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QUANTUM PHYSICS II Quantum Physics ||

Michselmas 1994 o Michaelmas 1994
M.C. Payne

0. Transitions
a. Time dependent perturbation theory and Fermi's golden rule.
b. Spontaneous transitions.
¢. Selection rules.
1. Molecular structure
a. Born-Oppenheimer approximation.
b. Hyt ion: molecular orbitals, LCAO approximation, g- and u-states.
¢. Hz molecule; ionic and covalent bonding, correlation, configuration mixing.
d. Other diatomic molecules, G- and w-orbitals. Polyatomic molecules, hybridisation.
2. Molecular transitions
a. Overview: radiative and non-radiative transitions, Raman scattering. Motion of
nuclei in Born-Oppenheimer approximation.
b. Molecular rotation ('symmetric top' molecules only); energy levels, selection rules,
spectra, nuclear statistics.
¢. Molecular vibration: energy levels, selection rules: anharmonicity; rotation-vibration
bands.
d. Electronic (vibronic) transitions; Franck-Condon principle; selection rules, band
structure, band heads.
3. Effects of magnetic fields
a. Particle in uniform magnetic field: vector potential, Larmor precession, Landau

levels ADb Initio quantum
b. Atomic diamagnetism and paramagnetism; spin, spin-orbit coupling, Lande g-factor. . . '
mechanical simulations
(Non-examinable).

c. Zeeman effect: strong and weak fields; selection rules and polarisation.,

d. Magnetic susceptibility; Curie's law.

4. Ab initio quantum mechanical simulations (Non-examinable).




Room 520, Mott Building), Prof. V. Heine

Mathematical Physics 3
Dr. M.C. Payne

This course is organised around the 10 151- hour examples classes held on tuesdays and fridays

from 3pm to 4.30pm starting on 10th February. The lectures cover some but not all of the

material covered in the examples classes. The schedule of lectures and examples classes is

given below.

3rd February

7th February

10th February

14th February

17th February

21st February

24th February

28th February

Lectures

Lagrangian mechanics and
ordinary differential equations

First order partial
differential equations

Second order partial
differential equations

as above
Green's functions,
Fourier methods
as above
Group Theory

as above

Examples classes

no class

no class

Mechanics

. Ordinary differential

equations

Partial differential
equations

as above

Fourier Methods

as above

Mathematical Physics 3
Spring 1995
M.C. Payne & V. Heine



R) = it o r-t! (5.26)

Of the associated lLegendre functions, only PT{x) for £=0,1,2,... and Imi
an integer less than or equal to & is not infinite at x = X1, The first few

such functions are

PQ(cosB) =1, PJ(coso) = cosh, P}(cos8) = sind (5.27)

The combination PITI(cose) exp(im¢) is proportional to the sperical

harmonic Ygm(0,9). [Provided m is real P..,m is proportional to PT].

(ii) Cylindrical coordinates

u(x) = P(P)P(9)Z(2) (5.28)
130 3y, 12 &
vis o (p ap) ¢ 53d t a2 (5.29)

The separated equations are

1d( dP m2
SN A + (k?-a2-739P = 0O 5.30
" = -mid, ' = -a?Z (5.31)

where a and m are constants. With the change of variable x = 9\/ k2-a2
the equation in p becomes Bessel's equation ‘of order m, Thus the

solutions are

Pp) = Jm(pVk2a?) o  Yp(pVkZ-a2) (5.32)
@(¢) = exp{timy) (5.33)
Z{z) = exp(tiaz) (5.34)

Only Jm(x) with m an integer 2 O is non-singular at x=0.
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It should be noted that the single variable differential equations
obtained by separation of variables in the previous section all take the
form of eigenvaiue equations for real second order ordinary differential
operators. We know thal an appropriale choice of weight function w(x)

makes such an operator self-adjoint | ;f];—)Ly = (py') - qy ). If the

boundary conditions in the corresponding variablg are also self-adjoint
(ly;*pyi'la = lyj*pyi'lo for all ij -which is true for Cauchy, Dirichlet and
Neumann boundary conditions) the operator is Hermitian and its
eigenfunctions are a complete orthonormal set of functions of that
variable. This allows us to find a wide variety of solutions of a PDE in
the form of eigenfunction expansions which can be made 1o converge in
the mean to any solution.

Examples (i) Consider the solutions of the wave equation in the interior
of the cube with faces x=0.x, y=0.x, z=0,x. The separated equalions

(5.12) involve Hermitian operators if the boundary conditions are
chosen to be (for example) y = 0 on the faces of the cube. The

eigenvalues are m = 1,2,... ,n = 12,..., Vk2 -m2-0n2 =0 = 1,2,... with

corresponding eigenfunctions

X(x) = sin(mx), Y(y) = sin(ny), Z(z) = sin(8z) {5.35)

Thus any solution of the wave equation may be represented (in the
sense of convergence in the mean) in the interior of the cube by an
eigenfunction expansion

wixp) = ¥ sin(mx)sin(ny)sin(&z)

tmn

[ag,'{mexp(ict\( ¢2+m2+n2) - a,,,}.,,expéict\f £24m2+n?)] {5.36)

where = means ‘equals in the sense of convergence in the mean’. If ¥
vanishes on the faces of the cube the expansion actually converges
uniformly to y throughout the cube. The individual terms in the
expansion are called the normal modes of oscillation of the cube. The
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Of the associated Legendre functions, only PT(x) for £=0,1,2,... and |ml
an integer less than or equal to & is not infinite at x = 1. The first few

such functions are

Pg(cosﬂ) =1, P‘i’(cosﬁ) = cos9, P{(cosﬂ) = sind (5,

[ . . . .
The combination PTl(cose) exp(im¢) is pro al to the sperical

harmonic Yem(0.¢). [Provided m is re -t is proportional to PT].

(iii) Cylindrical inates

w We know thal an appropriate

1 makes such an operator sclf-adjoint |
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It should be noted that the single variable differential equations
obtained by separation of variables in the previous section all take the
form of eigenvaiue equations for real second order ordinary differential

operators. We know thal an appropriate choice of weight function w(x)
makes such an operator self-adjoint | ;(l;“,l.y = (py) - qy ). If the
boundary conditions in the corresponding variablg are also self-adjoint
(ly;*pyi'la = lyj"pyi'lo for all ij -which is tue for Cauchy, Dirichlet and
Neumann boundary conditions) the operator is Hermitian and its
ecigenfunctions are a complete orthonormal set of functions of that
variable. This allows us 1o find a wide variety of solutions of a PDE in
the form of eigenfunction expansions which can be made to converge in
the_mean to_any solution.

choice of weight function w(x) |neior

I - vations
woty = (py) - qy | If the | T,,

me s poundary conditions in the corresponding variablg are also self-adjoint

pd
..| Neumann boundary conditions)
h eigenfunctions are a complete orthonormal set of functions of that

(ly;"pyi'la = lyj*pyi'lo for all i,j -which is true for Cauchy, Dirichlet and | /s
the operator is Hermitian and s | /.

by an

se cwsd variable. This allows us to find a wide variety of solutions of a PDE in
the form of eigenfunction expansions which can be made 1o converge in |/,

solutions
P(p) .
( the mean to any solution.
(¢
Z(z) = exp(tiaz) (5.34)

Only Jm(x) with m an integer 2 0 is non-singular at x=0.

CIF oy
vanishes on the faces of the cube the expansion acCtuaily converges
uniformly to  throughout the cube. The individual terms in the
expansion are called the normal modes of oscillation of the cube. The




TCM PUNT TRIP - STH JULY 2001

Photo 13

=
®
Q
D
e
SN
®
O
—
=
O
DR
D
D
JJ
C
f_|-
(—|-
@
S




“Why don’t you see if there’s anything in these
order-\N methods”?”

— MCP, 2 October 1995



. First Year Report
FistYassiRaport 12 June 1996

12 June 1996

Linear Scaling Total Energy Pseudopotential
Calculations for Large Systems

Peter Haynes
Christ’s College

Supervisor: Dr. M. C. Payne

“a new
implementation of

Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K.

Much interest has recently been shown in developing methods to perform ab initio total en-

ergy pseudopotential calculations within density functional theory (DFT) in which both the the I I IethOd
computational effort and memory required scale linearly with the system size (so-called O(N)

methods.) One approach involves minimisation of an energy functional with respect to the ' '
single-particle density matrix, and here this is developed from the conventional formulation deSC rl bed y Wh ICh

of DFT. This method is implemented by discretising the wave functions and Hamiltonian on

a real-space grld A method is also present,ed for obtmmng an initial wtlmate of the densnty iS m u Ch Closer

obtained from an LCAO approach Fmally, a new unplementanon of the method whnch is

ly b devel described, which h al advantag th 1- id d
o e L R T e to traditional plane-
))
wave methods




Image credit: Harvard University Archives

diagonal in

momentum VQ localised in
¢Oé real space

space




4.1.1 Kinetic energy

The action of the Laplacian operator on the support functions can be calculated using a
finite difference technique. For a function f(z) defined on a grid of spacing h, the second
derivative to second order in the grid spacing is

= f(ne —2)+16f(n, — 1) —30f(n,) + 16 f(n, + 1) — f(n. +2)

12h2 (40)

where n, labels the grid point. This expression can be used to calculate 0?¢,/0x?, 0*Pn/0Y?,
0?¢o/02z* and therefore V2¢,, approximately at each point. The kinetic energy is then given by

Ex =2 KagTpa (41)
af
where
Tho = =4 [ &7 6a(6)V200(0 (12)

and the integral is calculated by summing over grid points as for S,3. We have also calculated
the kinetic energy by Fourier transforming each support function and then operating with the
Laplacian, which is diagonal in reciprocal-space:

(43)

where F 1 denotes taking the inverse Fourier transform. The matrix elements T,5 are then
calculated by summing over grid points as before. The discrete Fourier transform is calculated
using a fast Fourier transform (FFT) applied to the smallest rectangular grid which encloses
the spherical support region.



| | | Poster from CMMP
Localised basis functions December 1996

e Plane-waves efficiently describe systems with
a weak potential and obey the free-particle
Schrodinger (Helmholtz) equation:

(V24 k2) £(r) = 0 same equation

where the kinetic energy of the plane-wave is
E = 3k?
2

e Appropriate boundary conditions for the support
functions and hence the basis functions which
describe them are that the functions vanish at the
surface of the support regions.

e The solution to the Helmholtz equation with these
boundary conditions for a sphere of radius R
centred at the origin is:

different boundary
conditions

chﬁmjﬁ(knﬁr)yﬁm(ﬁa SD) r<R
f(r) — nfm
0 r>R




Advantages of orthogonal basis sets

Conjugate
gradients




ONETEP Developers then




Developers today




PSINC Orthogonal Basis Set

(Periodic Cardinal Sine)

Define a basis set of 3D PSINC’s on a regular grid r; . :

D’ijk( ) Pni (a1 2n1.+1) Pr (az 2712.—%1) Pns (CLS 2n§—|—1)

e Real linear combinations of plane-waves
e Localized: Dijk(rlmn) — 52'5 5jm 5/~cn

e Orthogonal: /Dijk(r) Dy (r) d°r = W 041 0 jm Okm,




FFT box technique - introduction

FFT box

O

Simulation cell

e Define a box for each function ¢,(r)

o centred on that function
o universal shape and size

e Apply fast Fourier transforms in this box

o to generate the charge density
o to apply all terms in the Hamiltonian

e This method guarantees

o consistent action of the Hamiltonian
o Hermitian Hamiltonian matrix
o linear scaling cost per iteration



FFT box technique - justification

e Define a set of PSINC's for the FFT box: df;, (r)

e [ransfer functions from the cell to the FFT box using projection operators

Po= Y

r;irEbox o

d%k><Dijk

e Replaces H|¢,) by PIHP,|¢,)

Equivalent to a coarse sampling in momentum-space: (T¢) (G)

Cell

FFT
box

o) Tl¢o) T)6a) 4

il

¥’
SN

* |
B




Original aims
stated In
Accelrys
presentation In
2004

@) ONETEP

True linear scaling

* computational time

* resources e.g. memory
Controlled accuracy

+ minimal to systematic basis set

+ Impose “nhea
Parallel scalabi

r'sightedness”
ity

Robust reliabilr

y

General purpose
+ molecules, surfaces, solids
+ Insulators, metals?






