A Brief Introduction to *Ab Initio* Molecular Dynamics

Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, UK

http://www.cmt.york.ac.uk/cmd http://www.castep.org

Overview of Talk

- In this talk I hope to give you some ideas as to why you might want to do MD and what it can tell you.
- I hope to pass on some practical tips and advice, and answer some of your questions, particular w.r.t. CASTEP
- I shall illustrate with examples where possible. Time is short ...

THE UNIVERSITY of ork

Why MD?

- Atoms move!
 - We may be interested in studying time dependent phenomena, such as molecular vibrations, phonons, diffusion, etc.
 - We may be interested in studying temperature dependant phenomena, such as free energies, anharmonic effects, etc.
- Ergodic Hypothesis
 - One of the key principles behind the usefulness of MD for statistical mechanics studies
 - Iff our MD trajectory is "good enough" then a time average over the trajectory is equivalent to an ensemble average – hence MD averages are useful.

THE UNIVERSITY of

Alternatives

- Monte Carlo
 - can do thermal averages
 - hard to do time dependant things
- Hybrid MD/MC
 - bad MD as good MC
 - generate configurations using poor/cheap/fast
 MD but then evaluate contribution to
 ensemble average using MC

THE UNIVERSITY of lork

Types of ab initio MD

- Classical Motion
 - We use classical mechanics to move the atoms
 - Born-Oppenheimer approximation decouples nucleus and electrons
 - But using forces and stresses derived from the electronic wavefunction
 - No quantum fluctuations, tunneling, zero point motion, etc.
- Quantum Motion
 - Can include ZPM etc using *ab initio* Path Integral MD
- Damped MD as a geometry optimizer
 - BFGS *ought* to be a lot better but not always see Probert, J. Comput. Phys. 191, 130 (2003)

Choice of Ensemble

- NVE
 - Micro-canonical ensemble
 - Constant Number of atoms, Volume and Energy
 - Corresponds to Newtonian mechanics
 - Good for non-equilibrium situations, e.g. watching a bond vibrate or doing impact movies
- NVT
 - Canonical ensemble constant Temperature
 - More physical as it allows energy exchange with a heat bath
 - Good for simulating thermal equilibrium
 - Choice of thermostating algorithms

THE UNIVERSITY of ork

Choice of Ensemble

- NPH
 - constant pressure P and enthalpy H
 - Choice of barostats to handle pressure:
 - Andersen can allow cell to change size isotropically (liquids) whilst Parrinello-Rahman can allow changes in size and shape (solids)
 - External pressure can be isotropic (hydrostatic) or anisotropic (shear stress etc).
- NPT
 - Most physically relevant as system is now connected to a piston and a heatbath.
 - Again, choice of thermostats and barostats
- μVT constant chemical potential μ

How do you do it? NVE ...

- Integrate classical equations of motion
 - discretize time \rightarrow time step
 - different integration algorithms, e.g. Velocity Verlet: (u)

$$r(t + \delta t) = r(t) + v(t).\delta t + \frac{f(t)}{2m}.\delta t^{2} + O(\delta t^{3})$$
$$v(t + \delta t) = v(t) + \frac{f(t) + f(t + \delta t)}{2m}.\delta t + O(\delta t^{2})$$

- trade-off time step vs. stability vs. accuracy
- need accurate forces (high cutoff energies and good k-point sampling)

CMD Group Department of Physics

Other Ensembles

- Other ensembles can be simulated by using appropriate equations of motion
 - Usually derived from an extended Lagrangian (e.g. Nosé-Hoover, Parrinello-Rahman)
 - Recent developments in Liouvillian formulation have been very successful in deriving new symplectic integration schemes
- Langevin schemes need to be derived differently as non-Hamiltonian!
 - Need Focker-Planck & Liouville equation
 - see Quigley & Probert, J. Chem. Phys. 120, 11432 (2004) or my last talk at the FHI Berlin!

Simple Example: N2

- Naïve Materials Studio approach:
 - put 2 N atoms in a 5 A box at (0.4,0.5,0.5) and (0.6,0.5,0.5)
 - Use Gamma point for BZ sampling (it is an isolated molecule after all!)
 - Use default settings, e.g. "medium" Ecut.
 - Run NVT dynamics at default T=273 K using Langevin thermostat with default "Langevin time" of 0.1 ps and default time step of 1.0 fs
 - What do you see?

THE UNIVERSITY of ork

Simple N2 Movie

Temperature ???

CMD Group Department of Physics

Constant of Motion ???

CMD Group Department of Physics

What is Going On?

- Why is the temperature not constant if it is supposed to be NVT?
- The initial conditions were a long way from equilibrium. Doing a simple fixed-cell geometry optimisation relaxed > 2 eV.
- This excess PE is turned into KE by the MD – hence the huge initial temperatures before the thermostat is able to control it.
- The 2 eV excess PE shows up in the change in "constant of motion"

What is this "constant of motion"?

- It certainly does not seem very constant!
 - It depends on the ensemble but is essentially the closest thing to the "value of the Hamiltonian" which should be a conserved quantity:

$$\begin{aligned} NVE: \quad E_{Ham} &= E_{electrons} + KE_{ions} \\ NVT: \quad E_{Ham} &= E_{electrons} + KE_{ions} + PE_{NHC} + KE_{NHC} \\ NPH: \quad E_{Ham} &= E_{electrons} + KE_{ions} + p_{ext}V + KE_{cell} \\ NPT: \quad E_{Ham} &= E_{electrons} + KE_{ions} + p_{ext}V + KE_{cell} + PE_{NHC} + KE_{NHC} \end{aligned}$$

May fluctuate on short times but no long-term drift!

THE UNIVERSITY of ork

Ignoring initial T transient

CMD Group Department of Physics

Ignoring initial T transient

CMD Group Department of Physics

So ...

- Better but still some wobble in T why?
- T is only strictly defined as a *macroscopic* quantity what you are seeing is the *instantaneous* KE of a 2-particle system!
- Hence it is the average T that is important and should be conserved: <T>=217±140 K
- And that will have a stat. mech. finite size variation given by $\delta T \gtrsim 2$
- T*=273 ± 129 K

THE UNIVERSITY of York

CASTEP MD keywords

Most set in the param file:

- task=Molecular Dynamics
- md_num_iter=10000
- md_delta_t=1.0 fs
- md_ensemble=NVE or NVT or NPH or NPT
- md_temperature=300 K
- md_thermostat=Langevin **Or** Nose-Hoover
- md_barostat=Andersen-Hoover **Or** Parrinello-Rahman

should be obvious but what about md_ion_t or
 md_extrap? What do they do?

CMD Group Department of Physics

Nosé-Hoover keywords

- Nosé-Hoover chains are a standard deterministic way of thermostating system
 - Add an extra degree of freedom to the Lagrangian, to represent heat-bath with coupling depending on the instantaneous and target temperatures
 - But is not guaranteed to be ergodic
- One way to improve this is to add a thermostat to the thermostat etc ... resulting in a Nosé-Hoover chain
 - md_nhc_length=5 sets the length of this chain
 - md_ion_t = 100 fs sets the characteristic time for the feedback – for most efficient thermostating you want to set this time to resonate with dominant period of your system

THE UNIVERSITY of Jork

Langevin keywords

- Langevin dynamics are an alternative and stochastic way of thermostating system
 - Implements a heat bath via Fluctuation-Dissipation theorem
 - md_ion_t = 100 fs sets the characteristic time for the feedback - set this to be longer than the dominant period of your system
 - Typically 5*md_ion_t is sufficient to lose all trace of initial conditions and be in equilibrium
 - Guaranteed to be ergodic if run long enough

THE UNIVERSITY of ork

Barostat keywords

- What about the barostat? How is that controlled?
- In all MD schemes, the barostat is implemented by giving something a fictitious "mass"
 - Andersen-Hoover uses ¼log(V/V₀) whilst
 Parrinello-Rahman uses the cell h-matrix
- In both cases, this "mass" is set by md_cell_t which sets the time scale for relaxations of the cell motion. Should be slow ...

THE UNIVERSITY of lork

Extrapolation Explained

Background

- With *ab initio* MD, the forces and stresses are derived from the wavefunction φ
 - Hence need a converged φ at each time step
- With CPMD, this is achieved by integrating the wavefunction and the ionic positions together
- CASTEP uses BOMD and hence must reminimise φ each time, which is costly
- Wavefunction extrapolation is a useful speedup:
 - instead of using $\varphi(t)$ as the initial guess at the new $\varphi(t+\delta t)$ we extrapolate forwards in time using the MD integrator as a framework

THE UNIVERSITY of ork

Extrapolation keywords

- BUT we do not know the acceleration of φ
 - Approximate it using known change in φ over previous time steps
- If we use the current value of φ and that at the previous time step, then we have a 1st order extrapolation scheme: md_extrap = first
- Using the pre-previous time as well leads to a 2nd order scheme: md_extrap = second
- We can also switch between 1st and 2nd on alternate steps as a compromise: md_extrap = mixed
- The extrapolation can be done using coefficients fitted to the instantaneous behaviour of the ionic MD (md_extrap_fit=true) or using constant coefficients (md_extrap_fit=false)

THE UNIVERSITY of lork

Go-faster Stripes

- CASTEP uses convergence window to determine SCF convergence
 - default is for elec_convergence_win=3 SCF iterations to be within elec_energy_tol (default 10⁻⁵ eV/atom)
- With well-behaved MD this can be over-kill
 - The extrapolation saves many SCF cycles
 - Hence can use md_elec_energy_tol and md_elec_convergence_win to slacken tolerances if all is well.

THE UNIVERSITY of ork

- 1) Do a proper convergence test for cut-off energy at fixed k-sampling → 400 eV
- 2) Check for finite size interactions

5x5x5 A, 0.01 charge isosurface

7x5x5 A, 0.001 charge isosurface

- Now do geometry optimisation: δE ~ 0.1 meV, final freq. est. = 2387.5 cm⁻¹ (this is automatic from BFGS analysis) → τ = 1/(100.c.v) ~ 15 fsec so δt=1 fsec OK?
- Can change units of CASTEP input/output
 - -e.g.energy_unit = kcal/mol
 - -e.g. frequency_unit = THz, etc
- Now do NVE run best for testing quality of MD – using default T=273 K:

THE UNIVERSITY of York

CMD Group Department of Physics

CMD Group Department of Physics

Now what?

- Problem is in the velocity initialisation:
 - assigning a tempe velocity to each de
 - this leads to motio
 - hence molecule ro

hence falls foul of
Solution is to use
a 7x7x7 box or
control the initial
velocities

CMD Group Department of Physics

CMD Group

Default Nosé-Hoover in 7A³ box $< T_{150-300} > = 299 \pm 256 \text{ K}$ $< E_{ham} > = -543.40 \pm 0.02 \text{ eV}$

Velocity Control

- If doing NVE or NPH then can set T=0 K
 - But not if doing NVT or NPT!
 - So any initial velocity comes from the initial strain w.r.t. equilibrium, or by user input
- Can set up any condition by editing the .cell file, e.g.

%block IONIC_VELOCITIES
ang/ps

%endblock IONIC VELOCITIES

- - 0.0 0.0 0.0

NB 3*12.7 Ang/ps ~ speed of sound in silicon

Hence can simulate high velocity shock, nonequilibrium MD, etc

CMD Group Department of Physics

<etc>

Non-Equilbrium MD

- Movie generated in FHI using PyMoI and MovieMaker
- Bottom-most atom given initial velocity, others at rest ...

NPT Statistical Mechanics

Path Integral MD

- Hydrogen defect in silicon
 - Important defect with strong coupling of quantum ZPM to surrounding silicon lattice md_use_pathint=true md_num_beads=16 md_pathint_staging=true num_farms=16
- Movie generated from .md file using PovRay to render each timestep

THE UNIVERSITY of ork

Path Integral MD

THE UNIVERSITY of York

Computational Steering

- ... is trendy
- But it has been in CASTEP for ages!
- The .param file is re-read every time step
 - Many parameters can be changed "on-the-fly" to steer the calculation, e.g. md_temperature Or md_num_iter Or md delta t
 - and even more parameters can be changed upon a continuation
- But not the .cell file!

THE UNIVERSITY of mk

Analysis

- Materials Studio will give you elementary data and analysis
- The .castep file gives a brief summary of what is happening in the user units ...

х				MD Data:	х			
х					х			
х		time :	0.001000	ps	х			
х					х			
х	Potential	Energy:	-543.432706	eV	х			
Х	Kinetic	Energy:	0.034494	eV	х			
Х	Total	Energy:	-543.398212	eV	х			
Х	Hamilt	Energy:	-543.397578	eV	х			
Х					х			
х	Temperature:		266.854751	K	х			

THE UNIVERSITY of rk

Analysis

- More advanced analysis requires more data, for which we use the .md file.
- This contains a LOT of information, for each time step, always using atomic units:

	1.19476569E+004				
		-1.99707968E+001	-1.99692125E+001	9.64993404E-004	< E
		6.43328936E-04			< T
		1.32280829E+001	0.0000000E+000	0.0000000E+000	< h
		0.0000000E+000	1.32280829E+001	0.0000000E+000	< h
		0.0000000E+000	0.0000000E+000	1.32280829E+001	< h
Ν	1	4.83250673E+000	3.95868000E+000	-3.95873877E+000	< R
Ν	2	4.61612393E+000	5.48995066E+000	-5.48989189E+000	< R
Ν	1	1.15732344E-004	1.10453835E-004	-1.10452023E-004	< V
Ν	2	-1.15732344E-004	-1.10453835E-004	1.10452023E-004	< V
Ν	1	-1.83347496E-004	1.53896599E-003	-1.53886170E-003	< F
Ν	2	1.83347496E-004	-1.53896599E-003	1.53886170E-003	< F

CMD Group Department of Physics

More Analysis of MD?

- Using the .md file as input you can easily write your own analysis codes – e.g. MDTEP on www.castep.org
- MDTEP can calculate
 - radial distribution function, velocity autocorrelation function, mean-squared displacement, heat capacity, thermal expansion coefficient, bulk modulus, temperature and volume distributions

- and generate .xmol and .axsf files for standard Linux visualisation programs CMD Group Department of Physics

Miscellaneous Tips

- The choice of time step should reflect the physics not the algorithm
 - e.g. smallest phonon period/10
 - effects the conservation properties of system and long-time stability
 - Langevin: md_ion_t ~ 10*period
 - Nosé-Hoover: md_ion_t ~ period
 - NPH or NPT: md_cell_t ~ 100*period
 - equilibration time ~ 5*max(md_ion_t, md_cell_t)
- Can use constraints to increase time step
 - freeze motions that are not of interest

THE UNIVERSITY of lork

Use of Constraints

- Based upon an extended Lagrangian
- Can do any number of linear constraints
 - e.g. Fix atom, centre of mass, relative positions, plane, etc.
- Non-linear constraints requires extra coding for each different constraint
 - e.g. to fix relative separation
 - bond-length constraints written but not yet fully tested and ready for general release
- Can increase time step if freeze unimportant motions, e.g. C-H bond vibrations etc.

THE UNIVERSITY of mk

Choice of Electronic Minimizer?

- All-bands/EDFT
 - self consistent φ and ρ
 - Variational E~ $O(h^2)$, F~O(h)
 - Best for high-quality MD but slow
- Density-Mixing
 - Non-variational minimisation and non-self consistent φ and ρ => need high accuracy φ
 - Harris-Foulkes functional has $E \sim O(h^3)$
 - Energy-based convergence criteria deceiving!

THE UNIVERSITY of lork

Practical Tips

- Beware Equilibration
 - sensitivity to initial conditions
 - depends on the quantity of interest
- Not all configurations are equal
 - sampling and correlation
 - statistical inefficiency
- Apply basic physics to the results conservation laws, equipartition, etc

THE UNIVERSITY of ork

Conclusions

- MD is a useful general-purpose tool for computer experiments
 - Widely applicable
 - e.g. to study finite temperature or time dependant or non-equilibrium phenomena
 - Much more than shown here!
- This has been a brief overview
 - see references for details

References

- "Molecular Dynamics Simulations"
 - J.M. Haile, (1992). Beginners guide.
- "Computer Simulation of Liquids"
 - M.P Allen & D.J. Tildesley (1987). Old but useful.
- "Understanding Molecular Simulation 2nd Ed."
 D. Frenkel & B. Smit (2002). Very useful.
- www.castep.org web site
 - Useful MD and geometry optimisation tutorials, plus FAQs, on-line keyword listing, MDTEP download, etc.

THE UNIVERSITY of ork