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Motivations from experimental spectroscopy:

■ Vibrational spectroscopy is sensitive probe of
structure and dynamics of materials.

■ All experimental methods (IR, raman, INS,
IXS) provide incomplete information.

◆ IR and raman have inactive modes
◆ Hard to distinguish fundamental and over-

tone (multi-phonon) processes in spectra
◆ No experimental technique provides com-

plete eigenvector information ⇒ mode as-
signment based on similar materials, chem-
ical intuition, guesswork.

■ Hard to find accurate model potentials to de-
scribe many systems

■ Fitted force-constant models only feasible for
small, high symmetry systems. 0 1000 2000 3000 4000
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Motivations from predictive modelling

■ Lattice dynamics calculation can establish stability or otherwise of putative
structure.

■ LD gives direct information on interatomic forces.
■ LD can be used to study phase transitions via soft modes.
■ Quasi-harmonic lattice dynamics can include temperature and calculate ZPE

and Free energy of wide range of systems.
■ Electron - phonon coupling is origin of (BCS) superconductivity.
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Books on Lattice Dynamics

■ M. T. Dove Introduction to Lattice Dynamics, CUP. - elementary introduction.
■ J. C. Decius and R. M. Hexter Molecular Vibrations in Crystals - Lattice

dynamics from a spectroscopic perspective.
■ Horton, G. K. and Maradudin A. A. Dynamical properties of solids (North

Holland, 1974) A comprehensive 7-volume series - more than you’ll need to
know.

■ Born, M and Huang, K Dynamical Theory of Crystal Lattices, (OUP, 1954) -
The classic reference, but a little dated in its approach.

References on ab-initio lattice dynamics

■ K. Refson, P. R. Tulip and S. J Clark, Phys. Rev B. 73, 155114 (2006)
■ S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561.
■ Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).
■ Richard M. Martin Electronic Structure: Basic Theory and Practical Methods:

Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge
University Press, ISBN: 0521782856
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More than one atom per unit cell gives rise to optic modes with different
characteristic dispersion.
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■ Vibrational modes in solids take form of waves with wavevector-dependent
frequencies (just like electronic energy levels).

■ ω(q) relations known as dispersion curves

■ N atoms in prim. cell ⇒ 3N branches.
■ 3 acoustic branches corresponding to sound propagation as q → 0 and 3N − 3

optic branches.
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■ Based on expansion of total energy about structural equilibrium co-ordinates

E = E0 +
X

κ,α

∂E

∂uκ,α

.uκ,α +
1

2

X

κ,α,κ′,α′

uκ,α.Φκ,κ′

α,α′
.uκ′,α′ + ...

where uκ,α is the vector of atomic displacements from equilibrium and

Φκ,κ′

α,α′
(a) is the matrix of force constants Φκ,κ′

α,α′
(a) = ∂2E

∂uκ,α∂uκ′,α′

■ At equilibrium the forces − ∂E
∂uκ,α

are all zero so 1st term vanishes.

■ In the Harmonic Approximation the 3rd and higher order terms are assumed to
be negligible

■ Assume Born von Karman periodic boundary conditions and substituting
plane-wave uκ,α = εmκ,αqexp(iq.Rκ,α − ωt) yields eigenvalue equation:

Dκ,κ′

α,α′
(q)εmκ,αq = ω2

m,qεmκ,αq

where frequencies are square roos of eigenvalues. The dynamical matrix

Dκ,κ′

α,α′
(q) =

1
p

MκMκ′

Cκ,κ′

α,α′
(q) =

1
p

MκMκ′

X

a

Φκ,κ′

α,α′
(a)e−iq.Ra

is the Fourier transform of the force constant matrix.
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■ The classical energy expression can
be transformed into a quantum-
mechanical Hamiltonian for nuclei.

■ In harmonic approximation nuclear
wavefunction is separable into product
by mode transformation.

■ Each mode satisfies harmonic oscilla-
tor Schroedinger eqn with energy levels
Em,n =

`

n + 1
2

´

~ωm for mode m.
■ Quantum excitations of modes known

as phonons in crystal
■ Transitions between levels n1 and

n2 interact with photons of energy
(n2 − n1) ~ωm, ie multiples of funda-

mental frequency ωm.
■ In anharmonic case where 3rd-order

term not negligible, overtone frequen-
cies are not multiples of fundamental.
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■ The dynamical matrix is a 3N × 3N matrix at each wavevector q.

■ Dκ,κ′

α,α′
(q) is a hermitian matrix ⇒ eigenvalues ω2

m,q are real.

■ 3N eigenvalues ⇒ modes at each q leading to 3N branches in dispersion curve.
■ The mode eigenvector εmκ,α gives the atomic displacements, and its symmetry

can be characterised by group theory.

■ Given a force constant matrix Φκ,κ′

α,α′
(a) we have a procedure for obtaining mode

frequencies and eigenvectors over entire BZ.
■ In 1970s force constants fitted to experiment using simple models.
■ 1980s - force constants calculated from empirical potential interaction models

(now available in codes such as GULP)
■ mid-1990s - development of ab-initio electronic structure methods made

possible calculation of force constants with no arbitrary parameters.
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The frozen phonon method:

■ Create a structure perturbed by guessed eigenvector
■ evaluate ground-state energy as function of amplitude λ with series of

single-point energy calculations on perturbed configurations.

■ Use E0(λ) to evaluate k = d2E0
dλ2

■ Frequency given by
p

k/µ. (µ is reduced mass)
■ Need to use supercell commensurate with q.
■ Need to identify eigenvector in advance (perhaps by symmetry).
■ Not a general method: useful only for small, high symmetry systems or limited

circumstances otherwise.
■ Need to set this up “by hand” customised for each case.
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The finite displacement method:

■ Displace ion κ′ in direction α′ by small distance ±u.
■ Use single point energy calculations and evaluate forces on every ion in system

F+
κ,α and F+

κ,α for +ve and -ve displacements.
■ Compute numerical derivative using central-difference formula

dFκ,α

du
≈

F+
κ,α − F−

κ,α

2u
=

d2E0

duκ,αduκ′,α′

■ Have calculated entire row k′, α′ of Dκ,κ′

α,α′
(q = 0)

■ Only need 6Nat SPE calculations to compute entire dynamical matrix.
■ This is a general method, applicable to any system.
■ Can take advantage of space-group symmetry to avoid computing

symmetry-equivalent perturbations.
■ Like frozen-phonon method, works only at q = 0.
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The supercell method is an extension of the finite-displacement approach.

■ Relies on short-ranged nature of FCM; Φκ,κ′

α,α′
(a) → 0 as Ra → ∞.

■ For non-polar insulators and most metals Φκ,κ′

α,α′
(a) decays as 1/R5 or faster.

■ For polar insulators Coulomb term decays as 1/R3

■ Can define “cut off” radius Rc beyond which Φκ,κ′

α,α′
(a) can be treated as zero.

■ In supercell with L > 2Rc then Cκ,κ′

α,α′
(q = 0) = Φκ,κ′

α,α′
(a).

■ Method:

1. choose sufficiently large supercell and compute Cκ,κ′

α,α′
(qsupercell = 0) using

finite-displacement method.

2. This object is just the real-space force-constant matrix Φκ,κ′

α,α′
(a).

3. Fourier transform using

Dκ,κ′

α,α′
(q) =

1
p

MκMκ′

X

a

Φκ,κ′

α,α′
(a)e−iq.Ra

to obtain dynamical matrix of primitive cell at any desired q.

4. Diagonalise Dκ,κ′

α,α′
(q) to obtain eigenvalues and eigenvectors.

■ This method is often (confusingly) called the “direct” method.
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Goal is to calculate the 2nd derivatives of energy to construct FCM or Dκ,κ′

α,α′
(q).

■ Energy E = 〈ψ| Ĥ |ψ〉 with Ĥ = ∇2 + VSCF

■ Force F = − dE
dλ

= −
D

dψ
dλ

˛

˛

˛
Ĥ |ψ〉 − 〈ψ| Ĥ

˛

˛

˛

dψ
dλ

E

− 〈ψ| dV
dλ

|ψ〉

where λ represents an atomic displacement perturbation.
■ If 〈ψ|represents the ground state of Ĥ then the first two terms vanish because

〈ψ| Ĥ
˛

˛

˛

dψ
dλ

E

= ǫn 〈ψ|
˛

˛

˛

dψ
dλ

E

= 0. This is the Hellman-Feynmann Theorem.

■ Force constants are the second derivatives of energy

k = d2E
dλ2 = − dF

dλ
=

D

dψ
dλ

˛

˛

˛

dV
dλ

|ψ〉 + 〈ψ| dV
dλ

˛

˛

˛

dψ
dλ

E

− 〈ψ| d2V
dλ2 |ψ〉

■ None of the above terms vanishes.
■ Second derivatives need linear response of wavefunctions wrt perturbation

(
D

dψ
dλ

˛

˛

˛
).

■ In general nth derivatives of wavefunctions needed to compute 2n + 1th

derivatives of energy. This result is the “2n + 1 theorem”
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■ In DFPT need first-order KS orbitals φ(1), the linear response to λ.
■ λ may be a displacement of atoms with wavevector q (or an electric field E.)
■ If q incommensurate φ(1) have Bloch-like representation:

φ
(1)
k,q

(r) = e−i(k+q).ru(1)(r) where u(1)(r) has periodicity of unit cell.

⇒ can store u(1)(r) in computer rep’n using basis of primitive cell.
■ First-order response orbitals are solutions of Sternheimer equation

“

H(0) − ǫ
(0)
m

” ˛

˛

˛
φ

(1)
m

E

= −Pcv(1)
˛

˛

˛
φ

(0)
m

E

Pc is projection operator onto unoccupied states. First-order potential v(1)

includes response terms of Hartree and XC potentials and therefore depends on
first-order density n(1)(r) which depends on φ(1).
Finding φ(1) is therefore a self-consistent problem just like solving the
Kohn-Sham equations for the ground state.

■ Two major approaches to finding φ(1) are suited to plane-wave basis sets:

◆ Green’s function (S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561).
◆ Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).

CASTEP uses Gonze’s variational DFPT method.
■ DFPT has huge advantage - can calculate response to incommensurate q from

a calculation on primitive cell.
■ Disadvantage of DFPT - lots of programming required.
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Second-derivatives in dynamical matrix given by (norm-conserving VPS):

E
(2)
el,−q,q

{u
(0)

; u
(1)

} =
Ω0

(2π)3

Z

BZ

occ
X

m

s

hD

u
(1)
mk,q

|H
(0)
k+q,k+q

− ǫ
(0)
mk

|u
(1)
mk,q

E

+

D

u
(1)
mk,q

|v
(1)
sep,k+q,k

|u
(0)
mk

E

+
D

u
(0)
mk

|v
(1)
sep,k,k+q

|u
(1)
mk,q

E

+
D

u
(0)
mk

|v
(2)
sep,k,k

|u
(0)
mk

E

dk
i

+

1

2

Z

Ω0

nh

n
(1)
q (r)

i

∗
h

v
(1)
loc,q

(r) + v
(1)
xc0,q(r)

i

+
h

n
(1)
q (r)

i h

v
(1)
loc,q

(r) + v
(1)
xc0,q(r)

i

∗
o

dr +

1

2

Z

Ω0

dvxc

dn

˛

˛

˛

˛

n(0)(r)

˛

˛

˛n
(1)
q (r)+

˛

˛

˛

2
dr + 2πΩ0

X

G

˛

˛

˛n
(1)
q (G)

˛

˛

˛

2

|q + G|2
+

Z

Ω0

n
(0)

(r)v
(2)
loc

dr +
1

2

d2Exc

dλdλ∗

˛

˛

˛

˛

˛

n(0)

Expression for ultrasoft potentials is considerably more complicated.
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■ DFPT formalism requires self-consistent iterative solution for every separate q.
■ Hundreds of q’s needed for good dispersion curves, thousands for good Phonon

DOS.
■ Can take advantage of short-range nature of real-space FCM Φκ,κ′

α,α′
(a).

■ Compute Dκ,κ′

α,α′
(q) on a Monkhorst-Pack grid of q vectors.

■ Approximation to FCM in p × q × r supercell given by Fourier transform of
dynamical matrices on p × q × r grid.

Φκ,κ′

α,α′
(a) =

X

q

Cκ,κ′

α,α′
(q)eiq.Ra

■ Fourier transform using to obtain dynamical matrix of primitive cell at any

desired q, Exactly as with Finite-displacement-supercell method

■ Diagonalise mass-weighted Dκ,κ′

α,α′
(q) to obtain eigenvalues and eigenvectors.

■ Longer-ranged coulombic contribution varies as 1/R3 but can be handled
analytically.

■ Need only DFPT calculations on a few tens of q points on grid to calculate

Dκ,κ′

α,α′
(q) on arbitrarily dense grid (for DOS) or fine (for dispersion) path.
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CASTEP can perform ab-initio lattice dynamics using

■ Primitive cell finite-displacement at q = 0
■ Supercell finite-displacement for any q

■ DFPT at arbitrary q.
■ DFPT on M-P grid of q with Fourier interpolation to arbitrary fine set of q.

Full use is made of space-group symmetry to only compute only

■ symmetry-independent elements of Dκ,κ′

α,α′
(q)

■ q-points in the irreducible Brillouin-Zone for interpolation
■ electronic k-points adapted to symmetry of perturbation.

Limitations: DFPT currently implemented only for norm-conserving
pseudopotentials and insulators. (Need fix occupancy = T, not just band gap.)
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Lattice dynamics assumes atoms at mechanical equilibrium.
Golden rule: The first step of a lattice dynamics calculation is a high-precision

geometry optimisation

■ Parameter task = phonon selects lattice dynamics calculation.
■ Iterative solver tolerance is phonon energy tol. Value of 1e − 5 ev/ang**2

usually sufficient. Sometimes need to increase phonon max cycles

■ Need very accurate ground-state as prerequisite for DFPT calculation
elec energy tol needs to be roughly square of phonon energy tol

■ N.B. Defaults are not very good in CASTEP 4.0. Fixed in 4.1.

■ Dκ,κ′

α,α′
(q) calculated at q-points specified in cell file by one of

◆ %BLOCK phonon kpoint list for the explicitly named points
◆ %BLOCK phonon kpoint path to construct a path joining the nodal points

given. Spacing along path is phonon kpoint path spacing

◆ phonon kpoint mp grid p q r and possibly
phonon kpoint mp offset 0.125 0.125 0.125 to explicitly specify a M-P
grid for a DOS.

◆ phonon kpoint mp spacing δq 1/ang to generate a M-P grid of a specified
linear spacing
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=====================================================================
+ Vibrational Frequencies +
+ ----------------------- +
+ +
+ Performing frequency calculation at 10 wavevectors (q-pts) +
+ +
+ Branch number Frequency (cm-1) +
+ ================================================================= +
+ +
+ ----------------------------------------------------------------- +
+ q-pt= 1 ( 0.000000 0.000000 0.000000) 0.022727 +
+ q->0 along ( 0.050000 0.050000 0.000000) +
+ ----------------------------------------------------------------- +
+ +
+ 1 -4.041829 0.0000000 +
+ 2 -4.041829 0.0000000 +
+ 3 -3.927913 0.0000000 +
+ 4 122.609217 7.6345830 +
+ 5 122.609217 7.6345830 +
+ 6 165.446374 0.0000000 +
+ 7 165.446374 0.0000000 +
+ 8 165.446374 0.0000000 +
+ 9 214.139992 7.6742825 +
+ ----------------------------------------------------------------- +

N.B. 3 Acoustic phonon frequencies should be zero by Acoustic Sum Rule.
Post-hoc correction if phonon sum rule = T.
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To select set phonon fine method = interpolate

Specify grid of q-points using phonon kpoint mp grid p q r .
Golden rule of interpolation: Always include the Γ point (0,0,0) in the
interpolation grid. For even p, q, r use shifted grid phonon fine kpoint mp offset

0.125 0.125 0.125 to shift one point to Γ

Dκ,κ′

α,α′
(q) interpolated to q-points specified in cell file by one of

■ %BLOCK phonon fine kpoint list for the explicitly named points
■ %BLOCK phonon fine kpoint path to construct a path joining the nodal points

given. Spacing along path is phonon fine kpoint path spacing

■ phonon fine kpoint mp grid p q r and possibly
phonon fine kpoint mp offset 0.125 0.125 0.125 to explicitly specify a M-P
grid for a DOS.

■ phonon fine kpoint mp spacing δq 1/ang to generate a M-P grid of a
specified linear spacing

Real-space force-constant matrix is stored in .check file. All fine kpoint

parameters can be changed on a continuation run. Interpolation is very fast. ⇒ can
calculate fine dispersion plot and DOS on a grid rapidly from one DFPT calculation.

Parameter phonon force constant cutoff applies real-space cutoff to Φκ,κ′

α,α′
(a).

Default is chosen according to MP grid.
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■ To select set phonon fine method = supercell

■ Set supercell in .cell file, eg 2 × 2 × 2 using

%BLOCK phonon_supercell_matrix
2 0 0
0 2 0
0 0 2
%ENDBLOCK phonon_supercell_matrix

■ Dκ,κ′

α,α′
(q) interpolated to q-points specified in cell file by one of same

phonon fine kpoint keywords as for interpolation.
■ Kpoints for supercell set using block or grid keywords supercell kpoint...

■ phonon force constant cutoff applies as for Interpolation calculation.
■ Real-space force-constant matrix is stored in .check file.
■ As with interpolation, all fine kpoint parameters can be changed on a

continuation run. Interpolation is very fast. ⇒ can calculate fine dispersion plot
and DOS on a grid rapidly from one DFPT calculation.

■ Tip. For fcc primitive cells use non-diagonal matrix

%BLOCK phonon_supercell_matrix

1 1 -1

1 -1 1

-1 1 1

%ENDBLOCK phonon_supercell_matrix

to make cubic supercell.
■ Convergence: Need very accurate forces to take their derivative.
■ Need good representation of any pseudo-core charge density and augmentation

charge for ultrasoft potentials on fine FFT grid. Usually need larger fine gmax

(or fine grid scale) than for geom opt/MD to get good results.
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■ Phonon calculations can be lengthy. CASTEP saves partial calculation
periodically in .check file if keywords num backup iter n or backup interval

t. Backup is every n q-vectors or every t seconds.
■ Phonon calculations have high inherent parallelism. Because perturbation breaks

symmetry relatively large electronic k -point sets are used.
■ Number of k-points varies depending on symmetry of perturbation.
■ Try to choose number of processors to make best use of k-point parallelism. If

Nk not known in advance choose NP to have as many different prime factors as
possible - not just 2!
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Supercell method - Silver

Motivations for ab-initio

lattice dynamics I

Motivations for ab-initio

lattice dynamics II

Lattice Dynamics of
Crystals

ab-initio Lattice
Dynamics

Lattice Dynamics in
CASTEP

Examples

DFPT with interpolation
- α-quartz

Supercell method - Silver

Barium Rhenium
Hydride

Isolated ReH
2+
9 ion

Convergence issues for
lattice dynamics

“Scaling” and other
cheats

Density Functional Methods for Experimental Spectroscopy 2009: Oxford 30 / 34

Γ X Γ L WK
0

1

2

3

4

5

6

ω
 (

T
H

z)

Ag phonon dispersion
3x3x3x4 Supercell, LDA



Barium Rhenium Hydride

Motivations for ab-initio

lattice dynamics I

Motivations for ab-initio

lattice dynamics II

Lattice Dynamics of
Crystals

ab-initio Lattice
Dynamics

Lattice Dynamics in
CASTEP

Examples

DFPT with interpolation
- α-quartz

Supercell method - Silver

Barium Rhenium
Hydride

Isolated ReH
2+
9 ion

Convergence issues for
lattice dynamics

“Scaling” and other
cheats

Density Functional Methods for Experimental Spectroscopy 2009: Oxford 31 / 34

■ with S. F. Parker, ISIS facility, RAL., Inorg. Chem.
45, 19051 (2006)

■ BaReH9 with unusual ReH2+
9 ion has very high mo-

lar hydrogen content.
■ INS spectrum modelled using A-CLIMAX software

(A. J. Ramirez Cuesta, ISIS)
■ Predicted INS spectrum in mostly excellent agree-

ment with experiment
■ LO/TO splitting essential to model INS.
■ Librational modes in error (c.f NH4F)
■ Complete mode assignment achieved.
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■ Previous ab-initio calculations on isolated
ReH2+

9 ion gave poor fit to INS.
■ Repeat isolated ion using CASTEP.
■ CASTEP model: periodic array of ions in

charged cell. Exp 1/V scaling and take V →
∞ limit.

■ V → ∞ frequencies in agreement with isolated
ion calcs.

■ ⇒ large (≈ 150 cm−1) crystal field shift
■ Can also extrapolate down to Vxtal.
■ Extrapolated ion freqs are very close to A-point

crystal freqs.
■ Crystal field shift is almost entirely a periodic

volume effect.
■ Anion modes completely insensitive to pres-

ence of cation! 0 0.002 0.004
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ab-initio lattice dynamics calculations are very sensitive to convergence issues. A
good calculation must be well converged as a function of

1. plane-wave cutoff
2. electronic kpoint sampling of the Brillouin-Zone (for crystals)

(under-convergence gives poor acoustic mode dispersion as q → 0
3. geometry. Co-ordinates must be well converged with forces close to zero

(otherwise calculation will return imaginary frequencies.)
4. For DFPT calculations need high degree of SCF convergence of ground-state

wavefunctions.
5. supercell size for “molecule in box” calculation and slab thickness for surface/s

lab calculation.
6. Fine FFT grid for finite-displacement calculations.

■ Accuracies of 25-50 cm−1 usually achieved or bettered with DFT.
■ need GGA functional e.g. PBE, PW91 for hydrogenous and H-bonded systems.
■ When comparing with experiment remember that disagreement may be due to

anharmonicity.
■ Less obviously agreement may also be due to anharmonicity. There is a “lucky”

cancellation of anharmonic shift by PBE GGA error in OH stretch modes!
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■ DFT usually gives frequencies within a few percent of experiment. Exceptions
are usually strongly-correlated systems, e.g. some transition-metal Oxides where
DFT description of bonding is poor.

■ Discrepancies can also be due to anharmonicity. A frozen-phonon calculation
can test this.

■ In case of OH-bonds, DFT errors and anharmonic shift cancel each other!
■ In solid frquencies may be strongly pressure-dependent. DFT error can resemble

effective pressure. In that case, best comparison with expt. may not be at
experimental pressure.

■ Hartree-Fock approximation systematically overestimates vibrational frequencies
by 5-15%. Commpn practice is to multiply by ”scaling factor” ≈ 0.9.

■ Scaling not recommended for DFT where error is not systematic. Over- and
under-estimation equally common.

■ For purposes of mode assignment, or modelling experimental spectra to
compare intensity it can sometimes be useful to apply a small empirical shift on
a per-peak basis. This does not generate an “ab-initio frequency”.
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