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Recap of Bloch’s Theorem

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

ψk (r) = eik.ruk (r).

We write uk (r) in a plane-wave basis as:

uk (r) =
∑

G

cGkeiG.r,

where G are the reciprocal lattice vectors, defined so that
G.L = 2πm.
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First Brillouin Zone

Adding or subtracting a reciprocal lattice vector G from k
leaves the wavefunction unchanged – in other words our
system is periodic in reciprocal-space too.

We only need to study the behaviour in the reciprocal-space
unit cell, to know how it behaves everywhere. It is
conventional to consider the unit cell surrounding the
smallest vector, G = 0 and this is called the first Brillouin
zone.
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First Brillouin Zone (2D)

The region of reciprocal space nearer to the origin than any
other allowed wavevector is called the 1st Brillouin zone.
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First Brillouin Zone (2D)

The region of reciprocal space nearer to the origin than any
other allowed wavevector is called the 1st Brillouin zone.
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E versus k

How does the energy of states vary across the Brillouin
zone? Let’s consider one particular wavefunction:

ψ(r) = eik.ru(r)

We’ll look at two different limits – electrons with high
potential energy, and electrons with high kinetic energy.
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Very localised electrons

If an electron is trapped in a very strong potential, then we
can neglect the kinetic energy and write:

Ĥ = V̂

The energy of our wavefunction is then

E(k) =

∫
ψ?(r)V (r)ψ(r)d3r

=

∫
V (r)|ψ(r)|2d3r

=

∫
V (r)|u(r)|2d3r

It doesn’t depend on k at all! We may as well do all
calculations at k = 0.
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Free Electrons

For an electron moving freely in space there is no potential,
so the Hamiltonian is just the kinetic energy operator:

Ĥ = − ~2

2m
∇2

The eigenstates of the Hamiltonian are just plane-waves –
i.e. cGk = 0 except for one particular G.

Our wavefunction is now

ψ(r) = cGei(k+G).r

⇒ ∇2ψ(r) = −(k + G)2ψ(r)
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Free Electrons

E(k) = − ~2

2m

∫
ψ?(r)∇2ψ(r)d3r

=
~2

2m
(k + G)2

∫
ψ?(r)ψ(r)d3r

=
~2

2m
(k + G)2

So E(k) is quadratic in k, with the lowest energy state
G = 0.
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Free Electrons
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Free Electrons

Each state has an energy that changes with k – they form
energy bands in reciprocal space.

Recall that the energies are periodic in reciprocal-space –
there are parabolae centred on each of the reciprocal lattice
points.
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Free Electrons



Recap

The Brillouin
zone

Band
structure

DOS

Phonons

Free Electrons

All of the information we need is actually in the first Brillouin
zone, so it is conventional to concentrate on that.
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Free Electrons



Recap

The Brillouin
zone

Band
structure

DOS

Phonons

3D

In 3D things get complicated. In general the reciprocal
lattice vectors do not form a simple cubic lattice, and the
Brillouin zone can have all kinds of shapes.
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Band structure

The way the energies of all of the states changes with k is
called the band structure.

Because k is a 3D vector, it is common just to plot the
energies along special high-symmetry directions. The
energies along these lines represent either maximum or
minimum energies for the bands across the whole Brillouin
zone.

Naturally, in real materials electrons are neither completely
localised nor completely free, but you can still see those
characteristics in genuine band structures.
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Band structure
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Transitions

Because the lowest Ne states are occupied by electrons, at
0K there is an energy below which all states are occupied,
and above which all states are empty; this is the Fermi
energy. Many band-structures are shifted so that the Fermi
energy is at zero, but if not the Fermi energy will usually be
marked clearly.

In semi-conductors and insulators there is a region of
energy just above the Fermi energy which has no bands in it
– this is called the band gap.
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Band structure
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Densities of States

The band structure is a good way to visualise the
wavevector-dependence of the energy states, the band-gap,
and the possible electronic transitions.

The actual transition probability depends on how many
states are available in both the initial and final energies. The
band structure is not a reliable guide here, since it only tells
you about the bands along high symmetry directions.
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Densities of States

What we need is the full density of states across the whole
Brillouin zone, not just the special directions. We have to
sample the Brillouin zone evenly, just as we do for the
calculation of the ground state.
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Densities of States
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Densities of States
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Densities of States
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Densities of States

Often the crystal will have extra symmetries which reduce
the number of k-point we have to sample at.

Once we’ve applied all of the relevant symmetries to reduce
the k-points required, we are left with the irreducible wedge.
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Densities of States
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Computing band structures and DOS

Computing a band structure or a DOS is straightforward:

Compute the ground state density with a good k-point
sampling
Fix the density, and find the states at the band
structure/DOS k-points

Because the density is fixed for the band structure/DOS
calculation itself, it can be quite a lot quicker than the ground
state calculation even though it may have more k-points.
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Phonons

When a sound wave travels through a crystal, it creates a
periodic distortion to the atoms.
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Phonons

When a sound wave travels through a crystal, it creates a
periodic distortion to the atoms.
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Phonons

The periodic distortion also has an associated wavevector,
which we usually call q. This distortion is of the atomic
positions so is real, rather than complex, and we can write it
as:

dq(r) = aq cos(q.r)

We can plot a phonon band structure, though we usually
plot the frequency ω against q rather than E . This shows
the frequency of different lattice vibrations, from the
long-wavelength acoustic modes to the shorter optical ones.
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Phonons

When a sound wave travels through a crystal, it creates a
periodic distortion to the atoms.
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