Mike Payne Celebratory Symposium

Protein dynamics and structure prediction in biological networks

Ashok Venkitaraman

The Ursula Zoellner Professor of Cancer Research & Director, Medical Research Council (MRC) Cancer Unit at the University of Cambridge

Biological perspectives: protein structure & dynamics

The human genome: ~25,000 genes Potentially encoding >100K protein species

Low-resolution structure of Myoglobin Kendrew & Perutz

Biological perspectives: protein structure & dynamics

The energy landscape of protein folding: Many unfolded structures, a few low-energy folded states Dill & MacCallum, Science (2012)

Macromolecular interactions alter protein structure dynamics & mediate function

Mike Payne (c. 2005) 18 months of learning over lunches!

Quantum Mechanical Calculations

(= ab initio = first principles)

Atomic Numbers

Solve the quantum mechanical equations for the **electrons**

Predict physical and chemical properties of systems

Impact of Disruptive Hardware and Software

Quantum mechanical atomistic simulations: 2 atoms in 1981, 400 atoms in 1991.

Increase in computational effort of this calculation using 1981 techniques at least 10⁸.

Increase in power of hardware in this period ~100.

Hence, disruptive software technologies increased efficiency of calculation in this period by at least 10⁶.

Hardware improvement has been continuous (Moore's Law) - software improvements are not continuous.

Mike Payne (c. 2005)

ONETEP - Linear Scaling Density Matrix DFT

ONETEP Linear scaling quantum mechanical calculations

Peter Haynes Arash Mostofi Mike Payne Cavendish Laboratory

Chris Kriton Skylaris University of Southampton

• Optimise non–orthogonal localised functions $\{\phi_{\alpha}(\mathbf{r})\}\$ linear instead of orthogonal extended wavefunctions $\{\psi_{n}(\mathbf{r})\}\$ scaling

• Aim: to achieve the same accuracy as traditional plane-wave methods

Controlling DNA synthesis initiation – inhibitors of CDK2/CDK4

Visualizing the cell division cycle Daniels & Venkitaraman (c. 2003) Cyclin dependent kinase (CDK) structure

ATP-binding catalytic site

Controlling the cell cycle - inhibitors of CDK2/CDK4

RETURN TO ISSUE < PREV ARTICLE NEXT >

Novel Structural Features of CDK Inhibition Revealed by an ab Initio Computational Method Combined with Dynamic Simulations

Lucy Heady, Marivi Fernandez-Serra, Ricardo L. Mancera, Sian Joyce, Ashok R. Venkitaraman, Emilio Artacho, Chris-Kriton Skylaris, Lucio Colombi Ciacchi and Mike C. Payne

View Author Information $^{\scriptstyle \lor}$

lournal of

Medicinal

Chemistry

Convergence of binding energy values (kcal/mol) with increasing CDK fragment size using ONETEP

The K89 residue in CDK2 forms H-bonds with SU9516, but T89 in CDK4 cannot

Directing enzyme activity – substrate binding to PLK1

How does a single substrate-engaging structure engage multiple binders?

Visualizing the cell division cycle Daniels & Venkitaraman (c. 2003)

The substrate-binding Polo Box domain (PBD) of PLK1

Directing enzyme activity - substrate binding to PLK1

BROWSE PUBLISH ABOUT

🔓 OPEN ACCESS 尨 PEER-REVIEWED

RESEARCH ARTICLE

Computational Analysis of Phosphopeptide Binding to the Polo-Box Domain of the Mitotic Kinase PLK1 Using Molecular Dynamics Simulation

David J. Huggins , Grahame J. McKenzie, Daniel D. Robinson, Ana J. Narváez, Bryn Hardwick, Meredith Roberts-Thomson, Ashok R. Venkitaraman, Guy H. Grant, Mike C. Payne

Directing enzyme activity - substrate binding to PLK1

Stabilization or displacement of a dynamic network of water molecules (A-K) modulates the binding affinity of different PLK1 PBD substrates

Allosteric control of enzyme activity – the BRCA2 / RAD51 interaction

BROWSE PUBLISH ABOUT

RESEARCH ARTICLE

Interrogation of the Protein-Protein Interactions between Human BRCA2 BRC Repeats and RAD51 Reveals Atomistic Determinants of Affinity

Daniel J. Cole, Eeson Rajendra, Meredith Roberts-Thomson, Bryn Hardwick, Grahame J. McKenzie, Mike C. Payne, Ashok R. Venkitaraman , Chris-Kriton Skylaris

Future impact: delivering the clinical impact of personalized medicine

- Formulation of a new taxonomy of human diseases, based on the integration of their molecular and clinical features
- Discovery and validation of robust, clinically applicable biomarkers to individualize patient management
- Creation of an enhanced repertoire of drugs and clinical interventions suited to individual patients

The status quo is not an option

- The cost of bringing a new medicine to market is estimated by pharma companies to exceed \$1BN. The time taken exceeds 10 years. Yet, the failure rate may approach 70-90%.
- The status quo is not an optionWe need to more rapidly and cheaply develop 'next generation' drugs to fuel the personalized treatment of diseases like cancer.

The global unmet need is acute

Share of population with cancer, 2016

Share of total population with any form of cancer, measured as the age-standardized percentage. This share has been age-standardized assuming a constant age structure to compare prevalence between countries and through time

CC BY

Our World in Data

Accelerating next-generation medicines - our work at the MRC Cancer Unit in Cambridge

Many happy returns, Mike!