Mike Payne 60th

Using DFT for predictive materials science by hook or by crook Gábor Csányi

"Learn on the fly"

PHYSICAL REVIEW LETTERS

VOLUME 93, NUMBER 17

week ending 22 OCTOBER 2004

"Learn on the Fly": A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation

Gabor Csányi,¹ T. Albaret,³ M. C. Payne,¹ and A. De Vita^{2,3}

¹Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom ²Physics Department, King's College London, Strand, London WC2R 2LS, United Kingdom ³INFM-DEMOCRITOS National Simulation Center and Center of Excellence for Nanostructured Materials (CENMAT), University of Trieste, Trieste, Italy (Received 18 May 2004; published 19 October 2004)

"Real learning"

PRL 104, 136403 (2010)

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2010

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons

Albert P. Bartók and Mike C. Payne

Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

Risi Kondor

Center for the Mathematics of Information, California Institute of Technology, MC 305-16, Pasadena, California 91125, USA

Gábor Csányi

Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom (Received 1 October 2009; published 1 April 2010)

Silicon - again

Phase diagrams: Nested Sampling

PHYSICAL REVIEW B 93, 174108 (2016)

Determining pressure-temperature phase diagrams of materials

Robert J. N. Baldock,^{1,*} Lívia B. Pártay,² Albert P. Bartók,³ Michael C. Payne,¹ and Gábor Csányi³
¹Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
²Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
³Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
(Received 11 March 2015; revised manuscript received 14 February 2016; published 13 May 2016)

Approximation of partition function $\Delta(\beta, P, N)$ using cumulative density of states χ

$$\Delta(\beta, P, N) = \frac{\beta P}{N!} \left(\frac{2\pi m}{\beta h^2}\right)^{3N/2} \int_{-\infty}^{\infty} d\tilde{H} \frac{\partial \chi}{\partial \tilde{H}} e^{-\beta \tilde{H}}$$
$$\approx \frac{\beta P}{N!} \left(\frac{2\pi m}{\beta h^2}\right)^{3N/2} \sum_{i} (\chi_{i-1} - \chi_i) e^{-\beta \tilde{H}_i}$$

Isobaric heat capacity C_p to find first order phase transitions (e.g. liquid-solid, solid-solid)

$$C_P = k_B \beta^2 \frac{\partial^2 \log \Delta(\beta, P, N)}{\partial \beta^2}$$

'Top down' approach: 'High energy' \rightarrow Global minimum

Phase diagrams: Nested Sampling

Thanks Mike!

- Unwavering intellectual, material and social support for research
- Find the funding to do what you think should be done, rather than the other way around. And if you can't find it, do it anyway.
- Mike's enthusiasm is infectious, not just in science

