Applications of core-level spectroscopy

Outline of talk

- Bonding information
- EXELFS
- Core hole
- Magnetism, dichroism, temperature
- Multiplet calculations

Density Functional Theory

- Good for periodic systems
- Good for regions close to edge onset
- Can be computationally intense
- All-electron and pseudopotential methods
- Examples: WIEN2k, CASTEP

Green's Function Methods

- Multiple scattering codes
- Good for aperiodic systems
- Good for vacancies and impurities
- Example: FEFF8

Bonding – graphite

Bonding – nitrogen

 N_2 gas

Trasobares et al. Eur Phys J B 22 (2001) 117

Jaouen et al. Microsc Microanal Microstruc 6 (1995) 127

(b) 285 295 305 315 Energy [eV]

(a)

Extended fine structure

Hug *et al.* Ultra **59** (1995) 121

Core hole

Core hole – summary

- Core hole not always straight forward!
- Always include?
- Always use large supercells
- Need to think very carefully about parameters to get a balance between an interpretable calculation and computer time / memory use

Magnetic order

 $\label{eq:Figure 1-Oxygen K-edge ELNES of MgCr_2O_4. (a) \ Long \ range \ AFM \ simulation, (b) \ paramagnetic \ simulation, (c) \ SRO \ 'spin \ clusters' \ simulation, (d) \ experimental \ spectrum.$

Eustace *et al.* Microsc Microanal **13** (2007) 1276 CD

http://www.chiraltem.physics.at/Chi-What-is-ChiralTEM.htm

Temperature

FEFF8 calculation including Debye-Waller factors

Moreno *et al.* Micron **38** (2007) 1

Valence state

Multiplet calculations

- For edges such as the L_{2,3} there can be strong overlap between the core and valence wavefunctions
- Final states are found by vector coupling final and initial states

Multiplet calculations

Ni calculation with varying charge transfer

Frank de Groot

Summary

 Combining core level spectroscopy experiments and information can be a powerful way of learning more about a material

Things to think about when simulating spectra

- What information do you want?
 - Low-loss / core-loss
 - ELNES / EXELFS
 - Bonding / valence state

- What sort of experiments are possible?
 - Energy resolution
 - Standards

Things to think about when simulating spectra

- What sort of structure do you have?
 - Periodic / amorphous
 - Several possible

Things to think about when simulating spectra

- What sort of elements do you have?
 - Magnetism
 - K / L / M edge
 - f-electrons

Things to think about when simulating spectra

- What information do you want?
- What experiments are possible?
- What sort of structure do you have?
- What sort of elements do you have?

Acknowledgements

- David Cockayne, Duc Nguyen-Manh, David Pankhurst, Seung Mi Lee
- Gianluigi Botton, Sorin Lazar
- Jonathan Yates, Chris Pickard, Shang-Peng Gao
- David McComb, David Eustace, James Perkins
- Kevin Jorissen
- Andrew Scott

