

The Power of DFT

Chris J Pickard Department of Physics & Astronomy University College London

What kind of theory?

Interpolative

The trained spectroscopist

(Semi-)empirical computational methods

Extrapolative and predictive

First principles or ab initio

Quantum mechanics is difficult $--- |1\rangle$ $--- |0\rangle$ $\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle$ One particle, two states Three particles, two states $(\alpha_1 | 0 \rangle + \beta_1 | 1 \rangle)(\alpha_2 | 0 \rangle + \beta_2 | 1 \rangle)(\alpha_3 | 0 \rangle + \beta_3 | 1 \rangle)$ $a |000\rangle + b |001\rangle + c |011\rangle + d |111\rangle +$ $e |110\rangle + f |100\rangle + g |101\rangle + h |010\rangle$ Number of coefficients goes as 2^N

In a material, the number of states and particles is very large

Density functional theory

Hohenberg-Kohn

$$E[\rho] = F[\rho] + \int V_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})d^3\mathbf{r}$$

Changes the problem to the "easy" independent particle option

Density functional theory

But we still don't know what $E_{\rm xc}[\rho]$ is

The local density approximation $E_{\rm xc}[\rho] = \int \epsilon_{\rm xc}(\rho)\rho({\bf r})d^3{\bf r}$

This is "first principles"

Generalised gradient approximations $E_{\rm xc}[\rho] = \int \epsilon_{\rm xc}(\rho, \nabla \rho) \rho({\bf r}) d^3 {\bf r}$

These may or may not be "first principles"

GGAs and beyond: PW91, PBE, BLYP [B3LYP, PBE0]

Total Energy

The plane wave pseudopotential method

The dominant electronic structure method in: materials science, condensed matter physics, (chemistry!)

It offers an excellent balance of accuracy and computational efficiency

There are many mature codes available: e.g. **CASTEP**

The trend is towards property calculation ... NMR, vibrational, optical

Applies widely

Glass

Polymer

Simple crystal

Zeolite

Solution

Shaking it

structures from nothing

Ab Initio Random Structure Searching

Shaking it

structures from nothing

Ab Initio Random Structure Searching

Shaking it

structures from nothing

Ab Initio Random Structure Searching

The Power of DFT

Wide applicability

Balance of computational effort and accuracy

An inverse lottery you normally win!