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2004: First version of ONETEP

Calculations on 64 cores of “Franklin”, the 900-core SunFire 15K cluster of the CCHPCF
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C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys. 122, 084119 (2005).
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2019: ONETEP v 5.2
Calculations on1280 cores (MPI + OMP) Intel Skylake processors (Southampton)
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Protein-protein interactions: Breast-cancer susceptibility protein (BRCAZ2)

BRC
repeats NLSs

L ————— LR

RADS51

» Contains 8 BRC “repeats” of about 35-40 aa: BRC1, BRC2,...,BRC8

* Binds to the DNA recombination and repair protein Rad51 during DNA repair by
Homologous Recombination (HR). The BRC repeats bind to RAD51 and compete for the
Rad51-Rad51 self-oligomerisation interface:

* Despite significant sequence
similarity, BRC repeats have
varying affinities for Rad51 in
experiments

* Want to compute the relative free
energies of binding of each BRC
repeat to Rad51 and compare to
Rad51-Rad51 binding.

D. J. Cole, C.-K. Skylaris, E. Rajendra, A. R. Venkitaraman and M. C. Payne. Europhysics Letters 91 (2010)
3700.

D. J. Cole, E. Rajendra, M. Roberts-Thomson, B. Hardwick, G. J. McKenzie, M. C. Payne, A. R.
Venkitaraman and C.-K. Skylaris. PLoS Computational Biology 7 (2011) 1002096
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Convergence of binding free energies with RAD51 fragment size

SI81-E213  E154-D222 E98—N267 E98-D339

LS P T

S181-E213 -55.1 -63.1
E154-D222 1313 -57.7 -67.0
E98-N267 2780 -59.4 -65.6
E98-D339 3490 -59.5 -63.2
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AE / kcal/mol

MM_PBSA and QM _PBSA calculations

Gas phase energies
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AAG [/ kcal/mol

Relative free energies of binding
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Free energies of binding (relative to BRC4) in MM-PBSA and QM-PBSA are in good
agreement and the order of binding affinity is unchanged.

QM-PBSA still relies on the classical force field to sample the correct configurational space
of the complex

BUT, the solvent contribution has been taken into account in a very approximate way:

AEprT

M
AG%BSA = AGpp X (m

neB
) + AGg4.
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Implicit solvent model in ONETEP (2010 onwards)

“Ab initio” or minimal parameter implicit solvent models

Fattebert and Gygi, J. Comp. Chem. 23, 662 (2002)
* Solute cavity constructed from electron density of the solute

* Electrostatics by direct solution of the generalised Poisson equation

Polarisable medium with
dielectric permittivity e=g,

* Fully self-consistent: solute electrons polarised by solvent and vice versa
Our work [1]: accurate and highly parallel solvent model
* Reparametrized to provide accurate solvation free energies for neutral as '.. | ‘e
well as for cationic and anionic species [1] “
* Inclusion of dispersion-repulsion effects -4 b
8_
* Parallel multigrid solver with high order defect correction — efficient use \ ———
of supercomputing resources [2] ‘\q_.f“""
* Available within a robust linear-scaling DFT code (ONETEP) with near- \
complete basis set accuracy
* Can be part of multiscale simulation approaches, e.g. by combining with Electron den?'_ty solute CaVIty a”OWIng
explicit solvent molecules smooth transition from el to Epulk
rms max
Approach ~ XC functional | error error r [1] Minimal parameter implicit solvent model for ab initio electronic
. T T ; structure calculations. J. Dziedzic, H. H. Helal, C.-K. Skylaris, A. A. Mostofi,
¢ th%-s workb PBE 3.8 83 083 and M. C. Payne. Europhysics Letters 95 (2011) 43001
this work PBE 4.1 9.1 083 [2] DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for
oPCM PBE 10.9 23.3 0.53 Electronic Structure Calculations in Vacuum and Solution. J. C.
Womack, L. Anton, J. Dziedzic, P. Hasnip, M. Probert, and C.-K. Skylaris. J.
¢SMD M05-2X 34 145 087 Chem. Theor. Comput. 14 (2018) 1412
® AMBER (classical) 51 199 0.77
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Protein — ligand free energies of binding

AG'bind,vac
® @

Asz’nd,solv — Asz"nd,vac + AGSO[’U3 — (AGsolvl + AGSOl’UQ)
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Applications to drug design: T4 Lysozyme L99A/M102Q protein

S. J. Fox, J. Dziedzic, T. Fox, C. S. Tautermann, and C.-K. Skylaris,
Proteins 82 (2014) 3335-3346

« 2616 atoms
» Polar binding site

Complex of T4 Lysozyme L99A/M102Q and catechol
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Free energies of binding: T4 Lysozyme L99A/M102Q

Error with respect to experiment
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Rigorous methods for free energies in explicit water

AGC1->C2,aq,QNI

A
E _AGC1,aq,MM'>QM EAGCZ,aq,MM'>QM
v

AGC1->C2,aq,MNI

How can we obtain AG¢, ,, MM->QM and AG, ,, MM->QM ?

Relative free
energies of  AAGyg = AGpingz.aq = AGpind1.ag= AGc1501.ag — AGL1-512.a Tl, FEP
binding
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AGypq (kcal/mol)

Free energies of hydration (300K)

Catechol Toluene 3-chlorophenol 2-fluoroaniline 2-methylphenol  Thiophenol

@ ONETEP
=TI (AMBER)

E Experiment

S. J. Fox, C. Pittock, C. S. Tautermann, T. Fox, C. Christ, N.O. J. Malcolm, J. W. Essex
and C.-K Skylaris, J. Phys. Chem. B 117, 9478 (2013)
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Energy decomposition analysis (EDA)

M. J. S. Phipps, T. Fox, C. S. Tautermann, C.-K. Skylaris, Chem. Soc. Rev. 44 (2015) 3177
M. J. S. Phipps, T. Fox, C. S. Tautermann, C.-K. Skylaris, J. Chem.Theory Comput., 12 (2016) 3135

* Decompose any host-guest binding energy to chemically relevant components
* Inform the design of new host-guest ligands (e.g. in Pharma applications)
* Parameterise more approximate simulation methods (e.g. new MM approaches)

Charge transfer

\Ij Polarisation
A
AEES+XC
Electrostatics +
exchange-
repulsion
/
\IJB ; i + AE - + ...
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Thrombin protein-ligand complex (4975 atoms)

AE = AE.., + AE,

+ AE + OBy,

Asp189
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Example: comparing L1 with L2

Energy Term (kcal/mol)

Li |12 \//

FRZ 2.1 2.8 // \ -

ES | -35.2 | -30.3
EX | -19.5 ] -16.5
REP | 82.8 | 69.7
CORR | -26.0 | -20.2

POL -6.1 | -5.3
CT -11.4 | -11.1
AEyac(PBE/800eV) -154 | -13.6
SOLV 13.1 ] 11.1
AE(PBE/800eV) 23| 2.5

 Structurally comparable ligands with chlorobenzene group in common

 Essentially the same binding energies (-2.3 kcal/mol and -2.5 kcal/mol) but the actual EDA
components are very different

L1 has a Pauli (steric) repulsion which is 13.1 kcal/mol more unfavourable than L2. However
this is counteracted by the other energy components which add up to eliminate this difference
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Electron Density Difference (EDD)

Visualising the interactions: L1 interacts with Gly219 L2 interacts with Ser195
AEDD
(a) L1 (b) L2 (c) L1 and L2

G'Us"? *———5er195CIu192 \ *———5er195GIu192 AN ; )"‘-—Serlgfz-
. - /Ser214 /Ser214 - \e /Ser214
Polarisation )—\_g\ﬂ\‘ _ >

=bb GIy216 Q& P o216 o AIalgOGIyZlG  Ala1go
o g ? Seezo Ay evae - sz Aspise Gmw ;Cyszzu b1
@L1 (b) L2 (c) L1 and L2
Glu192 ~—_5er19561U192 . ~—_cer195GIu192 . )_::j,,____smgs
Charge ~ o N e
transfer \ - “/S

EDD

la190 Ala190
e Gly216 -~

Ala190
Gly216 <y \‘

G 219/ ;\ ¥ G 219\/%\ A Gl 219 ; A
ly Cys220 Asp189 \"' Cys220 Asp189 ¥ Cys220 Aspl89

Common interactions (with
. UNIVERSITY OF
MCP conference Asp189) cancel out in AEDD SOthhampton

School of Chemistry

\

17



Using ONETEP to compute electric fields in enzymes: Cyclophilin A

Peptidylprolyl isomerase: Catalyses the cis/trans isomerisation of proline:
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1) Camilloni C. et al., PNAS, 2014, 28, 10203-10208



Calculation of electric fields in the enzyme active site with
*ONETEP
*A polarisable force field (AMOEBA)
*Fixed-charge force fields (AMBER, CHARMM)

U=U g tYunge tUpy +U4, +U

angle torsion T ele

Uiaw +Uee U,

Fundamentally, AMOEBA models polarisation via induced atomic dipoles:

‘Environment field’

-i=

Calculate electric fields within the active site

—>
—
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Comparison of calculated fields

X,y,z field components at the
carbonyl bond centre

Combination of data from cis,
trans, WT and R55A structures

ONETEP calculations on 30
snapshots with ~20,000 atoms

Fixed charge force fields
slightly underestimate the
magnitude of field
components; weaker
correlation; greater variability

AMOEBA shows good
correlation with DFT

Richard T. Bradshaw, Jacek Dziedzic, Chris-Kriton Skylaris, and Jonathan W. Essex,
In preparation
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Thank you Mike!

Happy Birthday!
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