
Student Days
Rex Godby, University of York

cam.ac.uk





G staircase 1978-1981



G staircase 1978-1981





Supervisors

Roger Haydock (Physics)

John Waldram 
(Physics; DoS)

cam.ac.uk

cam.ac.uk



Supervisors

John Samson (Quantum Mechanics)

Richard Stibbs  
(Maths for Nat. Sci.)





Cavendish Laboratory



PhD 1981-1984: TCM

John Inkson Volker Heine Sam Edwards
exeter.ac.uk cam.ac.uk cam.ac.uk





J. Phys. C: Solid State Phys., 16 (1983) L291-L299. Printed in Great Britain 

LETTER TO THE EDITOR 

Energy loss rate in silicon inversion layers 

M C Payne, R A Daviest, J C Inkson and M Pepper$ 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 6 January 1983 

Abstract. We report the results of measurements on the rate of heat loss from hot electrons 
in silicon inversion layers at low temperatures. The results are interpreted in terms of the 
generation of acoustic phonons and it is found that disorder has a significant effect on this 
mechanism. In the low-disorder, high-temperature limit the energy relaxation time tc varies 
with electron temperature T, as TL4. In the high-disorder, low-temperature limit t,varies as 

The electron temperature is measured by the effect on the weak two-dimensional 
localisation which allows the experiment to be performed at low temperatures. 

The silicon inversion layer has become very popular for investigating the properties of 
two-dimensional electron systems. It is particularly useful for experiments on the effects 
of disorder as the elastic mean free path may be varied simply by changing the carrier 
concentration. In this work we present experimental and theoretical results on the rate 
of energy loss from a hot two-dimensional electron gas in an inversion layer. The Letter 
is divided into three main parts. The first explains the theory of the experiment; the 
second briefly describes the experimental techniques, and finally we propose an expla- 
nation of the observed energy loss rate. 

According to the theories of localisation there is a correction to the conductivity in 
two dimensions (e.g. Gorkov ef a1 1979, Kaveh and Mott 1981): 

Ao = - (nvae2/2&) ln(t& 

where ri is the inelastic scattering time, t i s  the elastic (impurity) scattering time, riv is 
the valley degeneracy and ais  a constant of order 4. 

The inelastic scattering time follows a power law dependence on temperature, 
ti CC T-P, giving the expression 

Ao = (nvape2/2n2h) In( T/To). 

It has been shown by Altshuler et a1 (1981) and Fukuyama (1980) that in the presence 
of impurity scattering the Coulomb interaction produces a similar correction to the 
conductivity. These logarithmic terms were first observed by Dolan and Osheroff (1979) 
in thin metal films and it was later shown by Uren et a1 (1980) that both terms are present 
and can be separated by the effect of a magnetic field (Davies et a1 1981, Uren et a1 

t Now at GEC Research Laboratories, E r s t  Research Centre, East Lane, Wembley, Middlesex. 
$ Also at GEC Research Laboratories. 
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Inelastic electron tunnelling spectroscopy 

M C Payne and J C Inkson 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 4 February 1983 

Abstract. Experiments have used inelastic electron tunnelling spectroscopy as a method of 
measuring the phonon density of states of the tunnelling barrier. The magnitude of the 
measured d21/dV2 characteristic is proportional to the density of phonon states multiplied 
by a weighting factor, which depends on the strength of the interaction between the electron 
and the phonon. Without a knowledge of this weighting factor the experiments can only 
yield qualitative results. In this paper we present a study of the tunnelling process and derive 
a weighting factor which allows the phonon density of states to be deduced from the 
experimental data. 

1. Introduction 

The first experiments to use inelastic electron tunnelling as a means of investigating 
energy loss processes in a tunnelling barrier were performed by Jaklevic and Lambe 
(1966). In their early experiments they incorporated organic molecules in the barrier 
and the d21/dV2 characteristic of the junction showed structure at bias voltages corre- 
sponding to the energy levels of the vibratianal modes of the organic impurities. Later 
experiments used tunnelling to investigate the phonon states of the barrier (Giaever and 
Zeller 1968). In this case the experimental d2Z/dV2 characteristic is a product of the 
density of states and a weighting factor, which depends on the strength of the 
electron-phonon interaction. Without a knowledge of this weighting factor only quali- 
tative conclusions may be drawn from the experimental results. 

Following the early experimental work a number of theoretical derivations of the 
inelastic tunnelling current were published (Bennett er a1 1968, Appelbaum and Brink- 
man 1970, Brailsford and Davis 1970). None of these applied their results to experiment 
to obtain the weighting factor. In this paper we present a study of the tunnelling process 
and the physical principles involved. We begin by considering a perfect crystalline 
barrier which demonstrates the physics of the tunnelling process. We evaluate the matrix 
element for the inelastic current through a crystalline barrier. However, the resulting 
expression requires a more detailed knowledge of the phonons than the density of states 
we are trying to measure. We then consider the case of a realistic barrier in which the 
barrier material is amorphous. This allows the derivation of a weighting factor enabling 
the phonon density of states to be deduced from the experimental measurements. 

(Q 1983 The Institute of Physics 4259 
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Physica Scripta. Vol. 21,394-401, 1980 

Density Functional Calculations for Atoms, Molecules and Clusters 
0. Gunnarsson and R. 0. Jones 

Institut fur Festkorperforschung der Kernforschungsanlage Jiilich, D-5 170 Jhlich, Germany 

Received June I 2  I9 79 

Abstract 

Density functional calculations for atoms, molecules and clusters. 0. 
Gunnarsson and R. 0. Jones (Institut fur Festkorperforschung der 
Kernforschungsanlage Jiilich, D-5 170 Jiilich, Germany). 
Physica Scripta (Sweden) 21,  394401,  1980. 

The density functional formalism provides a framework for including 
exchange and correlation effects in the calculation of ground state 
properties of manyelectron systems. The reduction of the problem to 
the solution of single-particle equations leads to important numerical 
advantages over other ab initio methods of incorporating correlation 
effects. The essential features of the scheme are outlined and results 
obtained for atomic and molecular systems are surveyed. The local spin 
density (LSD) approximation gives generally good results for systems 
where the bonding involves s and p electrons, but  results are less satis- 
factory for d-bonded systems. Non-local modifications to the LSD 
approximation have been tested on atomic systems yielding much im- 
proved total energies. 

1. Introduction 

The electron-electron interaction is a major complication in 
calculations on atoms, molecules and solids. Although accurate 
methods have been developed for atoms [l-31 and small mol- 
ecules [3-61, these methods are normally too time-consuming 
for larger systems [ 7 ] .  There have been a few Hartree-Fock 
calculations for solids [8], but larger molecules and solids are 
commonly discussed using semi-empirical methods [9] or 
model Hamiltonians. 

An alternative approach to  the treatment of many-body 
effects is provided by the density functional (DF) formalism 
[ I O ,  11 ] . This formalism is based on a theorem by Hohenberg 
and Kohn [ I O ] ,  that all ground-state properties can be ex- 
pressed as functionals of the electron density n(r). The total 
energy is such a functional, which is usually written as [ 111 

E, [n] = J’ v(r)n(r) d 3 r  + 

where E,[n] is the total energy of a system in the external 
potential g r ) ,  and Ts[n3 is the kinetic energy of a system of 
noninteracting electrons with the density n(r).  The exchange- 
correlation (xc) energy, E,, [n]  , is defined as the difference 
between the correct E,[n] and the first three terms in eq. (l), 
and contains all (many-body) effects beyond the Hartree 
theory. The functional E,  [n] attains its minimum value for the 
correct ground state density. To find this minimum, Kohn and 
Sham [ 1 1 ] used the formal similarity between the functional 
(1) and the Hartree energy t o  obtain a set of Hartree-like 
equations. 1- E V 2  + v(r) + e’ d 3 r ’  + vxc(v)]+i(r) 2m 

i =  1 

where the xc-potential, vx,(r), is the functional derivative 

(3) 

(4) 

and N is the number of electrons. This approach gives the 
ground state density n(r) and the total energy E,[n], as well as 
properties which can be derived from them. The E ~ ’ S  are 
Lagrange parameters and have not been shown t o  have any 
direct physical meaning. There is, for example, no analogue t o  
Koopmans’ theorem of Hartree-Fock theory. 

Equation (2) is a one-body equation, so that the N-particle 
problem has formally been reduced t o  N one-particle problems. 
All many-body effects are included in the xc-potential, v,,(r), 
which is local, in contrast t o  the Hartree-Fock potential. For 
a given potential v,,.(r), eq. (2) is n o  more difficult to solve than 
the Hartree equation and eqs. (1 t ( 4 )  are exact in the sense that 
they would give the exact density and total energy if the exact 
functional E,, [n]  were known [ 121 . 

The construction of approximations for E,, [ n ]  is of central 
importance in the DF formalism. A convenient starting point is 
provided by the exact expression [ 13,  141 

’ nxc(r, v’ - r) 
E,, [n] 4 1 d 3 r  n(r)  J d3r’ Ir - v’I 

where the xc-hole, 

e‘ 

( 6 )  nxc(r. r ’  - -  r) = n(r’)  Io d h  [g(r, r ’ ;  A) - I ]  

is expressed in terms of the exact pair correlation function 
g(r, r ‘ ;  A). This formula is obtained by integrating over the 
coupling constant h in the presence of an external potential 
w(r, h)  such that the density n(r) is independent of A. Thus 
g(r, v ’ ;  A) should be calculated for the physical density n(r). 

It has been shown [14, 151 that the expression ( 5 )  is fairly 
insensitive to  the exact shape of the xc-hole. A variable substi- 
tution R = r - r’ shows that 

E,, [n] = 471 d 3 r n ( r )  R d R  ni f . ( r ,R)  J‘ 1: 
depends only on the spherical average 

ni:(r, R )  = - dC2 n,,(r, R )  (7)  471 ‘s 
with non-spherical parts of the hole giving no contribution to  
E,, [n] . Furthermore, a sum rule states that the xc-hole con- 
tains one electron 

471 R 2  d R n z f . ( r , R )  = - e 2  
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Self-Consistent Equations Including Exchange and Correlation Effects*
W. KOHN AND L. J. SHAM

Unieersity of Ca/Bfornia, San Diego, la Jolta, California
(Received 21 June 1965l

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of -';.) Electronic systems at finite temperatures and in
magnetic lelds are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

I. INTRODUCTION
'N recent years a great deal of attention has been
- - given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systeins (atoms, inolecules, solids, etc.) the electronic
density is nonuniform.
It is then a matter of interest to see how properties

of the homogeneous gas can be utilized in theoretical
studies of inhomogeneous systems. The well-known
methods of Thomas-Fermi' and the Slater' exchange
hole are in this spirit. In the present paper we use the
formalism of Hohenberg and Kohn' to carry this
approach further and we obtain a set of self-consistent
equations which include, in an approximate way, ex-
change and correlation effects. They' require only a
knowledge of the true chemical potential, tie(e), of a
homogeneous interacting electron gas as a function of
the density n.
We derive two alternative sets of equations

[Eqs. (2.8) and (2.22)) which are analogous, respec-
tively, to the conventional Hartree and Hartree-Fock.
equations, and, although they also include correlation
effects, they are no more difficult to solve.
The local effective potentials in these equations are

unique in a sense which is described in Sec. II. In par-
ticular, we And that the Slater exchange-hole potential,
besides its omission of correlation effects, is too large
by a factor of —,'.
Apart from work. on the correlation energy of the

homogeneous electron gas, most theoretical many-body
studies have been concerned with elementary excita-
tions and as a result there has been little recent progress
in the theory of cohesive energies, elastic constants,
etc., of real (i.e., inhomogeneous) metals and alloys.
The methods proposed here offer the hope of new
progress in this latter area.
~ Supported in part by the U. S. Ofhce of Naval Research.'L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);E. Fermi, Z. Physik 48, 73 (1928).' J. C. Slater, Phys. Rev. 81, 385 (1951).' P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864 (1964l;

referred to hereafter as HK.

In Secs. III and IV, we describe the necessary Inodid-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.
Of course, the simple methods which are here pro-

posed in general involve errors. These are of two general
origins4: a too rapid variation of density and, for 6nite
systems, boundary effects. Refinements aimed at re-
ducing the 6rst type of error are brieQy discussed in
Appendix II.

II. THE GROUND STATE

A. Local Effective Potential
It has been shown' that the ground-state energy of an

interacting inhomogeneous electron gas in a static po-
tential n(r) can be written in the form

1 e(r)e(r')
Z= tt(r)e(r) dr+— dr dr'+G[e),

r r'[—
i:,, (2.1)

where e(r) is the density and G[e) is a universal func-
tional of the density. This expression, furthermore, is a
minimum for the correct density function e(r). In this
section we propose first an approximation for G[e),
which leads to a scheme analogous to Hartree's method
but contains the major part of the effects of exchange
and correlation.
We first write

G[e)=T.[e)yZ, [e), (2.2)
where T,[e) is the kinetic energy of a system of non-
interacting electrons with density e(r) and F,[e) is,
by our definition, the exchange and. correlation energy
of an interacting system with density e(r). For an arbi-
trary e(r), of course, one can give no simple exact ex-
pression for E,[e). However, if e(r) is sufliciently
slowly varying, one can show' that

F,[e)= e(r)e, (e(r)) dr, (2.3)

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).
~ For such a system it follows from HK that the kinetic energy

is in fact a unique functional of the density.
1138
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+ Computing Power!

Computer Memory 
(MB)

Speed 
(Gflops)

Cost 
(£, [2020 £])

1978: IBM 
370/165 (Phoenix)

1 0.001 £1M 
[£4M]

1981: Cray-1 8 0.2 £5M 
[£15M]

2020: iPhone 2000 100 £500

2020: medium 
cluster (1000 cores)

2,000,000 50,000 £0.5M
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