

The Power of Solid-State NMR

CASTEP Workshop Oxford, August 2009

Dr Sharon Ashbrook sema@st-andrews.ac.uk

Origin of NMR

Spin

- Nuclei possess an intrinsic angular momentum known as spin
- Quantized in units of \hbar $|\mathbf{I}| = \hbar (\mathbf{I}(\mathbf{I} + 1))^{1/2}$
- I is the spin quantum number
- I has 2I + 1 projections onto an arbitrary axis
- m_l is the magnetic spin quantum number

Zeeman interaction

- The circulating charge creates a magnetic dipole moment $\mu = \gamma$
- γ is the gyromagnetic ratio of the nucleus

- In the absence of a magnetic field all 2I + 1 orientations have the same energy
- The application of a strong magnetic field (B₀) defines the axis of quantization (usually assumed to be z)
- This Zeeman interaction lifts the degeneracy

 $E = -\mu_z B_0$ $= -\gamma m_l \hbar B_0$

• Selection rule $\Delta m_1 = \pm 1$

$$\Delta E = -\gamma \hbar B_0$$

• Larmor frequency $\omega_0 = \Delta E / \hbar = -\gamma B_0$

Zeeman interaction

	C	
lormor	troduor	
	neuuei	10165

Nucleus	I	γ / 10 ⁷ T ⁻¹ rad s ⁻¹	ν ₀ / MHz (9.4 T)
¹ H	1/2	26.75	400.0
² H	1	4.11	61.4
⁷ Li	3/2	10.40	155.5
¹¹ B	3/2	8.58	128.4
¹³ C	1/2	6.73	100.6
¹⁴ N	1	1.93	28.9
¹⁵ N	1/2	-2.71	40.5
¹⁷ O	5/2	-3.63	54.3
¹⁹ F	1/2	25.18	376.5
²³ Na	3/2	7.08	105.8
²⁵ Mg	5/2	-1.63	24.4
²⁷ AI	5/2	6.97	104.2
²⁹ Si	1/2	-5.32	79.6
³¹ P	1/2	10.84	162.1
⁴⁵ Sc	7/2	6.51	97.2
⁵⁹ Co	7/2	6.33	94.9
⁸⁷ Rb	3/2	8.79	130.9
⁸⁹ Y	1/2	-1.32	19.6
⁹³ Nb	9/2	6.56	97.9

Population differences

• For ¹H in a 9.4 T field at 298 K

 ΔE = 2.65 × 10⁻²⁵ J n_{upper}/n_{lower} = exp (- $\Delta E / kT$) = 0.999935

- Populations differences in NMR are very small sensitivity is always a concern
- Sensitivity is helped by higher magnetic field strengths and higher γ nuclei

- Need to generate a strong magnetic field (~2 to 28 T)
- Use a superconducting wire (~100 km for 850 MHz)

NbTi	10 K	15 T	~£10 / m
Nb ₃ Sn	18.3 K	30 T	~£50 / m

Superconducting magnets

Chemical shift

- The magnetic field a nucleus sees, B, is usually not equal to ${\rm B_0}$
- In an atom, the surrounding electrons generate a small magnetic field which opposes B₀
- The nucleus is "shielded" from B₀, with

$$B = B_0 - B' = B_0 (1 - \sigma)$$

|\omega| = \gamma B_0 (1 - \sigma)

- In molecules the motion of the electrons is more complicated and depends on the bonded atoms and local neighbouring groups of atoms
- Can augment or oppose the field
- This "chemical shift" defines the local environment
- Defined (ppm) relative to a reference

 $\delta = 10^6 \left(v - v_{\text{ref}} \right) / v_{\text{ref}}$

Chemical shift

Pulsed NMR

- Early NMR spectra were acquired by a continuous wave (CW) technique, sweeping the frequency of the rf field and bringing each signal into resonance sequentially
- For good resolution the sweep must be slow
- Modern spectrometers employ pulsed NMR where a short burst of intense radiofrequency radiation is applied which excites all resonances simultaneously
- After the pulse the response from the spins is measured
- Able to repeat the experiment more quickly and improve sensitivity (S/N increases by \sqrt{N} for N repetitions)

Interactions in NMR

 $H_{NMR} = H_Z + H_{rf} + H_D + H_{CS} + H_Q + H_J$

Interactions in NMR

Averaging of interactions

Solid-state NMR

• Most of the interactions in NMR can be described in the following form

• We can often make a "secular approximation", owing to the presence of strong external magnetic fields, which simplifies the Hamiltonian by only retaining components parallel to the z axis

Solid-state NMR

Chemical shift anisotropy

- The shielding of the nucleus is anisotropic (orientationally dependent)
- Although averaged in liquids to an isotropic value, in solids, the chemical shift anisotropy (CSA) becomes important

 $H_{CS} = I \cdot \sigma \cdot \gamma B_0$ secular approximation $H_{CS} = \gamma B_0 \sigma_{zz} I_z$

Chemical shift anisotropy

• We rotate to convert between the PAS and lab frame, which reveals the angular dependence of the shielding

 $\sigma_{zz} = \sigma_{iso} + (\Delta \sigma_{cs}/2) \left[(3 \cos^2 \theta_i - 1) + \eta_{cs} (\sin^2 \theta \cos 2\phi) \right]$

- In a single crystal all molecules have the same orientation with respect to B₀
- Different single crystals will have a different orientation with respect to B₀ and so a different chemical shift

- Powder samples are composed of millions of single crystals all with different orientations
- This results in a broad powder-pattern lineshape with characteristic features
- Typical magnitude 10²-10⁵ Hz

Chemical shift anisotropy

Dipolar interactions

- The nuclear magnetic dipole moments possess small localized fields which interact with the dipole moments of nearby nuclei
- This dipolar interaction is a through-space interaction
- It is averaged to zero in rapidly tumbling liquids

• The dipolar interaction between two spins k and j is given by $\omega_D = \omega_D^{PAS}(3 \cos^2 \theta_{jk} - 1) / 2$

where ω_D^{PAS} is the dipolar coupling constant $\omega_D^{PAS} = -(\mu_0/4\pi) (\gamma_k \gamma_j \hbar/r_{jk}^3)$

- For ¹H / ¹³C separated by 100 pm \approx 30 kHz
- In solids many atoms at many different distances and at many angles leads to substantial broadening

J coupling

- Indirect coupling between nuclear spin mediated by the bonding electrons
- Termed J/scalar/spin-spin/indirect dipolar coupling
- "Spectral manifestation of a chemical bond"

 $H_{J} = 2\pi I_{J} \cdot J \cdot I_{k}$

Principal axis system (PAS)

Isotropic J coupling

$$J_{iso} = (1/3) (J_{xx} + J_{yy} + J_{zz})$$

Anisotropic J coupling often small and difficult to distinguish from dipolar coupling

- The sign of J indicates whether the spin-spin contribution lowers or raises the energy of the system
- Typically observed for 1-3 bond interactions and typical magnitudes 1-1000 Hz (e.g., ¹H/¹³C ~135 Hz)

J coupling

- In solution-state NMR spectra many resonances exhibit complicated splitting patterns, resulting from scalar or J coupling
- The multiplet patterns depend upon the number of nuclei to which a spin is coupled

- For solids, the J coupling is usually much smaller than many other interactions and so multiplet structures are rarely resolved
- The coupling can still be used for the transfer of magnetization

Solid-state NMR challenges

Resolution

Anisotropic interactions result in powder lineshapes Lineshapes from inequivalent sites overlap Multiple interactions result in broad featureless lineshapes

Sensitivity

NMR is inherently insensitive

Many useful nuclei have low natural abundance (¹³C, ¹⁵N)

Inefficient relaxation results in long experiment times

Motion in NMR

fullerene - carbon-13 NMR low temperature

- All internal Hamiltonians have two distinct parts
- A spatial part which contains the variation of the interaction with orientation with respect to the B₀ field
- A spin part which (in the secular approximation) contains angular momentum terms which are parallel to the B₀ field
- To improve resolution we have to average either in "sample space" or in "spin space"

Magic-angle spinning (MAS)

- Magic-angle spinning (MAS) mimics the tumbling motion in solution by rotation of the sample around an axis inclined at an angle θ_R to the external magnetic field
- Introduced by Raymond Andrew in 1958

- When $\theta = 54.736^{\circ}$ (the "magic angle") the magnitude of interactions which depend upon $(3\cos^2 \theta 1)$ is zero
- To remove the broadening in a powdered sample all the crystallites would have to have this orientation simultaneously
- MAS involves rotation of the sample around an angle of $\theta_R = 54.736^\circ$ to the magnetic field
- If spinning is sufficiently rapid the "average" orientation of all crystallites is 54.736°
- Anisotropic interactions are then averaged to zero but isotropic terms are retained

 $<3\cos^2\theta - 1 > \propto (3\cos^2\theta_R - 1)(3\cos^2\beta - 1)$

Magic-angle spinning (MAS)

• MAS improves both the resolution and sensitivity of the spectrum

- If spinning is not sufficiently rapid the averaging is not complete
- At slower rates the lineshape breaks up into spinning sidebands (separated by the ω_R)

Practical implementation

Diameter Rate / / mm kHz		Sample volume / μl
14	5	1000-3000
7	7	300-500
4	15	50-90
2.5	35	~11
1.3	70	~2

- 1. Bearing gas reduces friction 2.
 - rotates turbines Drive gas

Summary: I = 1/2 NMR

- NMR spectra are affected by CSA, dipolar and scalar couplings
- MAS removes CSA (Δ_{CSA} , η_{CS}) retains δ_{iso}

removes heteronuclear dipolar couplings removes homonuclear dipolar couplings (fast MAS)

> removes J_{aniso} retains J_{iso}

Decoupling removes heteronuclear dipolar couplings removes homonuclear dipolar couplings

removes J_{aniso} and J_{iso}

Quadrupolar nuclei

- Over 75% of nuclides in the Periodic Table have I > 1/2 (²H, ^{6/7}Li, ¹¹B, ¹⁴N, ¹⁷O, ²³Na, ²⁵Mg, ²⁷AI, ³⁵CI, ³⁹K, ⁴⁵Sc, ⁵¹V, ⁵⁹Co, ⁷¹Ga, ⁸⁷Rb, ⁹³Nb, ...)
- Spectra broadened by interaction between the nuclear electric quadrupole moment (eQ) and the electric field gradient (EFG)
- Broadening can be very large (often ~MHz)

$$H_{Q} = \frac{eQ}{2I(2I-1)\hbar} I.V.I$$

Spin I = 1

Spin I = 3/2

MAS lineshapes

High-resolution: DOR

- Double rotation: rotation around two angles simultaneously
- Technically very complex and requires an expensive specialist probe
- Slow MAS rates (~2 kHz) of the outer rotor can be a problem, producing many spinning sidebands

High-resolution: MQMAS

- Multiple-quantum MAS (MQMAS) is a two-dimensional MAS experiment which allows the acquisition of high-resolution spectra for half-integer quadrupolar nuclei
- Removes completely the second-order quadrupolar broadening and requires only conventional MAS hardware, although sensitivity can be reduced

Summary: I > 1/2 NMR

- NMR spectra are affected by CSA, dipolar, scalar and quadrupolar couplings
- Integer spin MAS removes first-order quadrupolar broadening Lines can be too broad to observe if C_{o} is large
- Half-integer spin
 MAS can remove first-order broadening in ST
 CT unaffected by first-order broadening
 MAS unable to remove second-order broadening of CT
 DOR/MQMAS/STMAS removes all quadrupolar broadening
- Do we always use MAS?

If C_Q is very large MAS cannot easily be used Acquire wideline spectra on static samples Provides information on quadrupolar interaction (and CSA if B_0 is large) Limited to materials with relatively few distinct species

Advanced approaches

- NMR parameters provide information on structure and symmetry but much of this information is removed in the quest for higher resolution
- Recoupling Reintroduction of interactions into NMR spectra in a controlled manner
 Measurement of dipolar couplings and distances
 Measurement of CSA parameters
- 2D NMR Separation of different interactions in different dimensions
 Magnetization transfer by dipolar coupling giving through-space connectivity
 Magnetization transfer by J coupling giving through-bond connectivity

Homonuclear: COSY like

Homonuclear: DQ experiments

Heteronuclear

Summary: NMR parameters

CSA	coordination numbers, coordinating atoms, symmetry
Dipolar coupling	spatial proximity, distances, angles, disorder
J coupling	chemical bonding, H bonding distances, torsion angles
Quadrupolar	coordination numbers, symmetry, distortions, covalency

Chemical shielding	δ _{iso} , Δ _{CSA} , η _{CS} , (α, β, γ)
J coupling	J _{iso} , (J _{aniso})
Quadrupolar coupling	C _Q , η _Q , (α', β', γ')

Choice of nucleus

Larmor frequency	Nuclei with low γ and low ω_0 have poor sensitivity (⁸⁹ Y is ×10000 less sensitive than ¹ H)
Abundance	Problematic if low (e.g., ¹⁷ O (0.037%), ¹³ C (1%), ²⁹ Si (4.9%))
Chemical shift range	Larger the range more possibility for resolution (e.g., ³¹ P 500 ppm, ¹ H 10 ppm)
Chemical abundance	Presence of the element in a range of systems (e.g., O, C)
Relaxation times	Long relaxation times slow acquisition (e.g., ⁸⁹ Y 10000 s, ¹ H 5 s)
Large CSA	Can be difficult to acquire (many overlapping sidebands), but can provide extra information (e.g., ¹¹⁹ Sn, ²⁰⁷ Pb)
Strong dipolar interactions	Can be problematic if homonuclear and high γ (e.g., ¹ H, ¹⁹ F)
Quadrupolar interactions	Require much more complex experimental techniques (e.g., ²⁷ Al, ²³ Na, ⁵⁹ Co, ⁴⁵ Sc, ²⁵ Mg, ⁹³ Nb, ¹⁷ O, ⁵¹ V, ⁶ Li, ¹⁴ N, ² H)
Paramagnetism	Can often cause problems in NMR - often best avoided!

Summary of interactions

H _n	Interaction	Size	Liquids	Solids	Comments
Hz	Zeeman	10 ⁷ -10 ⁹	Yes	Yes	Interaction with main field
H _{rf}	RF	10 ³ -10 ⁵	Yes	Yes	Interaction with rf
H _{CS}	shielding	10 ² -10 ⁵	Isotropic	Anisotropic	Alteration of magnetic field by local electrons
HJ	J	1-10 ³	Isotropic	Anisotropic	Through-bond spin-spin magnetic coupling
H _D	dipolar	10 ³ -10 ⁵	0	Anisotropic	Through-space magnetic spin-spin coupling
H _Q	quadrupolar	10 ³ -10 ⁷	0	Anisotropic	Interaction of nuclear quadrupole moment with EFG