fraction in formalin-fixed
and paraffin-embedded murine tissue, Am J Pathol 158, 1991 (2001).

[54] T. Das, B. Payer, M. Cayouette, and W. A. Harris, In vivo time-lapse imaging of cell
divisions during neurogenesis in the developing zebrafish retina, Neuron 37, 597 (2003).

[55] M. Gho and F. Schweisguth, Frizzled signalling controls orientation of asymmetric sense
organ precursor cell divisions in Drosophila, Nature 393, 178 (1998).

[56] T. Lechler and E. Fuchs, Asymmetric cell divisions promote stratification and differenti-
ation of mammalian skin, Nature 437, 275 (2005).

[57] I. H. Smart, Variation in the plane of cell cleavage during the process of stratification in
the mouse epidermis, Br. J. Dermatol. 82, 276 (1970).

[58] W. Zhong, J. N. Feder, M. M. Jiang, L. Y. Jan, and Y. N. Jan, Asymmetric localization
of a mammalian numb homolog during mouse cortical neurogenesis, Neuron 17, 43 (1996).

[59] I. M. Conboy and T. A. Rando, The regulation of Notch signaling controls satellite cell
activation and cell fate determination in postnatal myogenesis, Dev Cell 3, 397 (2002).

[60] F. M. Smart and A. R. Venkitaraman, Inhibition of interleukin 7 receptor signaling by
antigen receptor assembly, J Exp Med 191, 737 (2000).

[61] S. Temple and M. C. Raff, Clonal analysis of oligodendrocyte development in culture:
evidence for a developmental clock that counts cell divisions, Cell 44, 773 (1986).

[62] N. T. J. Bailey, The Elements of Stochastic Processes, J. Wiley & Sons, New York, 1964.

[63] M. Loeffler and H. E. Wichmann, A comprehensive mathematical-model of stem-cell
proliferation which reproduces most of the published experimental results, Cell and tissue
kinetics 13, 543 (1980).

[64] M. Loeffler and B. Grossmann, A stochastic branching model with formation of subunits
applied to the growth of intestinal crypts, J. Theo. Bio. 150, 175 (1991).

[65] R. A. White and N. H. A. Terry, Cell kinetics: Mathematical models and experimental
bases, Math. and Comp. Model. 32, 113 (2000).

[66] I. Roeder, Quantitative stem cell biology: computational studies in the hematopoietic
system, Current Opinion in Hematology 13, 222 (2006).

[67] D. R. Appleton, N. A. Wright, and P. Dyson, Age distribution of cells in stratified
squamous epithelium, J. Theo. Bio. 65, 769 (1977).

130



[68] C. S. Potten, H. E. Wichmann, and M. Loeffler, Evidence for discrete cell kinetic
sub-populations in mouse epidermis based on mathematical-analysis, Cell and tissue kinetics
15, 303 (1982).

[69] H. W. Watson and F. Galton, On the Probability of the Extinction of Families, Journal
of the Anthropological Institute of Great Britain and Ireland 4, 138 (1875).

[70] W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical
Recipes in C: The art of Scientific Computing, 2nd ed., Cambridge University Press, Cam-
bridge, UK, 1992.

[71] R. Dover and C. S. Potten, Heterogeneity and cell cycle analyses from time-lapse studies
of human keratinocytes in vitro, J. Cell. Sci. 89, 359 (1988).

[72] S. Karlin and H. M. Taylor, A first course in stochastic processes, 2nd ed.,, Academic
Press, Inc., San Diego, 1975.

[73] E. R. Fearon, S. R. Hamilton, and B. Vogelstein, Clonal analysis of human colorectal
tumors, Science 238, 193 (1987).

[74] E. R. Fearon and B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell 61,
759 (1990).

[75] A. Whittemore and J. B. Keller, Quantitative theories of carcinogenesis, SIAM Review
20, 1 (1978).

[76] D. G. Kendall, Birth-and-death processes, and the theory of carcinogenesis, Biometrika
47, 13 (1960).

[77] B. Houchmandzadeh, Clustering of diffusing organisms, Phys. Rev. E 66, 052902 (2002).

[78] W. R. Young, A. J. Roberts, and G. Stuhne, Reproductive pair correlations and the
clustering of organisms, Nature 412, 328 (2001).

[79] T. C. Roosa, F. K. Jugert, H. F. Merk, and D. R. Bickers, Retinoid Metabolism in
the Skin, Pharm. Rev. 50, 315 (1998).

[80] J. Lewis and A. Davies, Planar cell polarity in the inner ear: How do hair cells acquire
their oriented structure?, J. Neurobiology 53, 190 (2002).

[81] S. J. Gibbs and G. W. Casarett, Spatial Distribution of Cells in Mitotic and DNA-
Synthetic Phases of the Cell Cycle in Hamster Cheek Pouch Epithelium, J. Dent. Res. 51,
30 (1970).

[82] I. L. Cameron, D. G. Gosslee, and C. Pilgrim, The Spatial Distribution of Dividing
and DNA-Synthesizing Cells in Mouse Epithelium, J. Cell & Comp. Physiol. 66, 431 (1966).

[83] B. I. Shraiman, Mechanical feedback as a possible regulator of tissue growth, Proc. Nat.
Acad. Sci. USA 102, 3318 (2005).

[84] T. M. Liggett, Interacting Particle Systems, Springer, New York, 1985.
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