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Introduction

We want to be able to predict what electrons and nuclei will
do from first principles, without needing to know what they’ll
do beforehand. We can do this using quantum mechanics.

We could try to solve the Schrödinger equation

−i~
∂Ψ

∂t
= ĤΨ.

where we can write

Ĥ = T̂en + V̂e−e + V̂e−n + V̂n−n
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The Many-Body Wavefunction

The full many-body wavefunction is a function of time, and
the position of every particle:

Ψ = Ψ(r1, ..., rn,R1, ...,RN , t).

It tells us the probability of any particular configuration of
electrons and nuclei occurring at any particular time.
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The Born-Oppenheimer Approximation

Compared to electrons, nuclei are massive and slow. This
has two consequences:

Whenever a nucleus moves, the electrons react so
quickly that it may as well be instant.
The wavefunctions for the nuclei are zero except in a
very small region – we may as well forget the
wavefunction and just say ‘there they are’!
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The Born-Oppenheimer Approximation

Now we only have to worry about quantum mechanics for
the electrons. Since they react instantly to any change in
the positions of the nuclei we only have to solve the
time-independent Schrödinger equation:

Ĥψ = Eψ

where we can write

Ĥ = T̂e + V̂e−e + V̂e−n
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Density Functional Theory

Ĥ = T̂e + V̂e−e + V̂e−n

Unfortunately this is still really difficult – we don’t know T̂e
and V̂e−e.

In real life the behaviour is usually dominated by the ground
state. Can this help us?
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Density Functional Theory

In the mid-1960s two papers by Hohenberg and Kohn, and
Kohn and Sham gave a solution to this tricky problem. They
showed that the ground state energy and charge density of
interacting electrons in any external potential were exactly
the same as those of non-interacting electrons in a specially
modified potential.
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Density Functional Theory

In the Kohn-Sham scheme, we write

Ekin + Ee−e = Enon−int .
kin + Enon−int .

e−e [ρ] + Exc[ρ]

The extra term on the right-hand side is a functional of the
electron density ρ(r) and is called the exchange-correlation
functional.

We can compute ρ(r) from the wavefunctions ψm,

ρ(r) =
∑

m

|ψm(r)|2
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Density Functional Theory

Our final Hamiltonian is:

Ĥ[ρ] = − ~2

2m
∇2 + V̂ non−int .

e−e [ρ] + V̂e−n[ρ] + V̂xc[ρ].

and particle m goes in the mth solution of

Ĥ[ρ]ψm = Emψm.

Unfortunately we don’t know what V̂xc[ρ] is!
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LDA

This is a pretty good approximation to the energy – only
Exc[ρ] is unknown and this is often only about 10% of the
total energy.

In the special case that the electrons are evenly spread
throughout space, we can actually compute Exc[ρ]. We can
use this as an approximation to the true Exc in our
calculations.

In this approximation the contribution to Exc from any region
of space only depends on the density in that region, so this
is usually called the Local Density Approximation, or just
LDA.
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DFT Summary

We started with a time-dependent, many-nuclei,
many-electron quantum mechanics problem.

We’ve ended up with a static, single-particle quantum
mechanics problem:

Ĥ[ρ]ψm = Emψm

Now we just need to calculate enough states to
accommodate all of our electrons.
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Things to Remember

Even ‘perfect’ DFT is only exact for the ground state
Exchange-Correlation is approximated crudely
No collective electron-nuclear motion
No nuclear quantum effects (e.g. zero-point motion)
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Lots of Atoms

We’ve simplified our quantum problem so that we just need
to solve a single-particle equation, but we need to solve for
enough states for every electron.

Even a few grams of material has over 1023 electrons, which
means we need a lot of states! That could take us a while...
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Crystals and Unit Cells

In the solid state, most materials like to have their atoms
arranged in some kind of regular, repeating pattern, e.g.
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

where L is any lattice vector.

What does this mean for the density and wavefunction?
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Bloch’s Theorem

If the potential is periodic, then so is the density:

ρ(r + L) = ρ(r)

What about the wavefunction?

ρ(r) = |ψ(r)|2

so if ρ(r) is periodic, then so is the magnitude of the
wavefunction.

Remember wavefunctions are complex; their magnitude is
periodic, but their phase can be anything.
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Bloch’s Theorem

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

ψk (r) = eik.ruk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.

ψk (r + L) = eik.(r+L)uk (r + L)

= eik.Lψk (r)
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k-point sampling

In principle we need to integrate over all possible k when
constructing the density. Fortunately the wavefunctions
change slowly as we vary k, so we can approximate the
integral with a summation:

ρ(r) =

∫
|ψk (r)|2d3k

≈
∑

k

|ψk (r)|2

We need to make sure we use enough k-points to get
accurate results.

We’ll be looking at k-points more closely in a later talk.
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k-point sampling
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Basis sets

We need to choose a suitable basis set to represent our
wavefunctions, but what should we choose...

Points on a grid?
Polynomials?
Gaussians?
Atomic orbitals?

None of these reflect the periodicity of our problem.
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Plane-waves

Since uk (r) is periodic, we express it as a 3D Fourier series

uk (r) =
∑

G

cGkeiG.r

where cGk are complex Fourier coefficients, and the sum is
over all wavevectors (spatial frequencies) with the right
periodicity.

Only a discrete set of wavevectors have the right periodicity
– these are the reciprocal lattice vectors. If we make the cell
longer in one direction, the allowed wavevectors in that
direction become shorter.
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Reciprocal-space

Since wavevectors are measured in units of 1/length, they
describe points in reciprocal-space. We can plot the allowed
wavevectors in this space:
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Cut-off Energy

Each of the Fourier basis functions eiG.r represents a
plane-wave travelling in space, perpendicular to the vector
G.

There are an infinite number of allowed G, but the
coefficients cGk become smaller and smaller as |G|2
becomes larger and larger.

We define a cut-off energy Ecut = ~2

2m |G|
2 and only include

plane-waves with energies less than this cut-off.
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Cut-off Energy
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Cut-off Energy

We always have to ensure the cut-off energy is high enough
to give accurate results. We repeat the calculations with
higher and higher cut-off energies until the properties we’re
interested in have converged.

How do the results of our calculations depend on the cut-off
energy?



Introduction

Born-
Oppenheimer

DFT

Bloch’s
Theorem

Reciprocal-
Space
Sampling

Plane-waves

Pseudopots

Finding the
Groundstate

Cut-off Energy
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Pseudopotentials

The very large G components describe the region of space
where the wavefunction is varying very quickly. This
happens when the potential is very attractive – the strongest
potentials are those near the nuclei.
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Pseudopotentials

The wavefunctions near the nuclei are not actually very
interesting, because they don’t affect the chemical,
mechanical or electronic properties very much.

We can replace the Coulomb potential near each nucleus
with a modified, weaker potential. This modified potential is
called a pseudopotential.

Now the wavefunctions don’t vary as quickly near the
nucleus, so we can use a smaller plane-wave cut-off energy.
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Pseudopotentials

The core electrons spend all their time near the nucleus.
They repel the outer electrons, so the outer electrons feel a
weaker potential from the nucleus, but otherwise they don’t
affect the chemical properties etc.

Provided we reproduce this screening effect, we can ignore
these core electrons altogether! We consider each atom’s
nucleus and core electrons as an ion, and produce a
pseudopotential that has the same effect on the outer
electrons.

Not only have pseudopotentials reduced the cut-off energy
we need, they’ve also let us concentrate on the valence
electrons, reducing the number of states we need from our
Schrödinger equation.
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Finding the Ground State

ψm,k (r) =
∑

G

cGmkei(G+k).r.

Now all we need to do is solve Ĥk [ρ]ψm,k = Em,kψm,k to get
the lowest energy states for each k. BUT the Hamiltonian
depends on the electron density ρ(r), which depends on the
wavefunctions:

ρ(r) =
Ne∑

m=1

Nk∑
k=1

∣∣ψm,k (r)
∣∣2

We have to solve the equations iteratively.
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Finding the Groundstate
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Finding the Groundstate

You need to decide what energy change is acceptable, and
this is set by an energy convergence tolerance. The smaller
this tolerance, the closer Castep will get to the ground state
before finishing – but of course it will take longer.

Castep can also compute the forces, and you can set a
convergence tolerance on those as well as the energies. For
many spectral properties, the forces are a more accurate
measure of how far you are from the true ground state.
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Finding the Groundstate

There are two different methods used in Castep to find the
groundstate:

Density Mixing (DM)

Estimates density
Fast
Possibly unstable
Energy converges quickly, forces converge slower

Ensemble Density Functional Theory (EDFT)
Computes density
Slow
Stable
Energy and forces converge quickly
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Summary

Castep uses a plane-wave basis set to express the
wavefunctions, and these are sampled at a discrete number
of k-points. The ground state is found by iteratively
improving an initial guess until the change in energy is
small.

You need to make sure your answers are converged with
respect to:

Cut-off energy
k-point sampling
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