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1 Introduction

In this lecture, we shall study uniform circular motion, which represents a departure from
your AS-level studies on rectilinear kinematics and dynamics. In general, mechanics is very
complex: it is impossible to study the full motion of real bodies without making simplifying
assumptions and approximations1. These modelling conditions often reduces the full problem
into certain constituent types, which can be solved using simple mathematics and occur
frequently. More complicated behaviour can be constructed using these basic mathematical
tools. During your time in Cambridge we hope to cover linear, circular, parabolic and simple
harmonic motion.

Historically, the appreciation of circular motion was crucial in determining the motion of
the planets, the law of gravity and spurred Newton to produce a coherent set of laws first
enunciated in his Philosophiæ Naturalis Principia Mathematica. Realising that acceleration
was a vector quantity, he derived a formula for the acceleration of a particle travelling in a
circle. Though it is possible for the speed of such a particle to be constant, since the direction
of the velocity (tangential to the radius) is changing, the particle must be accelerating. Using
this formula he was able to reason with Kepler’s third law2, that gravity must obey an inverse
square law. Furthermore this new law was universal — true both for celestial bodies as well
as on the Earth. Indeed, the Principia is one of the most important works ever published: it
states the laws of motion, forming the basis of all of classical mechanics.

In addition to planetary motion, circular motion appears whenever there is a force per-
pendicular to the body’s velocity. For example, charged particles in a magnetic field undergo
helical motion (circular motion superimposed with uniform motion along the field lines); aero-
planes banking during a turn; a gear inside a mechanism; roller-coasters doing a loop-the-loop;
electrons in atoms; . . .

Circular motion represents a departure from the problems you have encountered before,
which were likely to be effectively one-dimensional or rectilinear. Here the particle is con-
strained to move at a given distance from an origin. The natural co-ordinates to describe
such a particle would be in terms of the distance or radius r from the origin and the angle,
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1For example, during your school studies you will have assumed that bodies could be treated as point

particles. Your lectures on rotational dynamics will demonstrate that you can decompose rigid body motion
into motion of the centre of mass and internal rotational motion about the centre of mass.

2The period of planetary orbits varies as the 3/2 power of the size of the orbit.
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θ it makes from a given axis. In mathematical jargon, this set of (r, θ) is called plane polar
co-ordinates and can be related to standard Cartesian co-ordinates by (x, y) ≡ (r cos θ, r sin θ).

Examples denoted by a dagger † should be attempted in class and you will be given
assistance by the demonstrators if necessary. The unmarked questions are additional examples
without necessarily being harder, and those with a star * are expected to be more difficult
and require considerable effort.

2 Definitions

Given we are using a new co-ordinate system, we must construct an equivalent rotational
language to displacement, velocity and acceleration, and other useful angular ideas. Suppose
that a line is changing its orientation with time, and that it rotates through an angle ∆θ in
a time interval ∆t. The average angular velocity ωav during the interval is defined by

ωav =
∆θ

∆t
, (1)

and the instantaneous angular velocity ω is defined by

ω = lim
δt→0

δθ

δt
=

dθ

dt
. (2)

The angular velocity is also called the angular frequency for reasons that will become apparent.
The units of ω are inverse seconds (s−1), and so ω represents the number of radians swept
out per unit time. This definition directly analogous to that of normal velocity v = dr

dt
. In

what follows, we shall specialise to uniform circular motion, and so ω does not change with
time.

The period T for one revolution is the time taken to describe an angle 2π radians, thus
using Definition (1)

∆t =
∆θ

ω
(3)

T =
2π

ω
. (4)

Since frequency f = 1/T is the reciprocal of period, we have

ω = 2πf. (5)

The particle undergoing circular motion at radius r travels a distance 2πr in time T with
speed v so we have

T =
2πr

v
, (6)

from which we find that
v = ωr. (7)

This result can also be found by directly differentiating the definition of arc-length.
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3 Kinematics: Centripetal acceleration

As alluded to in the preamble, Newton realised that in order to keep bodies moving in a
circle a force must be applied. Our familiar experience of being passengers in cars turning a
bend suggest that the force is directed to the centre of the circle and thus called centripetal.
Having a centripetal force implies, through Newton II, a radial acceleration. Let us calculate
kinematically how this acceleration is related to the speed and radius of the circle.

r1

r2 v1

v2

(a) Position and ve-
locity vectors at two
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(b) Position and velocity vectors and their differences.

The position and velocity vectors at two nearby times are shown in Figure 1(a). Their
differences, ∆r = r2 − r1 and ∆v = v2 − v1. The angle between the vs is the same as the
angle between the rs, because each v makes a right angle with the corresponding r. The
triangles in Figure 1(b) are therefore similar, so we have

|∆v|
v

=
|∆r|

r
(8)

where r = |r| and v = |r|. Dividing equation (8) through by ∆t gives
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|a|
v

=
|v|
r

(10)

a =
v2

r
. (11)

We have assumed that ∆t is infinitesimal here, which allows us to get rid of the ∆s in favour
of instantaneous quantities. The instantaneous acceleration a is limiting value of the average
acceleration. Using Equation (7) we may rewrite the acceleration as

a =
v2

r
= ω2r. (12)

Note that this is not uniformly accelerated motion, because the value of a is fixed only in
magnitude, but not in direction. Note also that the direction of the acceleration is radially
inwards.
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3.1 Alternative derivations

1†. Calculate the average acceleration of a particle with speed v colliding elastically with a
circular wall between any two collisions. Assume the container has radius r and take the
angle of incidence of any collision as θ. What happens as you vary θ?

2. Starting from the plane polar representation of the position vector

r =

(

r cos θ
r sin θ

)

, (13)

find the velocity and acceleration vectors by direct differentiation with respect to time. Com-
ment on their relative directions and magnitudes.

4 Dynamics

Let us now apply our acceleration formula (12) to analyse the motion of a car on a banked
racing track and also over a hump-back bridge.

At what angle should a road be banked at a bend to avoid the need for a centripetal
frictional force?

We treat the car as a point particle and resolve our force and acceleration vectors parallel
to the line of greatest slope. Applying Newton II, we find

mg sin θ = m

(

v2

r
cos θ

)

(14)

tan θ =
v2

rg
. (15)

The equation (which should not be learnt) shows that a bend of a given radius r can only be
banked in this way for cars of a given speed v.

Now consider the car travelling over a bridge which is humped. Let us model the hump
as part of an arc of a circle of radius r. What is the minimum speed of the car for it to leave
the road? In general, applying Newton II radially inwards (vertically downwards) we find

mg − N =
mv2

r
. (16)

But since we require the condition that the car loses contact with the bridge, the normal
reaction force, N , must go to zero. Hence Equation (16) reduces to

mg =
mv2

r
(17)

v2 = gr, (18)

which is the required condition. Any speed greater than
√

gr will cause the car to leave the
bridge.
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4.1 Further examples

3†. A mass hangs from a massless string of length l. Conditions have been set up so that
the mass swings around in a horizontal circle, with the string making an angle φ with the
vertical. What is the angular frequency, ω, of this motion?

4†. A person can be suspended against the inside of a hollow cylindrical room which is
rotating about its central vertical axis even if there is no floor. If the radius of the cylinder is
2.0 m and the linear speed of the wall is 8.0 m s−1, calculate the coefficient of friction which
will prevent the person from falling.

5†. A stone of mass m attached to the end of a thread moves in a vertical circle of radius
r so that the threat just remains fully extended at the top of the circle. Calculate the kinetic
energy of the stone and the size of the tension force exerted by the string when
(a) the stone is at its highest point
(b) the string is horizontal
(c) the stone is at its lowest point.

6*. A point particle of mass m sits at rest on top of a frictionless hemisphere of mass
M , which rests on a frictionless table. The particle is given a tiny kick and slides down the
hemisphere. At what angle θ (measured from the top of the hemisphere) does the particle
lose contact with the hemisphere? * First solve for the case M = ∞. ***** In answering this
question for m/ = M , it is sufficient for you to produce an equation that θ must satisfy (it
will be a cubic). However, for the special case of m = M , this equation can be solved without
too much difficulty; find the angle in this case. Hint: in addition to applying Newton’s laws

you might like to consider what quantities are conserved.

4.2 Gravitational Examples

For those who have covered gravity:
7†. From the fact that the Moon orbits the Earth in approximately 28 days, estimate the

distance of the Moon from the Earth’s centre.

8. How high is a geostationary satellite above the Earth’s surface. The radius of the Earth
is 6400 km.

9*. An Earth satellite of mass 20kg is in a circular orbit at a height small compared to
the radius of the Earth.
If air resistance causes its total energy to decrease by 10kJ per revolution, what is the frac-
tional change in its speed per revolution? Does the speed increase or decrease?
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