CASTEP Workshop 2006

Finding the Kohn-Sham Groundstate

University of York 16th-21st September 2007

1

Castep Workshop '07

Overview

- The DFT Schrödinger equation
- □ Minimising the KS energy
- Metals and finite temperatures
- Density mixing and Ensemble DFT

The DFT Hamiltonian

The object is to find the single-particle solutions to the Schrödinger equation

$$\hat{H}_{ks}\Psi_{i}=\epsilon_{i}\Psi_{i}$$

where *i* labels the different eigenstates and the Hamiltonian is given by

$$\hat{H}_{ks} = -\frac{1}{2} \nabla^2 + \hat{V}_H + \hat{V}_{xc} + \hat{V}_{ps}$$

Castep Workshop '07

We are using a plane-wave basis and sampling the Brillouin zone at a finite number of k-points,

$$\Psi = \sum_{\boldsymbol{G}} c_{\boldsymbol{k},\boldsymbol{G}} e^{i(\boldsymbol{k}+\boldsymbol{G})\cdot\boldsymbol{r}}$$

- where the sum is over all reciprocal lattice vectors below some **cut-off** wavevector.
- The wavefunctions at different k-points only interact via the density, so each k-point yields a separate Kohn-Sham equation.

Castep Workshop '07

- For simplicity we will consider only a calculation at a single k-point, and omit the subscript k.
- Each eigenstate is normalised to contain only one particle.

$$\langle \Psi_i | \Psi_i \rangle = 1$$

Each eigenstate is orthogonal to all other eigenstates (Pauli exclusion principle).

$$\langle \Psi_i | \Psi_j \rangle = 0$$

Castep Workshop '07

Self-Consistency

The Hartree potential represents the Coulomb repulsion between the different particles and is given by:

$$V_{H}(r) = \int \frac{n(r')}{|r-r'|} d^{3}r'$$

where *n* is the charge density

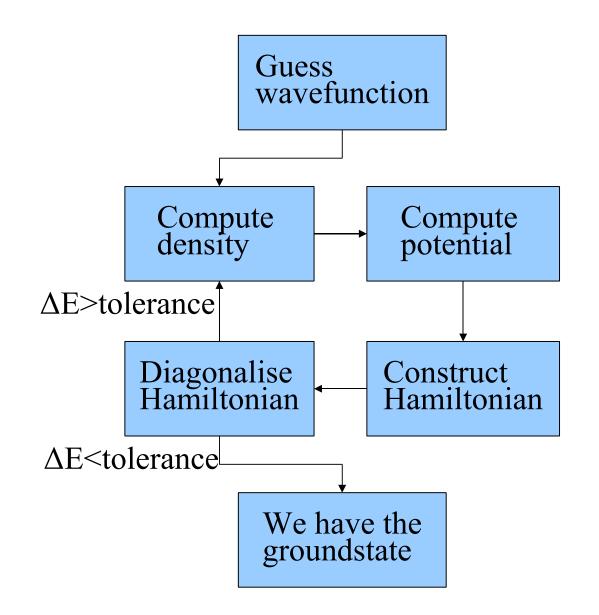
$$n(r) = \sum_{i} f_{i} |\Psi_{i}(r)|^{2}$$

Castep Workshop '07

- Notice that the Hartree potential depends on the density, and the density depends on the wavefunctions, we no longer have a fixed Hamiltonian to solve.
- The exchange-correlation potential also depends on the density – the Hamiltonian changes as the wavefunctions change!
- We need to find a set of wavefunctions that lead to a Hamiltonian whose solutions are the wavefunctions we started with.
- □ This is called **self-consistency**.

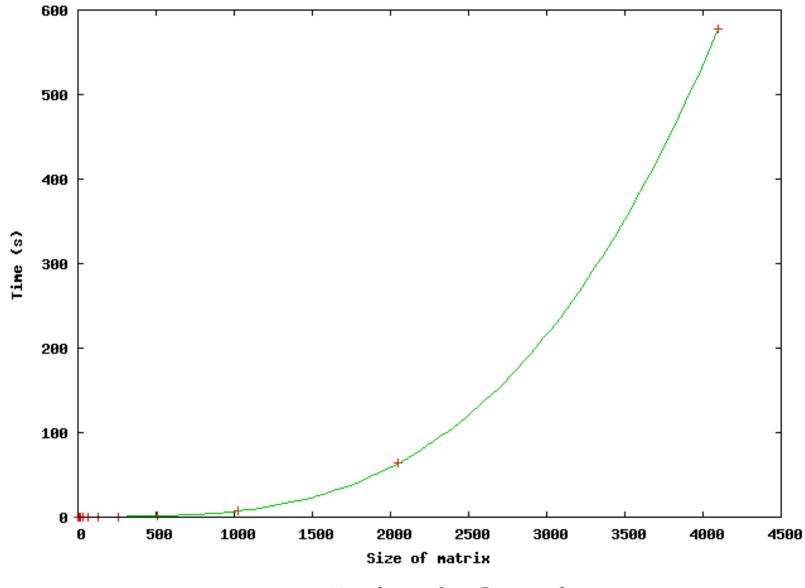
Castep Workshop '07

Putting it on a computer


- The wavefunction is represented as a vector formed from the complex coefficients *c*.
- Operators such as the Hamiltonian are linear transformations of wavefunctions, and are represented by square Hermitian matrices.
- In principle we can now solve the Kohn-Sham equations by constructing and then diagonalising this Hamiltonian matrix to get all of the eigenstates and eigenvalues.

Castep Workshop '07

First Attempt - Diagonalisation


- Start with an initial set of wavefunctions, and construct the density.
- Construct the local potential from the density, and hence the Hamiltonian.
- Diagonalise to get eigenstates.
- Construct new density from eigenstates, and thus a new Hamiltonian.
- Repeat until the new Hamiltonian is the same as the old one – self-consistent field (SCF).

Castep Workshop '07

Castep Workshop '07

- □ Unfortunately the number of plane-waves required is large, often 10,000-100,000.
- Suppose we require 30,000 plane-waves for a calculation. The Hamiltonian is a matrix of size 30,000 x 30,000 = 9 x 10⁸ elements.
- The computational time required to diagonalise a matrix scales as the cube of its size...

Computation Time for Direct Diagonalisation

Castep Workshop '07

Finding the Groundstate

- Estimated time to diagonalise our Hamiltonian on a 2.8GHz Pentium IV is 74 hours (per k-point, per SCF cycle).
- This procedure gives us all 30,000 eigenstates, but typically fewer than 1% of these are occupied; the vast majority do not contribute to the density and have little physical meaning.

Minimising the KS energy

An alternative method is to improve the wavefunctions iteratively. The energy of a wavefunction can be calculated as:

$$E = \sum_{i} \langle \Psi_{i} | \hat{H}_{ks} | \Psi_{i} \rangle$$

We can differentiate this to find the gradient of the energy w.r.t. the wavefunction.

$$\frac{\delta E}{\delta \langle \Psi_i |} = \hat{H}_{ks} | \Psi_i \rangle$$

Castep Workshop '07

Steepest descent

Using Lagrange multipliers we can include the constraint of normalisation and show that the constrained gradient is

$$\hat{G} |\Psi_i\rangle = \hat{H} |\Psi_i\rangle - \epsilon_i |\Psi_i\rangle$$

If we include the orthogonalisation constraint as well we get:

$$\hat{G} \left| \boldsymbol{\Psi}_{i} \right\rangle = \hat{H} \left| \boldsymbol{\Psi}_{i} \right\rangle - \sum_{j} \left\langle \boldsymbol{\Psi}_{j} \right| \hat{H} \left| \boldsymbol{\Psi}_{i} \right\rangle \left| \boldsymbol{\Psi}_{j} \right\rangle$$

Castep Workshop '07

- We can now take any wavefunction and calculate the energy gradient direction.
- This is the direction in which the energy increases most rapidly. Since we are looking for the lowest energy we search in the opposite direction, the direction of steepest descent.
- The constrained gradient is used rather than the ordinary gradient to prevent all the eigenstates converging to the lowest one—only one particle is allowed in each eigenstate.

Castep Workshop '07

The Hamiltonian

- In principle the Hamiltonian is still of size number of plane-waves squared, so difficult to store in RAM and expensive to apply.
- Fortunately the kinetic energy operator is diagonal in reciprocal space, and the local (Hartree+exchange-correlation) potential is diagonal in real-space, so we only actually need to store these diagonal components.

Castep Workshop '07

Now start with initial wavefunction and construct the steepest descent direction.

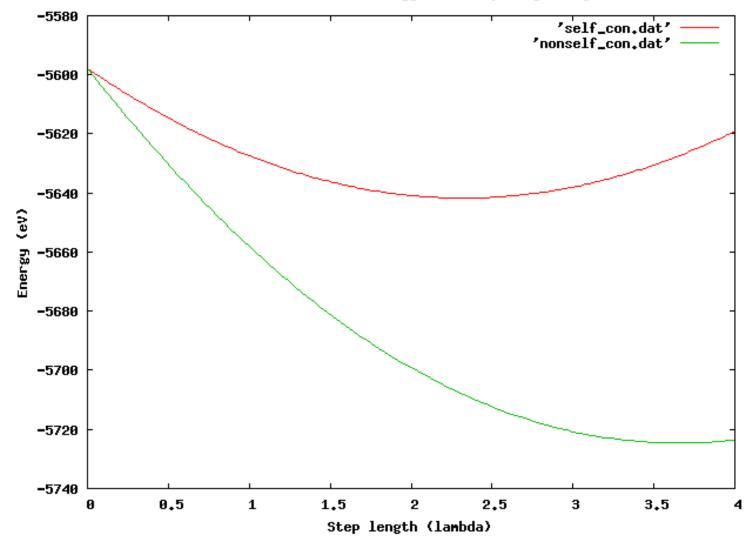
$$\left| oldsymbol{\Phi}
ight
angle \!=\! - \hat{G} \left| oldsymbol{\Psi}
ight
angle$$

□ Search along this direction for lowest energy.

$$|\Psi'\rangle = |\Psi\rangle + \lambda |\Phi\rangle$$

Calculate new search direction and repeat. After the first step better schemes may be used, such as conjugate gradients.

Castep Workshop '07


- Iterative diagonalisation is a bit slower per eigenstate than direct diagonalisation, but allows us to calculate only the ~1% of eigenstates that actually have particles in them.
- For N electrons we only need N eigenstates, so we iteratively diagonalise the Hamiltonian to obtain the N lowest eigenstates.
- E.g. 8-atom magnesium oxide cell at 330eV has 1021 plane-waves and 56 electrons. Direct diagonalisation time is 7.93s per k-point per SCF, iterative diagonalisation is 0.48s.

Castep Workshop '07

Self-consistency revisited

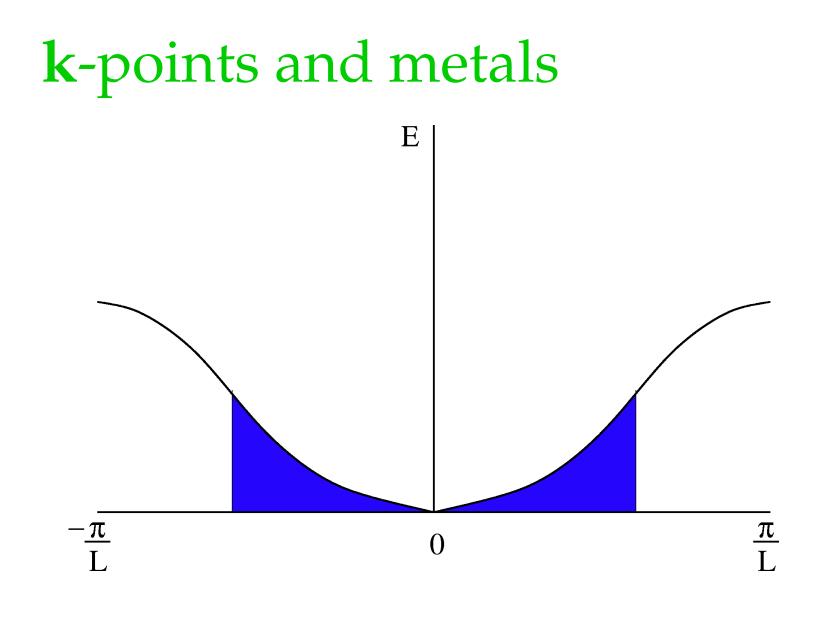
- We're now updating the wavefunctions iteratively. At what point do we recalculate the density?
- At each point along λ? This is called a selfconsistent method. In general these are slow, but stable.
- After a certain number of wavefunction updates? This is called a non-self-consistent method. In general these are fast, but unstable.

Castep Workshop '07

Variation of Total Energy with Step Length (MgO)

Castep Workshop '07

- The non-self-consistent minimum is usually found at larger step sizes than the selfconsistent one, so non-self-consistent methods often overshoot the minimum.
- Consistent overshooting causes a phenomenon known as charge sloshing (see later).
- Charge sloshing is worse for large cells consider the Hartree potential again but this time in reciprocal space:


$$V_{H}(\boldsymbol{G}) = \frac{4\pi n(\boldsymbol{G})}{\Omega_{cell} |\boldsymbol{G}|^{2}} \qquad \text{Large cell means} \\ \text{small G-vectors}$$

Castep Workshop '07

Metallic systems

- When we construct the density, we do so from the lowest N eigenstates.
- As the band-gap decreases, it becomes increasingly difficult to identify the lowest eigenstates (i.e. to find the Fermi surface).
- Bands below the Fermi energy are completely occupied and contribute fully to the density; bands above are empty and do not contribute at all.

Castep Workshop '07

Castep Workshop '07

Sloshing

- Suppose band A is below the Fermi surface and B above. It is possible that by occupying band A we change the density such that bands A and B swap in energy.
- We now occupy band B instead and empty band A, whereupon the density changes such that the original ordering is restored.
- We will never converge to the groundstate!
 This is known as a sloshing instability.

Castep Workshop '07

The Mermin functional

- Sloshing arises from the discontinuous occupation of the eigenstates across the Fermi surface at zero temperature.
- Mermin smeared the Fermi surface, exactly like heating the system up.
- Eigenstates near the Fermi surface are now neither full nor empty, but partially filled.
- There is an entropy contribution to the energy from the partial occupancies.

Castep Workshop '07

Occupancies

- We assign the occupancies based on the eigenvalues and the Fermi energy.
- The density depends on the occupancies as well as the wavefunctions, so changing the occupancies changes the density, and hence the Hamiltonian.
- Changing the Hamiltonian changes the eigenvalues of the states, so yet again we need iterate to self-consistency.

Castep Workshop '07

Ensemble DFT (EDFT)

- In EDFT the density is reconstructed whenever the wavefunctions or occupancies change, and both the wavefunctions and occupancies are only changed when it would lower the total energy.
- Each SCF cycle consists of a number of wavefunction updates (usually five), and after each wavefunction update the occupancies are also updated.

Castep Workshop '07

Ensemble DFT (EDFT)

- Constructing the density requires a Fourier transform of the wavefunctions into real-space, and this can be slow (especially in parallel).
- □ EDFT is:
 - Variational (energy decreases at each step)
 - Stable
 - Slow

Castep Workshop '07

EDFT parameters

- □ EDFT is controlled by the .param file
 - elec_method: EDFT
- Several occupancy cycles are performed every step to find the optimum partial occupancies.
 - num_occ_cycles: 6
 - for some systems you can reduce the number of occupancy cycles to speed up the calculation. 3 or 4 is often fine, even 2 is OK for simple systems.

Density mixing (DM)

- In DM the density is only reconstructed once per SCF cycle. To prevent sloshing instabilities this new density is mixed with a fraction of the previous densities.
- A typical DM SCF cycle will update each trial eigenstate two or three times, reassign occupancies, and only then construct the density.

Density mixing (DM)

D DM is:

- Non-variational
- Potentially unstable
- Quick
- The key to the stability of DM is the manner of the mixing. The best schemes in Castep are the Pulay and Broyden schemes.

DM parameters

- □ DM is controlled by the .param file
 - elec_method: DM
- The number of past densities to store
 - mix_history_length: 7
- □ The DM scheme
 - mixing_scheme: Pulay or Broyden
- The initial mixing amplitudes
 - mix_charge_amp: 0.7 (0.5 in Materials Studio)
 - mix_spin_amp: 2.0

decrease for a slight increase in stability.

Castep Workshop '07

DM parameters

The screening wavevectors—the mixing schemes work by building up an approximation to the system's dielectric. The initial approximation is of the form

$$K(q) = \frac{q^2}{q^2 + q_c^2}$$

- mix_charge_gmax: 1.5 1/ang
- mix_spin_gmax: 1.5 1/ang

Castep Workshop '07

Large frequencies

- Recall that the sloshing instabilities were due to the low frequency (small q) components.
 What about the high-frequency components?
- Usually we accept the high frequency part of the new density without mixing it at all
- At what point is a frequency "high enough" to not mix? It's controlled by the parameter
 - mix_cut_off_energy
- This defaults to the wavefunction cut-off (cut_off_energy).

Castep Workshop '07

General parameters

□ The number of wavefunction updates per SCF

- max_sd_steps: 1
- max_cg_steps: 4

DM may not perform all of these steps.

- □ The energy to smear the Fermi level by
 - smearing_width: 0.2 eV
- □ The number of extra bands to include
 - nextra_bands

Including extra bands slows the SCF cycles, but may improve convergence (i.e. take fewer SCFs).

Castep Workshop '07

EDFT output (iprint: 1)

SCF loop	Energy	Fermi energy	Energy gain per atom	Timer (sec)	< SC < SC < SC < SC
Initial	-5.60447982E+003	6.04960700E+000	6.29903671E+000	5.57	< SC
1	-5.65487212E+003	8.54480709E+000		34.10	< SC
2	-5.65488381E+003	8.55197524E+000	1.46193897E-003	62.10	< SC
3	-5.65488514E+003	8.54531708E+000	1.65970615E-004	90.12	< SC
4	-5.65488559E+003	8.54559484E+000	5.64376170E-005	120.43	< SC
5	-5.65488567E+003	8.54576989E+000	9.21133649E-006	149.52	< SC
	-5.65488568E+003	8.54568880E+000	1.14975580E-006	179.38	< SC
7	-5.65488568E+003	8.54574147E+000	1.12351628E-007	210.01	< SC
8	-5.65488568E+003	8.54573805E+000	3.75314590E-008	240.19	< SC
9	-5.65488568E+003	8.54573963E+000	1.34522225E-008	270.22	< SC
9 10 11	-5.65488568E+003 -5.65488568E+003 -5.65488568E+003	8.54573949E+000 8.54573949E+000 8.54573975E+000	4.91008537E-009 1.66028364E-009	270.22 300.98 330.80	< SC < SC < SC
12	-5.65488568E+003	8.54573998E+000	7.05528707E-010	358.88	< SC
13	-5.65488568E+003	8.54573998E+000	1.69276619E-010	387.17	< SC
14	-5.65488568E+003	8.54574005E+000	5.12373547E-011	416.85 	< SC < SC

Castep Workshop '07

EDFT output (iprint: 2)

+ WAVEFUNCTION LINE MINIMISATION+<- line						
Initial	energy = -5.6	04480E+003 e	V; initial o	dE/dstep = -3	8.982E+001 eV	<pre><- line</pre>
						<pre><- line</pre>
	1st step	2nd step	3rd step	4th step	5th step	<- line
+	+					-+<- line
step	1.500E+00	2.352E+00*	unnecessary	unnecessary	unnecessary	<pre> <- line</pre>
gain	4.069E+01	4.658E+01*	unnecessary	unnecessary	unnecessary	<pre> <- line</pre>
+	+					-+<- line
* indicates the final, accepted state (should have the lowest energy)						

----- OCCUPANCY LINE MINIMISATION -------+<- EDFT Initial energy for occupancy cycle 1 = -5.651E+003 eVI<- EDFT</pre> |<- EDFT 1st step 2nd step 3rd step 4th step 5th step I<- EDFT +<- EDFT 1.000E+00 6.200E-01 8.783E-01 8.656E-01* unnecessary |<- EDFT 1.940E+00 1.807E+00 2.007E+00 2.007E+00* unnecessary |<- EDFT step | 0 2.007E+00 gain | ----+<- EDFT * indicates the final, accepted state (should have the lowest energy) Final energy = -5.653E+003eV (change of 2.007E+000eV) for occ. cycle 1 < - EDFT

Castep Workshop '07

DM output (iprint: 1)

SCF loop	Energy	Fermi energy	Energy gain per atom	Timer (sec)	< SCF < SCF < SCF < SCF
Initial 1 2 3 4 5 6 7 8 9 10 11 12	-5.72401759E+003 -5.66310821E+003 -5.66315105E+003 -5.65904032E+003 -5.65484948E+003 -5.65487927E+003 -5.65488530E+003 -5.65488568E+003 -5.65488568E+003 -5.65488568E+003 -5.65488568E+003 -5.65488568E+003 -5.65488568E+003 -5.65488568E+003	7.33403352E+000 7.15206775E+000 7.15066794E+000 9.04183988E+000 8.35292985E+000 8.47113111E+000 8.53910153E+000 8.54432111E+000 8.54547827E+000 8.54569517E+000 8.54573154E+000 8.54574500E+000 8.54574128E+000	-7.61367268E+000 5.35423262E-003 -5.13841407E-001 -5.23854073E-001 3.72385144E-003 7.53186999E-004 4.59464638E-005 1.23017408E-006 4.93767620E-008 -1.00753908E-009 -6.34666478E-010 2.38785408E-011	$\begin{array}{r} 4.93\\ 5.44\\ 6.16\\ 7.43\\ 8.71\\ 10.21\\ 11.66\\ 13.30\\ 14.61\\ 16.05\\ 17.34\\ 18.53\\ 19.61 \end{array}$	< SCF < SCF
13	-5.65488568E+003	8.54574299E+000	8.01429567E-011	20.70	< SCF < SCF

Castep Workshop '07

DM output (iprint: 2)

+	+	+				-+
Band	Steps	Eigen Initial	value Final	Change (energy drop)	stop cond	<- line <- line
1			FILIAL	(energy drop)	cona	•
		-3.309434E+01 -3.303377E+01	-3.322212E+01 -3.322107E+01	1.2778E-01 1.8730E-01	x x	-+<- line <- line <- line
1 3	į 2	-3.299567E+01	-3.321013E+01	2.1446E-01	X	<pre> <- line</pre>
4	į 2	-3.292534E+01	-3.314784E+01	2.2249E-01	X	<pre> <- line</pre>
5	2	-3.281925E+01	-3.314753E+01	3.2828E-01	x	<- line
6	2	-3.273043E+01	-3.312386E+01	3.9343E-01	X	<pre> <- line</pre>
7	j 2	-3.267706E+01	-3.308311E+01	4.0606E-01	X	<pre> <- line</pre>
8	2	-3.259183E+01	-3.308239E+01	4.9056E-01	X	<pre><- line</pre>
8 9	2	-3.256198E+01	-3.306716E+01	5.0518E-01	X	<pre> <- line</pre>
j 10	i 2	-3.253910E+01	-3.306556E+01	5.2646E-01	X	<pre> <- line</pre>
j 11	j 2	-3.252031E+01	-3.306529E+01	5.4498E-01	X	<- line
+	+	+		+	+++	-+<- line
						<- line
max no. steps performed <+						<- line
elec eigenvalue tol reached <+						<- line
gradient flattened out <						<- line

EDFT vs DM (Part I)

- □ Test system: 8-atom MgO (340eV)
- □ EDFT converges in 14 SCF cycles (416.9s)
 - 80 wavefunction updates
 - 328 density calculations
- □ DM converges in 13 SCF cycles (20.7s)
 - 50 wavefunction updates
 - 13 density calculations
- □ DM is the clear winner.

Castep Workshop '07

EDFT vs DM (Part I)

- Look at the initial energies; the Fermi energy in DM is much better than the EDFT one. Why?
- In DM the density is not obtained directly from the wavefunctions, so we can choose our initial density.
- We choose to start with the sum of the atomic densities. This makes the initial Hamiltonian pretty good compared to the random start EDFT has.

Castep Workshop '07

EDFT output (iprint: 1)

SCF loop	 Energy	Fermi energy	Energy gain per atom	Timer (sec)	< SCF < SCF < SCF < SCF
Initial 1 2 3 4 5 6 7 8 9	5.22894717E+003 -1.34061398E+003 -6.24970545E+003 -6.44753749E+003 -6.48366756E+003 -6.48822994E+003 -6.48935120E+003 -6.48970423E+003 -6.49027213E+003 -6.49049787E+003	1.23054649E+002 1.54028093E+002 3.25481388E+001 1.58875589E+001 8.21631220E+000 6.28831601E+000 5.38297421E+000 5.09069781E+000 4.60235674E+000 4.46602537E+000	4.69254368E+002 3.50649391E+002 1.41308601E+001 2.58071892E+000 3.25884507E-001 8.00902664E-002 2.52159741E-002 4.05645475E-002 1.61242962E-002	$\begin{array}{r} 23.25\\ 406.21\\ 773.44\\ 1122.97\\ 1478.40\\ 1829.99\\ 2175.23\\ 2529.80\\ 2892.63\\ 3252.49\end{array}$	< SCF < SCF
10 11	-6.49069177E+003 -6.49082746E+003	4.32576189E+000 4.10031919E+000	1.38501648E-002 9.69195382E-003	3609.24 3981.20	< SCF < SCF

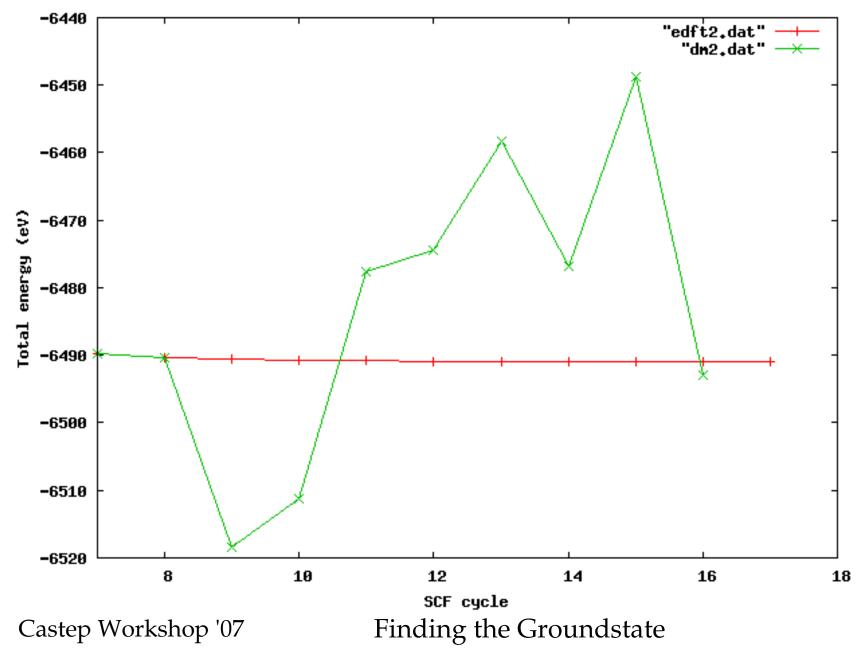
Castep Workshop '07

DM output (iprint: 1)

SCF	loop	Energy	Fermi energy	Energy gain per atom	Timer (sec)	< SCF < SCF < SCF < SCF
Init	ial	-5.14317516E+003	5.12276157E+001		12.03	< SCF
	1	-6.31741967E+003	6.63244417E+000	8.38746075E+001	20.60	< SCF
	2	-6.49931311E+003	3.75941681E+000	1.29923889E+001	29.84	< SCF
	3	-6.51038834E+003	3.54231581E+000	7.91087819E-001	39.34	< SCF
	4	-7.06998837E+003	2.22343892E+000	3.99714308E+001	55.71	< SCF
	5	-6.88101641E+003	3.72113246E+000	-1.34979974E+001	64.26	< SCF
	6	-6.88234462E+003	3.67678710E+000	9.48725740E-002	73.81	< SCF
	7	-6.48977868E+003	3.73752136E+000	-2.80404247E+001	84.70	< SCF
	8	-6.49044610E+003	3.74216565E+000	4.76729934E-002	93.59	< SCF
	9	-6.51835347E+003	4.26880418E+000	1.99338358E+000	107.69	< SCF
	10	-6.51118474E+003	4.28640804E+000	-5.12052231E-001	120.24	< SCF
	11	-6.47752722E+003	3.96827211E+000	-2.40410830E+000	133.02	< SCF
	12	-6.47436227E+003	4.17156369E+000	-2.26067919E-001	144.39	< SCF
	13	-6.45824918E+003	4.14265903E+000	-1.15093520E+000	155.99	< SCF
	14	-6.47675286E+003	4.55171279E+000	1.32169139E+000	167.02	< SCF
	15	-6.44884485E+003	4.41836929E+000	-1.99342920E+000	178.41	< SCF
	16	-6.49295003E+003	4.31979139E+000	3.15036998E+000	191.27	< SCF
	17	-6.49378104E+003	4.31843062E+000	5.93581671E-002	201.07	< SCF
	18	-6.44552085E+003	4.71784691E+000	-3.44715632E+000	213.32	< SCF
	19	-6.44589421E+003	4.73581949E+000	2.66682897E-002	222.73	< SCF
	20	-6.41032124E+003	5.23541858E+000	-2.54092638E+000	236.73	< SCF

Castep Workshop '07

EDFT vs DM (Part II)


- Test system: erbium and hydrogen in silicon (340eV)
- □ EDFT converges in 14 SCF cycles (4000s)
- □ DM doesn't converge!
- □ EDFT is the clear winner.

-6400 "edft2.dat" -__"dm2.dat" --6500 -6600 Total energy (eV) -6700 -6800 -6900 -7000 -7100 14 6 8 10 12 16 18 4 SCF cycle Finding the Groundstate Castep Workshop '07

46

Total energy convergence for EDFT and DM

Total energy convergence for EDFT and DM

47

DM's Problems

- □ What's going wrong with DM?
- The larger the system, the smaller the smallest nonzero wavevector is, so sloshing is worse.
- Sloshing is made worse if the material has a large dielectric susceptibility, so metals can be especially problematic.
- Spin can also make matters worse, because there may be many metastable spin states, and the system can now spin slosh as well as charge slosh.

Castep Workshop '07

Castep scaling

- Constructing the density and applying the local potential require FFTs of each band from reciprocal to real-space. FFTs scale as NlogN.
 - In **G-vector parallel** calculations the prefactor increases with the number of processors.
- □ Orthonormalisation scales as N³.
 - In parallel calculations the prefactor decreases with the number of processors.
- Parallel calculations scale almost perfectly when pure k-point parallelisation is used.

Castep Workshop '07

Summary

- EDFT is stable and fully variational, giving excellent forces and stresses; but it is slow.
- DM is fast, but non-variational. Since the density and wavefunctions are not quite consistent, better convergence tolerances are needed to get accurate forces and stresses.
- DM is usually the fastest, but can be unstable when there are large systems, band crossings, multiple spin states, and/or the dielectric susceptibility is large.

Castep Workshop '07