

Biomolecular simulations with ONETEP

Chris-Kriton Skylaris

2004: First version of ONETEP

Calculations on 64 cores of "Franklin", the 900-core SunFire 15K cluster of the CCHPCF

C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys. 122, 084119 (2005).

2019: ONETEP v 5.2

Calculations on1280 cores (MPI + OMP) Intel Skylake processors (Southampton)

MCP conference

School of Chemistry

Protein-protein interactions: Breast-cancer susceptibility protein (BRCA2)

- Contains 8 BRC "repeats" of about 35-40 aa: BRC1, BRC2,...,BRC8
- Binds to the DNA recombination and repair protein Rad51 during DNA repair by Homologous Recombination (HR). The BRC repeats bind to RAD51 and compete for the Rad51-Rad51 self-oligomerisation interface:

- Despite significant sequence similarity, BRC repeats have varying affinities for Rad51 in experiments
- Want to compute the relative free energies of binding of each BRC repeat to Rad51 and compare to Rad51-Rad51 binding.

D. J. Cole, C.-K. Skylaris, E. Rajendra, A. R. Venkitaraman and M. C. Payne. *Europhysics Letters* **91** (2010) 3700.

D. J. Cole, E. Rajendra, M. Roberts-Thomson, B. Hardwick, G. J. McKenzie, M. C. Payne, A. R. Venkitaraman and C.-K. Skylaris. *PLoS Computational Biology* **7** (2011) e1002096

4

Convergence of binding free energies with RAD51 fragment size

Residues	N _{Atoms}	$\Delta {f G}_{{\sf M}{\sf M}}$	ΔG_{QM}
S181-E213	737	-55.1	-63.1
E154-D222	1313	-57.7	-67.0
E98-N267	2780	-59.4	-65.6
E98-D339	3490	-59.5	-63.2

MM_PBSA and QM_PBSA calculations

Gas phase energies

Relative free energies of binding

- Free energies of binding (relative to BRC4) in MM-PBSA and QM-PBSA are in good agreement and the order of binding affinity is unchanged.
- QM-PBSA still relies on the classical force field to sample the correct configurational space of the complex
- BUT, the solvent contribution has been taken into account in a very approximate way:

$$\Delta G^{QM}_{PBSA} = \Delta G_{PB} \times \left(\frac{\Delta E_{DFT}}{\Delta E_{EL}}\right)^{n_{PB}} + \Delta G_{SA}.$$

Implicit solvent model in ONETEP (2010 onwards)

"Ab initio" or minimal parameter implicit solvent models

Fattebert and Gygi, J. Comp. Chem. 23, 662 (2002)

- Solute cavity constructed from electron density of the solute
- Electrostatics by direct solution of the generalised Poisson equation
- Fully self-consistent: solute electrons polarised by solvent and vice versa

Our work [1]: accurate and highly parallel solvent model

- Reparametrized to provide accurate solvation free energies for neutral as well as for cationic and anionic species [1]
- Inclusion of dispersion-repulsion effects
- Parallel multigrid solver with high order defect correction efficient use of supercomputing resources [2]
- Available within a robust linear-scaling DFT code (ONETEP) with nearcomplete basis set accuracy
- Can be part of multiscale simulation approaches, e.g. by combining with explicit solvent molecules

		rms	\max	
Approach	XC functional	error	error	r
• this work ^{a}	PBE	3.8	8.3	0.83
this work ^{b}	PBE	4.1	9.1	0.83
$\odot \mathrm{PCM}$	PBE	10.9	23.3	0.53
◆ SMD	M05-2X	3.4	14.5	0.87
AMBER	(classical)	5.1	19.9	0.77

Polarisable medium with dielectric permittivity $\varepsilon = \varepsilon_{\text{bulk}}$

- Minimal parameter implicit solvent model for ab initio electronic structure calculations. J. Dziedzic, H. H. Helal, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne. *Europhysics Letters* 95 (2011) 43001
- [2] DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution. J. C.
 Womack, L. Anton, J. Dziedzic, P. Hasnip, M. Probert, and C.-K. Skylaris. J. Chem. Theor. Comput. 14 (2018) 1412

MCP conference

8

Protein – ligand free energies of binding

 $\Delta G_{bind,solv} = \Delta G_{bind,vac} + \Delta G_{solv3} - (\Delta G_{solv1} + \Delta G_{solv2})$

Applications to drug design: T4 Lysozyme L99A/M102Q protein

S. J. Fox, J. Dziedzic, T. Fox, C. S. Tautermann, and C.-K. Skylaris, *Proteins* **82** (2014) 3335-3346

- 2616 atoms
- Polar binding site

Complex of T4 Lysozyme L99A/M102Q and catechol

Free energies of binding: T4 Lysozyme L99A/M102Q

Error with respect to experiment

Rigorous methods for free energies in explicit water

How can we obtain $\Delta G_{C1,aq}$, MM->QM and $\Delta G_{C2,aq}$, MM->QM ?

Relative free energies of $\Delta\Delta G_{bind} = \Delta G_{bind2,aq} - \Delta G_{bind1,aq} = \Delta G_{C1->C1,aq} - \Delta G_{L1->L2,aq}$ TI, FEP binding

MCP conference

12

Free energies of hydration (300K)

S. J. Fox, C. Pittock, C. S. Tautermann, T. Fox, C. Christ, N.O. J. Malcolm, J. W. Essex and C.-K Skylaris, *J. Phys. Chem. B* **117**, 9478 (2013)

Energy decomposition analysis (EDA)

M. J. S. Phipps, T. Fox, C. S. Tautermann, C.-K. Skylaris, Chem. Soc. Rev. 44 (2015) 3177 M. J. S. Phipps, T. Fox, C. S. Tautermann, C.-K. Skylaris, J. Chem. Theory Comput., 12 (2016) 3135

- Decompose any host-guest binding energy to chemically relevant components
- Inform the design of new host-guest ligands (e.g. in Pharma applications)
- Parameterise more approximate simulation methods (e.g. new MM approaches)

School of Chemistry

Thrombin protein-ligand complex (4975 atoms)

Example: comparing L1 with L2

Energy Term (kcal/mol)			
Energy Term (Real/mor)	L1	L2	
FRZ	2.1	2.8	
ES	-35.2	-30.3	
EX	-19.5	-16.5	
REP	82.8	69.7	
CORR	-26.0	-20.2	
POL	-6.1	-5.3	
СТ	-11.4	-11.1	
$\Delta E_{\rm vac}({\rm PBE/800eV})$	-15.4	-13.6	
SOLV	13.1	11.1	
$\Delta E(\text{PBE/800eV})$	-2.3	-2.5	

- Structurally comparable ligands with chlorobenzene group in common
- Essentially the same binding energies (-2.3 kcal/mol and -2.5 kcal/mol) but the actual EDA components are very different
- L1 has a Pauli (steric) repulsion which is 13.1 kcal/mol more unfavourable than L2. However this is counteracted by the other energy components which add up to eliminate this difference

Electron Density Difference (EDD)

17

Using ONETEP to compute electric fields in enzymes: Cyclophilin A

Peptidylprolyl isomerase: Catalyses the cis/trans isomerisation of proline:

¹⁾ Camilloni C. et al., PNAS, 2014, 28, 10203-10208

Calculation of electric fields in the enzyme active site with

- •ONETEP
- •A polarisable force field (AMOEBA)
- •Fixed-charge force fields (AMBER, CHARMM)

$$U = U_{bond} + U_{angle} + U_{b\theta} + U_{oop} + U_{torsion} + U_{vdW} + U_{ele}^{perm} + U_{ele}^{ind}$$

Fundamentally, AMOEBA models polarisation via induced atomic dipoles:

'Environment field'

Calculate electric fields within the active site

Comparison of calculated fields

- x,y,z field components at the carbonyl bond centre
- Combination of data from cis, trans, WT and R55A structures
- ONETEP calculations on 30 snapshots with ~20,000 atoms
- Fixed charge force fields slightly underestimate the magnitude of field components; weaker correlation; greater variability
- AMOEBA shows good correlation with DFT

Richard T. Bradshaw, Jacek Dziedzic, Chris-Kriton Skylaris, and Jonathan W. Essex, *In preparation*

Thank you Mike!

Happy Birthday!

MCP conference

21