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– MCP, 2 October 1995

“Why don’t you see if there’s anything in these 
order-N methods?”



“a new 
implementation of 
the method … is 
described, which 
… is much closer 
to traditional plane-
wave methods”

First Year Report 
12 June 1996
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localised in 
real space

4.1.1 Kinetic energy

The action of the Laplacian operator on the support functions can be calculated using a
finite di↵erence technique. For a function f(x) defined on a grid of spacing h, the second
derivative to second order in the grid spacing is
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and the integral is calculated by summing over grid points as for S
↵�

. We have also calculated
the kinetic energy by Fourier transforming each support function and then operating with the
Laplacian, which is diagonal in reciprocal-space:
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where F�1 denotes taking the inverse Fourier transform. The matrix elements T
↵�

are then
calculated by summing over grid points as before. The discrete Fourier transform is calculated
using a fast Fourier transform (FFT) applied to the smallest rectangular grid which encloses
the spherical support region.

4.1.2 Exchange-correlation energy and potential

The electronic density at grid point rg is:
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The exchange-correlation energy EXC can be calculated by summing n(rg)"XC[n(rg)] over grid
points, and the exchange-correlation potential can be calculated at each grid point as
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4.1.3 Hartree energy and potential

The electronic density can be transformed into reciprocal-space using the FFT method to
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Localised basis functions

• Plane-waves e�ciently describe systems with
a weak potential and obey the free-particle
Schrödinger (Helmholtz) equation:

�
r2 + k2

�
⇠(r) = 0

where the kinetic energy of the plane-wave is
E = 1

2

k2

• Appropriate boundary conditions for the support
functions and hence the basis functions which
describe them are that the functions vanish at the
surface of the support regions.

• The solution to the Helmholtz equation with these
boundary conditions for a sphere of radius R
centred at the origin is:
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5

same equation

different boundary 
conditions

Poster from CMMP 
December 1996
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Advantages of orthogonal basis sets



ONETEP Developers then



ONETEP Developers today
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Define a basis set of 3D PSINC’s on a regular grid rijk :

• Real linear combinations of plane-waves

• Localized: Dijk(rlmn) = δil δjm δkn

• Orthogonal:
∫

Dijk(r) Dlmn(r) d
3
r = w δil δjm δkn
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α

• Define a box for each function �
↵

(r)

� centred on that function

� universal shape and size

• Apply fast Fourier transforms in this box

� to generate the charge density

� to apply all terms in the Hamiltonian

• This method guarantees

� consistent action of the Hamiltonian

� Hermitian Hamiltonian matrix

� linear scaling cost per iteration

FFT box technique − introduction

FFT box

Simulation cell



G

• Define a set of PSINC’s for the FFT box: d↵
ijk

(r)

• Transfer functions from the cell to the FFT box using projection operators
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FFT box technique − justification

Cell
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Equivalent to a coarse sampling in momentum−space:
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ONETEP
• True linear scaling 

✦ computational time 
✦ resources e.g. memory 

• Controlled accuracy 
✦ minimal to systematic basis set 
✦ impose “nearsightedness” 

• Parallel scalability 
• Robust reliability 
• General purpose 

✦ molecules, surfaces, solids 
✦ insulators, metals?

Original aims 
stated in 
Accelrys 
presentation in 
2004:



Happy birthday Mike!
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