GIPAW: A solid-state theory for NMR

Jonathan Yates

jonathan.yates@materials.ox.ac.uk

Materials Modelling Laboratory, Oxford Materials
NMR parameters

we will focus on non-metallic, diamagnetic materials

Chemical Shift
- Small changes in precession frequency of nucleus
- Sharp peaks

Quadrupolar coupling (EFG)
- Nuclei spin>1/2 interact with local electric field gradients
- Characteristic broad peaks

Spin-spin coupling (eg J-coupling)
- Splitting of resonance due to nucleus-nucleus interaction
- Hard to observe in solids....
Magnetic Shielding

\[\omega = \gamma B_{\text{local}} \]

\[B_{\text{local}} = B_0 + B_{\text{induced}} \]

\[B_{\text{induced}} = -\sigma B_0 \]

The flow of orbital currents induced by the external magnetic field causes a spatial variation in the local magnetic field. This is characterised by the magnetic shielding tensor.
Flurbiprofen

magnetic shielding (from calc)

Each distinct C atom experiences a different magnetic field and resonates at a unique frequency.

Measure the change wrt a standard (for 13C this is liquid tetramethylsilane)

\[\delta_{iso} = \frac{(\omega - \omega_{ref}) \times 10^6}{\omega_{ref}} \]

\[\delta_{iso} = \sigma_{ref} - \sigma_{iso} \]
current to shift

To compute the chemical shifts we just need to calculate the current induced by the external magnetic field

Biot-Savart

$$B_{in}(\mathbf{r}) = \frac{1}{c} \int d^3r' j(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

Obtain current within perturbation theory (linear response)

$$O = O^{(0)} + O^{(1)} + \mathcal{O}(B^2)$$

$$B_{in} = -\sigma B_0$$

note: σ is a rank 2 tensor
Atomic states
Periodic Calculations

To simulate periodic systems planewaves are a convenient choice: however describing the tightly bound core states, and oscillatory part of the valence states close to the nucleus are prohibitively expensive. We must approximate...

Frozen Core Approximation
• “Core” electrons taken from free atom
 fixed during calculation

Pseudopotential Approximation
• Valence electrons experience weak effective potential in the core region

Note: Typically these two approximations are used together. But this does not have to be the case. CASTEP can employ ‘self-consistent’ pseudopotentials which allow the core states to ‘relax’ to their specific environment.
Pseudopotentials

\[V(\text{a.u.}) \]

\[r \psi \]

\[r \text{ (a.u.)} \]

\[\text{Si} \]

\[1s \]

\[2s \]

\[3s \]

\[3s \text{ (pseudized)} \]
GIPAW

Overcoming the previous approximations

Representation of Position Operator
• r is not a cell periodic function (won’t discuss this further)
 \(H^{(1)} = (r\times p).B \)

Frozen Core Approximation
• Contribution of “core” electrons to shielding is not chemically sensitive
 1s states in Carbon contribute ~200ppm in diamond, benzene, proteins
 ie core states contribute to shielding - but not shift.

Pseudopotential Approximation
• Use PAW method to fix-up valence wavefunction in the core region
Projector Augmented Waves

\[|\Psi\rangle = \mathcal{T} |\tilde{\Psi}\rangle \]

\[\mathcal{T} = 1 + \sum_{\mathbf{R},n} [|\phi_{\mathbf{R},n}\rangle - |\tilde{\phi}_{\mathbf{R},n}\rangle] \langle \tilde{\phi}_{\mathbf{R},n} | \]

GIPAW

Gauge-Including Projector Augmented Waves

Modification of PAW by Pickard and Mauri for systems in an external magnetic field - plays a role similar to GIAO in quantum chemistry techniques.
NMR - CASTEP code:
JRY, CJP, F. Mauri (Paris)

NMR-CASTEP vs Gaussian
test on small molecules
n.b. v. big Gaussian basis sets
JRY, C. Pickard, F. Mauri PRB 76, 024401 (2007)

GIPAW
A theory for solid-state NMR

![Graphs showing comparison between NMR-CASTEP and Gaussian methods.
(a) Using uncorrected valence states.
(b) With GIPAW augmentation.](image)
Maltose

sugar used in brewing

Cross-peaks when J-coupling between spins: -
C-H “bonds”
Solid-state effects

- 13C axis
- 1H axis

X - first principles
molecule only
Solid-state effects

Molecule to solid variation due to intermolecular interactions (weak hydrogen bonds)

$J. \text{Am. Chem. Soc.}$ 127 10216 (2005)
$J. \text{Am. Chem. Soc.}$ 130 945 (2008)

X - first principles
full crystal
NMR parameters

Chemical Shift

orbital currents

Quadrupolar coupling (EFG)

nuclei $l>1/2$ interact with local electric field gradients
Function of charge density

spin-spin coupling (eg J-coupling)

splitting of resonance due to nucleus-nucleus interaction hard to observe in solids....
Electric Field Gradient

Function of the charge density - ie ground-state property.
Also computed by all-electron codes such as Wien2k, Crystal

\[EFG \quad V_{\alpha\beta}(\mathbf{r}) = \int d^3 r \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|^3} \left[\delta_{\alpha\beta} - 3 \frac{(r_\alpha - r'_\alpha)(r_\beta - r'_\beta)}{|\mathbf{r} - \mathbf{r}'|^2} \right] \]

Eigenvalues

\[V_{xx}, V_{yy}, V_{zz} \quad |V_{zz}| > |V_{yy}| > |V_{xx}| \]

Quadrupolar Coupling

\[C_Q = \frac{eQV_{zz}}{h} \]

Asymmetry

\[\eta_Q = \frac{V_{xx} - V_{yy}}{V_{zz}} \]

Note: The quadrupolar moment, Q, is a nuclear property. CASTEP uses the most recent IUPAC values as defaults. But you can over-ride these (anhow it is a simple scaling factor)
Calculations

*.param file

task : magres
magres_task : shielding
efg

chemical shift/shielding

electric field gradient

both

Must use on-the-fly pseudopotentials

Highly sensitive to geometry (optimise H X-ray positions)

CONVERGE
(basis cut-off & k-points)
Chemical Shielding Tensor

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Species</th>
<th>Ion</th>
<th>Iso (ppm)</th>
<th>Aniso (ppm)</th>
<th>Asym</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td></td>
<td>23.81</td>
<td>5.27</td>
<td>0.40</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td></td>
<td>24.75</td>
<td>-3.35</td>
<td>0.85</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td></td>
<td>27.30</td>
<td>-5.79</td>
<td>0.90</td>
</tr>
<tr>
<td>O</td>
<td>5</td>
<td></td>
<td>-43.73</td>
<td>504.95</td>
<td>0.47</td>
</tr>
<tr>
<td>O</td>
<td>6</td>
<td></td>
<td>-63.53</td>
<td>620.75</td>
<td>0.53</td>
</tr>
<tr>
<td>O</td>
<td>7</td>
<td></td>
<td>-43.73</td>
<td>504.95</td>
<td>0.47</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td></td>
<td>-63.53</td>
<td>620.75</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Anisotropy

\[
\sigma_{\text{aniso}} = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} - \sigma_{yy})
\]

Asymmetry

\[
\eta = \frac{3(\sigma_{yy} - \sigma_{xx})}{2\sigma_{\text{aniso}}}
\]
*.magres File

==========
Atom: O 1
==========
O 1 Coordinates 1.641 1.522 5.785 A

TOTAL Shielding Tensor

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>218.1858</td>
<td>12.1357</td>
<td>-25.7690</td>
</tr>
<tr>
<td>13.4699</td>
<td>191.6972</td>
<td>-7.2419</td>
</tr>
<tr>
<td>-25.9178</td>
<td>-6.5205</td>
<td>216.3180</td>
</tr>
</tbody>
</table>

O 1 Eigenvalue sigma_xx 185.6127 (ppm)
O 1 Eigenvector sigma_xx 0.5250 -0.8103 0.2603
O 1 Eigenvalue sigma_yy 193.8979 (ppm)
O 1 Eigenvector sigma_yy 0.4702 0.5310 0.7049
O 1 Eigenvalue sigma_zz 246.6904 (ppm)
O 1 Eigenvector sigma_zz -0.7094 -0.2477 0.6598

O 1 Isotropic: 208.7337 (ppm)
O 1 Anisotropy: 56.9351 (ppm)
O 1 Asymmetry: 0.2183

Note: shielding tensor has a symmetric and an antisymmetric component. Typical NMR experiments are only sensitive to the symmetric part. Therefore we only diagonalise the symmetric part of the shielding tensor.
Electron-mediated interaction of nuclear spins

Solution-state NMR

J-coupling splits spectral peaks $J \sim 1\text{-}100$ Hz

No J-coupling

with J-coupling

parallel

anti-parallel
Electron’s perspective: J-coupling

Nucleus A causes a local magnetic field

• The response of the electron’s charge = current
• The response of the electron’s spin = spin density

Both the current and the spin density cause a magnetic field at Nucleus B

Calculations of the J-coupling are new to CASTEP. So new they’re not in the released version! However, there is a tutorial with a pre-release version of the code - this will give you much more information.

A single calculation gives the coupling between one (perturbing) atom and all others. Might need several calculations to get all of the couplings of interest.

Perturbing atom breaks periodicity - if the unit cell is small you might need to build a supercell to inhibit the interaction with periodic images.
Contributions to J-coupling

Spin: Fermi Contact (FC) Spin Dipolar (SD)
Charge: Paramagnetic (PARA) and Diamagnetic (DIA) - terms similar to shielding

note: only total J is observable

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Species</th>
<th>Ion</th>
<th>FC</th>
<th>SD</th>
<th>PARA</th>
<th>DIA</th>
<th>TOT (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>25.37</td>
<td>0.31</td>
<td>-5.61</td>
<td>0.10</td>
<td>20.18</td>
</tr>
<tr>
<td>Si</td>
<td>1</td>
<td>-3895.99</td>
<td>-53.73</td>
<td>-171.54</td>
<td>1.86</td>
<td>-4119.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>10</td>
<td>12.41</td>
<td>-0.04</td>
<td>0.41</td>
<td>0.01</td>
<td>12.79</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>16</td>
<td>17.97</td>
<td>0.07</td>
<td>0.43</td>
<td>0.01</td>
<td>18.48</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>30</td>
<td>14.40</td>
<td>0.23</td>
<td>0.39</td>
<td>0.01</td>
<td>15.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (A)</th>
<th>1st image</th>
<th>Iso (Hz)</th>
<th>Aniso (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si 001 -- 0 001</td>
<td>1.61808</td>
<td>12.06908</td>
<td>20.18</td>
<td>57.86</td>
</tr>
<tr>
<td>Si 001 -- Si 038</td>
<td>3.02674</td>
<td>11.25096</td>
<td>12.90</td>
<td>3.09</td>
</tr>
<tr>
<td>Si 001 -- Si 010</td>
<td>3.03908</td>
<td>7.70290</td>
<td>12.79</td>
<td>3.47</td>
</tr>
<tr>
<td>Si 001 -- Si 016</td>
<td>3.09623</td>
<td>9.83675</td>
<td>18.48</td>
<td>6.54</td>
</tr>
<tr>
<td>Si 001 -- Si 030</td>
<td>3.17013</td>
<td>11.91281</td>
<td>15.03</td>
<td>8.39</td>
</tr>
</tbody>
</table>
DNA bases

Guanosine

self-assembles into ribbons

molecular electronics (FET)

\[2hJ_{N7b,N1a} = 6.2 \pm 0.4 \text{ Hz (expt)} \]
\[6.5 \text{ Hz (calc)} \]

\[2hJ_{N7a,N1b} = 7.4 \pm 0.4 \text{ Hz (expt)} \]
\[7.7 \text{ Hz (calc)} \]

Predictions

\[2hJ_{O6a,N2b} = 5.7 \text{ Hz} \]
\[1J_{O6a,C1a} = 22.0 \text{ Hz} \]
Getting more information

NMR Books

Good Introduction
Nuclear Magnetic Resonance (Oxford Chemistry Primers)
P. J. Hore

More advanced
Spin Dynamics: Basics of Nuclear Magnetic Resonance
Malcolm H. Levitt

Introduction to solid-state NMR
Introduction to Solid-State NMR Spectroscopy (Paperback)
Melinda Duer

Useful survey of applications
Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials
Kenneth J.D. MacKenzie, M.E. Smith

Recent Review Articles

Recent advances in solid-state NMR spectroscopy of spin $I = 1/2$ nuclei

Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei
Getting more information

GIPAW Theory

A more in depth introduction to the theory (email JRY for a copy)
Comptuations of Magnetic Resonance Parameters for Crystalline Systems: Principles
Jonathan R. Yates, Chris J. Pickard

Applications to molecular crystals
Comptuations of Magnetic Resonance Parameters for Molecular Crystalline Systems: Practise
Robin K. Harris, Paul Hodgkinson, Chris J. Pickard, Jonathan R. Yates, Vadim Zorin
Encyclopedia of Magnetic Resonance (2008)

Original Theory Papers:
All-electron magnetic response with pseudopotentials: NMR chemical shifts,
Chris J. Pickard, and Francesco Mauri.

Calculation of NMR Chemical Shifts for extended systems using Ultrasoft Pseudopotentials

A First Principles Theory of Nuclear Magnetic Resonance J-Coupling in solid-state systems
Sian A. Joyce, Jonathan R. Yates, Chris J. Pickard, Francesco Mauri

www.gipaw.net