

Applications of NMR Calculations

CASTEP Workshop Oxford, August 2009

Dr Sharon Ashbrook sema@st-andrews.ac.uk

Experimental methods

Why calculate NMR parameters?

- Spectral assignment
- Spectral interpretation
- Confirmation of experimental NMR parameters
- Additional information (anisotropy, tensor orientation, etc.,)
- Spectral prediction
- Assessment of experimental feasibility
- Flexible way to study the dependence of NMR parameters upon structure
- Testing of structural models for materials with unknown structure
- More complex properties of solids

Disorder

Dynamics

CASTEP NMR calculations

Chemical shielding	$δ_{iso}, \Delta_{CSA}, η_{CS}, (α, β, γ)$
J coupling	J _{iso} , (J _{aniso})
Quadrupolar coupling	C _Q , η _Q , (α', β', γ')

CASTEP parameters

Ultrasoft pseudopotentials GGA (PBE) k-point spacing ~0.04 Å⁻¹ Energy cut off ~ 60 Ry (~816 eV)

AMD Opteron cluster (2-8 cores) with Infinipath interconnects

Extended frameworks Typically 12-250 atoms in unit cell

Considerations

How accurate are our calculations?

How accurate do we need them to be - what do we want to know? How accurate is the experimental data?

Do we need to optimise the structure?

Structures are of varying quality ¹H typically misplaced Do we vary the unit cell size? Do we retain the symmetry?

What about dynamics?

Diffraction and NMR are sensitive to different length scales and timescales Measurements often performed at different temperatures Significant motion on a range of timescales in the solid state

Referencing

- Experiments are referenced to an externally to a reference sample on the same spectrometer on the same day
- How do we reference our calculations?

 $\delta_{iso} = \sigma_{ref} - \sigma_{iso}$

- 1. Use a simple reference structure (e.g., SiO_2 , Al_2O_3 , Y_2O_3) to match experiment
- 2. Reference within a calculation if many shifts are present
- 3. Reference calculated from a consideration of many different materials

1. ¹⁷O NMR of high-pressure minerals

Experiment

Ashbrook, Berry and Wimperis, Am. Mineral. 84, 1191 (1999).
Ashbrook, Berry and Wimperis, J. Phys. Chem. B 106, 773 (2002).
Ashbrook, Berry, Hibberson, Steuernagel and Wimperis, J. Am. Chem. Soc. 125, 11824 (2003).
Ashbrook, Berry, Hibberson, Steuernagel and Wimperis, Am. Mineral. 90, 1861 (2005).

Experiment and Calculation

Ashbrook, Le Polles, Berry, Wimperis and Farnan, Phys. Chem. Chem. Phys. **9**, 1587 (2007). Ashbrook, Berry, Frost, Gregorovic, Pickard, Readman and Wimperis., J. Am. Chem. Soc. **129**, 13213 (2007).

The deep Earth

Experimental challenges

 High-pressure synthesis in a multi-anvil apparatus often produces only small (few mg) amount of material, limiting sensitivity

Samples kept as pellets rather than powders

- ¹⁷O, ²⁹Si and ²⁵Mg all have low natural abundance (0.037%, 4.7%, 10%)

Isotopic enrichment (¹⁷O (£500-£2000 / g), ²⁵Mg (£10000 / g))

 ¹⁷O and ²⁵Mg are quadrupolar (I = 5/2), and spectra are additionally broadened by the quadrupolar interaction

High-resolution approaches (e.g., MQMAS) More sensitive (but more technically demanding) experiments (e.g., STMAS) Spectral prediction and interpretation with DFT

 δ_2 (ppm)

Orthoenstatite

δ (ppm)

Spectral assignment

- General linear relationship of ¹⁷O δ_{iso} to Si-O bond length
- Dependence upon environment type

Perovskite

Only 1 O observed in 1D and 2D spectra?

Pop ⁿ			Experim	ental	
	гор	δ _{iso} (ppm)	P _Q / MHz	C _Q / MHz	η
01	1	109(2)	5 1(2)	5 1(1)	0 1(2)
02	2	109(2)	J. 1(Z)	5.1(1)	0.1(2)
Si	1	–193(1)			

Perovskite

Accuracy of data

2. NMR of microporous materials

Experiment

Antonijevic, Ashbrook, Biedesek, Walton, Wimperis and Yang, J. Am. Chem. Soc. 128, 8054 (2006).

Experiment and Calculation

Ashbrook, Cutajar, Pickard, Walton and Wimperis, Phys. Chem. Chem. Phys. **10**, 5754 (2008). Byrne, Warren, Morris and Ashbrook, Solid State Sci. **11**, 1001 (2009). Ashbrook, Cutajar, Griffin, Lethbridge, Walton and Wimperis, J. Phys. Chem. C **113**, 10780 (2009).

Microporous materials

- Open framework solids with regular systems of channels and cavities of molecular dimensions
- High surface area
- Typical pore dimensions 4-8 Å
- Industrial uses intimately linked to structure Selective sorption Cation exchange materials Catalysis Gas storage

• Three main types

Zeolites AIPOs MOF aluminosilicates and Cs, Na, etc., cations aluminophosphates Co, Zn, Sc, Mg, Mn, etc., and organic linkers

Aluminophosphates

- New family of porous solids discovered in 1982, composed of alternating AIO_4 and PO_4 tetrahedra
- Synthesised using a structure directing agent or template (typically an amine base)
- Incorporation of OH⁻/F⁻ into framework to charge balance and water in the pores
- Doping with Si, Ga, Mg, Mn etc., changes the catalytic properties

AIPO-14

- First synthesized in 1982 although initial confusion over the structure as the material can be prepared from a number of templates
- As-synthesized forms contain framework OH, increasing the AI coordination number

AIPO-14: NMR

³¹P MAS

²⁷AI MAS

²⁷AI MQMAS

AIPO-14 calcined

Experimental

Calculated

	$\delta_{\text{iso}} \text{ (ppm)}$	C _Q / MHz	η_{Q}		$\delta_{\text{iso}} \text{ (ppm)}$	C_Q / MH z	η_{Q}
Al1	43	4.0	0.8	Al1	38.5	5.30	0.08
Al2	43	3.4	0.2	Al2	48.6	9.69	0.26
AI3	38	2.5	0.6	Al3	40.3	5.55	0.74
Al4	4 5	4.9	0.3	Al4	55.9	7.04	0.57
P 1	-21.4			P 1	-33.5		
P 2	-26.7			P 2	-24.0		
P 3	-31.5			P 3	-35.7		
Ρ4	-26.7			P 4	-35.8		

Forces up to 4 eV / Å

Experimental		Calc optir	Calculated optimized (fixed cell)			Ca op	Calculated optimized					
	δ_{iso} (ppm)	C _Q / MHz	η_Q		δ _{iso} (ppm)	C _Q / MH z	η_Q		ξ	δ _{iso} (ppm)	C _Q / MH z	η_Q
Al1	43	4.0	0.8	Al1	46.5	3.72	0.95	AI	1	43.2	4.54	0.74
Al2	43	3.4	0.2	AI2	46.8	3.44	0.48	AI	2	43.8	3.57	0.25
AI3	38	2.5	0.6	AI3	41.8	2.22	0.37	AI	3	38.0	2.80	0.71
Al4	4 5	4.9	0.3	Al4	48.7	4.5	0.27	AI	4	46.6	4.96	0.26
P 1	-21.4			P 1	-19.3			Р	1	-21.4		
P 2	-26.7			P 2	-25.6			Р	2	-26.6		
P 3	-31.5			P 3	-30.3			Р	3	-32.9		
P 4	-26.7			P 4	-24.5			Р	4	-25.3		

Forces up to 0.02 eV / Å

Forces up to 0.015 eV / Å

• How much have we changed the structure?

• How much have we changed the structure?

AIPO-14 ipa: calculations

Experimental		Calo ¹ H c	culated only optimi	zed		Calo opti	culated mized				
	δ_{iso} (ppm)	C _Q / MH z	ηα		δ_{iso} (ppm)	C_Q / MH z	ηα		$\delta_{iso}~(ppm)$	C _Q / MH z	η_Q
Al1	27	5.6	1.0	Al1	35.9	10.5	0.73	Al1	29.5	6.01	0.92
Al2	44	4.1	0.8	Al2	41.6	6.5	0.74	Al2	44.8	3.98	0.94
AI3	43	1.7	0.6	AI3	41.7	3.78	0.59	AI3	42.6	2.27	0.98
Al4	-1	2.6	0.7	Al4	6.3	1.98	0.85	Al4	1.4	2.42	0.56
P 1	-20.6			P1	-17.5			P 1	-19.9		
P 2	-5.8			P 2	3.2			P 2	-1.1		
P 3	-24.3			P 3	-19.6			P 3	-22.3		
Ρ4	-20.1			P4	-16.0			Ρ4	-17.0		
					-						

Forces up to 2.4 eV / Å Forces up to 0.02 eV / Å

- Additional template, water and hydroxyl groups in structure
- Agreement not as good but assignment possible and in agreement with experiment

AIPO-14 ipa: motion

- Evidence for dynamics from temperature dependent broadening in STMAS experiment
- Not present in the calcined material

AIPO-14 ipa: calculations

- Much smaller differences in structure than for the calcined material
- NMR parameters very sensitive even to these small changes

AIPO-15

Experimental

	δ_{iso} (ppm)	C_Q / MH z	η_Q
AI1	2.5	3.1	0.8
Al2	-5.0	8.3	0.8
P 1	-14.3		
P 2	-20.5		

Calculated (¹H opt)

	C _Q / MH Z	ηο
3.5	-3.2	0.73
-4.2	8.3	0.87
-12.6		
-19.0		
	3.5 -4.2 -12.6 -19.0	3.5 -3.2 -4.2 8.3 -12.6 -19.0

Structure from synchrotron charge density measurements

CASTEP
100 atoms in unit cell (8 AIPO ₄ 4 (NH ₄) ⁺ 4 OH ⁻ 8 H ₂ O)
GGA/PBE Ultrasoft pseudopotentials 60 Ry cut-off energy 0.04 Å ⁻¹ k-point spacing
NMR calculation: 12 processors for 3 days
Referenced to berlinite (AIPO ₄)

Forces up to 0.1 eV / Å

3. ⁸⁹Y NMR of pyrochlore ceramics

Experiment

Ashbrook, Whittle, Lumpkin and Farnan, J. Phys. Chem. B 110, 10358 (2006).

Experiment and Calculation

Reader, Mitchell, Johnston, Pickard, Whittle and Ashbrook, submitted.

Nuclear waste remediation

- Pyrochlores proposed as host phases for the encapsulation of Ac/Ln nuclear waste
- Over last 50 years 1400 metric tons of Pu produced, and the amount is increasing at 70-80 tons per year
- Long lived isotopes ²³⁹Pu (24,100 y), ²³⁷Np (2.1 million y) and ²³³U (160,000 y)
- Good candidate for synthetic wasteforms

High crystal chemical flexibility (> 500 compositions) Tolerant of defects/substitutions Variable oxidation states High waste loading Low leach rates Resistant to radiation damage Natural analogues

89Y NMR

- Spin quantum number I = 1/2
- 100% natural abundance
- Large chemical shift range
- Low gyromagnetic ratio (1/16th of ¹H)
- Long T₁ relaxation times (~1000 s)
- ⁸⁹Y background in rotor

Pyrochlores

- Pyrochlore: $A_2B_2O_7$
- Ordered superstructure of fluorite with 1/8 O removed in an ordered manner (Fd–3m)
- 2 cation sites VIIIA 2+, 3+ VIB 5+, 4+
 - $Y_2(Sn,Ti)_2O_7$ solid solution

Pyrochlores: ⁸⁹Y NMR

Pyrochlores: analysis

- Assume that Y is found only on the VIIIA site
 What would the chemical shift be if Y was on the B site?
- Assume that the chemical shift determined only/primarily by number of Sn/Ti How does the shift change as a NNN Sn/Ti is substituted?
- Assume the spatial arrangement has negligible effect on the chemical shift Is there a shift difference between the different arrangements?
- Assume that any longer range effects are small/negligible For the same NNN arrangement how different can the chemical shift be?

Pyrochlores: calculations

Pyrochlores: approach

 $Y_2Sn_2O_7/Y_2Ti_2O_7$

"embed" cluster into unit cell

geometry optimisation / NMR

Pyrochlores: results

Pyrochlores: results

- Deviation of 6-10° away from linear for O-Y-O bond angle
- Lengthening of a number of the Y-O bonds

Pyrochlores: results

• Why do these distortions occur?

Lattice fixed to be $Y_2Sn_2O_7$ or $Y_2Ti_2O_7$ Local substitution of different size cations Substitutions reproduced periodically - need to try supercells

 Do the anomalous shifts have any impact upon the experimental analysis? Over 500 ⁸⁹Y shifts calculated using both Y₂Sn₂O₇ and Y₂Ti₂O₇ Anomalous shifts present in <3% of cases

4. Disorder and dynamics in humites

Experiment

Ashbrook, Berry and Wimperis, J. Am. Chem. Soc. **123**, 6360 (2001). Ashbrook, Antonijevic, Berry and Wimperis, Chem. Phys. Lett. **364**, 634 (2002).

Experiment and Calculation

Griffin, Wimperis, Pickard, Berry and Ashbrook, J. Phys. Chem. C 113, 465 (2009).

Humite minerals

- Proposed as possible models for defect H incorporation into mantle silicates (e.g., Mg₂SiO₄), but synthesized at relatively low pressure
- Humite minerals have the general formula

 $nMg_2SiO_4.Mg(OH)_2$

• where n = 1 (norbergite), 2 (chondrodite), 3 (humite) and 4 (clinohumite)

Humite minerals: approach

H1

H2

H1

H2

- Two ¹H sites H1 and H2 which are 50% occupied by diffraction
- Two nearby H1 cannot be occupied simultaneously

CASTEP

38/66 atoms in unit cell

GGA/PBE Ultrasoft pseudopotentials 50 Ry cut-off energy 0.05 Å⁻¹ k-point spacing

NMR calculation: 16 processors for up to 1 day

Referenced to forsterite

Humite minerals: calculations

9.4 T MQMAS

Humite minerals: calculations

- ¹H dynamics cause a change in the magnitude/orientation of nearby ¹⁷O quadrupolar tensors
- This will cause a change in the quadrupolar splitting for any one crystallite, Δv^J

- If the rate constant is comparable to Δv^J this will cause motional broadening in any experiment affected by the first-order quadrupolar interaction
- Broadening of STMAS not MQMAS spectra

 $v_{2} = \frac{v'_{a}^{PAS}}{2} (3\cos^{2}\beta_{2} - 1 + \eta'_{a} \sin^{2}\beta_{2}\cos 2\gamma_{2})$ v_{2}^{r} v_{2}^{r} v_{2}^{r} v_{3}^{r} v_{4}^{r} v_{2}^{r} v_{4}^{r} v_{4}^{r} v_{5}^{r} v_{5}^{r} v_{6}^{r} v_{7}^{r} v_{7}^{r} v

8

5

0

2

3

Oxygen site

Humite minerals: calculations

- Good agreement when $\log_{10}(k / s^{-1}) \sim 5.5$
- Estimate rate constant for H1 H2 interchange $k \sim 3.2 \times 10^5 \text{ s}^{-1}$

²H NMR of clinohumite (9.4 T)

(CA	STEP				
		δ _{iso} (ppm)	$\Delta_{ extsf{CSA}}$ (ppm)	ηcs	C _Q / kHz	η_Q
	H 1	2.1	11.85	0.110	276.3	0.027
	H 2	1.4	9.66	0.162	272.3	0.048
				V _{vi} t V _{zz} t	V _{xx}	

• Plot of ln ($\Delta v_{1/2}$) against 1/T gives activation energy of ~26 kJ mol⁻¹

Humite minerals: substitutions

- In nature, humite minerals can have substantial amounts of F or Ti incorporated
- By diffraction, only a single ¹H species is observed in substituted humites
- Hydrogen bonding restricts ¹H to the H1 site

¹⁹F MAS (30 kHz) NMR of clinohumite (14.1 T)

¹⁹F refocussed INADEQUATE MAS (30 kHz) spectrum of clinohumite (14.1 T)

Use two-dimensional correlation experiments to attempt to support assignment Indicates a through-bond interaction

• Is the "INADEQUATE" transfer via the J coupling?

• Is the "INADEQUATE" transfer via the J coupling?

"Through space" J couplings known in the literature

~170 Hz interaction observed in solution between two ¹⁹F in phenanthrene derivatives which are 5 bonds apart (*Mallory et al. J. Am. Chem. Soc.* **122**, 4108 (2000))

17 Hz interaction observed between two ¹⁹F in reductase complex which are 398 bonds apart (*Arnold et al. J. Am. Chem. Soc.* **122**, 12164 (2000))

Involves direct overlap of the F lone pairs - ab initio calculations (Bryce and Wasylishen, J. Molec. Struc. **602-603**, 463 (2002))

Preliminary CASTEP calculations using a $3 \times 1 \times 1$ supercell produced values of 12.5 and 3.6 Hz

Note large J anisotropy predicted (~225 and 41 Hz)

Why calculate NMR parameters?

- Spectral assignment
- Spectral interpretation
- Confirmation of experimental NMR parameters
- Additional information (anisotropy, tensor orientation, etc.,)
- Spectral prediction
- Assessment of experimental feasibility
- Flexible way to study the dependence of NMR parameters upon structure
- Testing of structural models for materials with unknown structure
- More complex properties of solids

Disorder

Dynamics

