

Pembroke College Cambridge 11 January 2020

# SLIP SLIDING AWAY

Carla Molteni

Physics Department, King's College London The Thomas Young Centre for Theory and Simulations of Materials *carla.molteni@kcl.ac.uk* 





University of London





TCM, Cavendish Laboratory 1994

## "Do whatever you want, provide you do some GOOD SCIENCE"

M.C. Payne, Tuesday 3 May 1994

## "There is a directory with some data on grain boundaries..."

#### **GRAIN BOUNDARY SLIDING**

Any plastic shear displacement **parallel** to the boundary interface that occurs in response to external forces



#### MIGRATION

Motion of the interface between the two grains in the direction of the interface normal

**GRAIN BOUNDARY SLIDING** plays an important role in the **deformation** and **fracture** of **polycrystals** and affects their **strength** and **reliability**, especially at **high temperature** 

- How quickly does a given material distort under stress? How is this rate affected by temperature?
- What processes occur as the material ages under repeated distortions that eventually lead to its fracture and failure?

**GRAIN BOUNDARY SLIDING** plays an important role in the **deformation** and **fracture** of **polycrystals** and affects their **strength** and **reliability**, especially at **high temperature** 

to predict and prevent damage

to design materials that resist mechanical aging

#### GOAL

To get a detailed picture at the microscopic level of the processes that occur during the sliding, as a function of material, boundary geometry, local order and presence of defects, and to evaluate the effects of temperature and strain rate

#### TOOL

First principles DENSITY FUNCTIONAL THEORY simulations (→ accurate description of the interatomic bonding)

## SELECTED GRAIN BOUNDARIES $\Sigma$ =5 (001) TWIST

rotational axis perpendicular to boundary plane



#### SELECTED GRAIN BOUNDARIES $\Sigma$ =11 (113), 50.48°[1-10] TILT rotational axis parallel to boundary plane



၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ ၀ 8 0 0 0 0 0 စု စ စ စ စ 00 0000 000 0 0 0 0 0000000 00000000000000000000 000000000000000000 ၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀ o o o o o o o o o o o o o o o o o o

## **BOUNDARIES AND MATERIALS**

#### • **GERMANIUM (brittle semiconductor)** $\Sigma$ =5 (001) **TWIST** BOUNDARY

C.Molteni, G.P. Francis, M.C. Payne and V. Heine, Phys. Rev. Lett. 76, 1284 (1996) [reviewed in T. Arias, "Theorist Learn to Slip and Slide", Physics World 9, 22 (1996)] C. Molteni, G.P. Francis, M.C. Payne and V. Heine, Materials Science and Engineering B 37, 121 (1996)

• ALUMINIUM (ductile metal)  $\Sigma$ =5 (001) TWIST BOUNDARY  $\Sigma$ =11 (113), 50.48 [1-10] TILT BOUNDARY

C. Molteni, N. Marzari, M.C. Payne and V. Heine, Phys. Rev. Lett. 79, 869 (1997)

C. Molteni, "Modelling grain boundary sliding from first principles", Mater. Sci. Forum 447-448, 11-17 (2003)

#### **MODELLING THE SLIDING PROCESS**



- Quasi-static simulation
  - Constant strain increment & structural relaxations at each step
- Total energy calculations DFT-LDA, pseudopotentials, plane-waves (CASTEP)
  - Ensemble DFT for metals (N. Marzari et al., Phys. Rev. Lett. 79, 1337 (1997))
- Supercells (two equivalent grain boundaries)
  - Ge twist: 70 atoms (14 layers); Al twist: 60 atoms (12 layers)
  - Al tilt: 44 atoms (22 layers)

#### $\Sigma$ =5 (001) TWIST GRAIN BOUNDARIES



Translational state (-1/20;1/20)

**Translational state (0;0)** 

## $\Sigma$ =5 (001) TWIST BOUNDARY in Ge



## $\Sigma$ =5 (001) TWIST BOUNDARY in Ge



## $\Sigma$ =5 (001) TWIST BOUNDARIES

Ge

AI





Forward sliding Backward sliding

#### **TEMPERATURE AND STRAIN RATE EFFECTS** $\Sigma$ =5 (001) twist boundary in Ge



#### **TEMPERATURE AND STRAIN RATE EFFECTS** $\Sigma$ =5 (001) twist boundary in Ge



#### **TEMPERATURE AND STRAIN RATE EFFECTS** $\Sigma$ =5 (001) twist boundary in Ge



low T, high v

high T, low v







32%



100

34%



100





**96%** 



## CONCLUSIONS

- A variety of sliding behaviours, that depend not only on the material, but also on the boundary geometry, the local order and the presence of defects, have been found.
- While sliding in Ge is controlled by local stick-slip events involving rebonding of a few atoms at the boundary interface, in Al a larger number of atoms act in concert over extended areas, ultimately limited by boundary defects.
- Still to be done: Ga in Al grain boundaries, sliding in ice grain boundaries, the quake model...

## Acknowledgements

- Mike C. Payne & Volker Heine (Cambridge University)
- Nicola Marzari (EPFL)
- Graeme P. Francis (?)
- Adrian Sutton and Mike Finnis (Imperial)
- All TCM
- EC Human Capital & Mobility programme