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Practical calculations using first-principles QM
Convergence, convergence, convergence

Keith Refson
CCLRC Rutherford Appleton Laboratory

September 13, 2006
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First-principles methods may be used
for subtle, elegant and accurate com-
puter experiments and insight into the
structure and behaviour of matter.
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First principles results may be worthless nonsense
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This aims of this lecture are

1. To use the examples to demonstrate how to obtain converged results, ie

correct predictions from the theory.
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2. How to avoid some of the common pitfalls and to avoid computing
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This aims of this lecture are

1. To use the examples to demonstrate how to obtain converged results, ie

correct predictions from the theory.
2. How to avoid some of the common pitfalls and to avoid computing

nonsense.

Further reading: Designing meaningful density functional theory calculation

in materials science - a primer Anne E Mattson et al. Model. Sim. Mater.

Sci Eng. 13 R1-R31 (2005).
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■ “Every ab-initio calculation is an approximate one”.
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■ “Every ab-initio calculation is an approximate one”.
■ Distinguish physical approximations

◆ Born-Oppenheimer
◆ Level of Theory and approximate XC functional
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■ “Every ab-initio calculation is an approximate one”.
■ Distinguish physical approximations

◆ Born-Oppenheimer
◆ Level of Theory and approximate XC functional

and convergable, numerical approximations

◆ basis-set size.
◆ Integral evaluation cutoffs
◆ numerical approximations - FFT grid
◆ Iterative schemes: number of iterations and exit criteria (tolerances)
◆ system size
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■ “Every ab-initio calculation is an approximate one”.
■ Distinguish physical approximations

◆ Born-Oppenheimer
◆ Level of Theory and approximate XC functional

and convergable, numerical approximations

◆ basis-set size.
◆ Integral evaluation cutoffs
◆ numerical approximations - FFT grid
◆ Iterative schemes: number of iterations and exit criteria (tolerances)
◆ system size

■ Scientific integrity and reproducibility: All methods should agree answer
to (for example) “What is lattice constant of silicon in LDA
approximation” if sufficiently well-converged.
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■ “Every ab-initio calculation is an approximate one”.
■ Distinguish physical approximations

◆ Born-Oppenheimer
◆ Level of Theory and approximate XC functional

and convergable, numerical approximations

◆ basis-set size.
◆ Integral evaluation cutoffs
◆ numerical approximations - FFT grid
◆ Iterative schemes: number of iterations and exit criteria (tolerances)
◆ system size

■ Scientific integrity and reproducibility: All methods should agree answer
to (for example) “What is lattice constant of silicon in LDA
approximation” if sufficiently well-converged.

■ No ab-initio calculation is ever fully-converged!
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Basis set is fundamental approximation to shape of orbitals. How accurate
need it be?
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Basis set is fundamental approximation to shape of orbitals. How accurate
need it be?

■ The variational principle states that E0 ≤ <ψ|H|ψ>
<ψ|ψ>

so a more accurate

representation of the orbitals ψ arising from a more complete basis set
will always lower the computed ground-state energy.
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need it be?

■ The variational principle states that E0 ≤ <ψ|H|ψ>
<ψ|ψ>

so a more accurate

representation of the orbitals ψ arising from a more complete basis set
will always lower the computed ground-state energy.

■ corollary : Error in energy δE0 ∝ δ|ψ|2.
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Basis set is fundamental approximation to shape of orbitals. How accurate
need it be?

■ The variational principle states that E0 ≤ <ψ|H|ψ>
<ψ|ψ>

so a more accurate

representation of the orbitals ψ arising from a more complete basis set
will always lower the computed ground-state energy.

■ corollary : Error in energy δE0 ∝ δ|ψ|2.
■ Increase size and accuracy of plane-wave basis set by adding more plane

waves with higher G (increase Ecut).
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■ The variational principle states that E0 ≤ <ψ|H|ψ>
<ψ|ψ>
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representation of the orbitals ψ arising from a more complete basis set
will always lower the computed ground-state energy.

■ corollary : Error in energy δE0 ∝ δ|ψ|2.
■ Increase size and accuracy of plane-wave basis set by adding more plane

waves with higher G (increase Ecut).
■ Increase size and accuracy of Gaussian basis set by adding additional

orbitals, sometimes called “diffuse” or “polarization” functions. Ad-hoc
because no single parameter to tune.
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waves with higher G (increase Ecut).
■ Increase size and accuracy of Gaussian basis set by adding additional

orbitals, sometimes called “diffuse” or “polarization” functions. Ad-hoc
because no single parameter to tune.

■ Whatever the basis set it is prohibitively expensive to approach full
convergence.
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Basis set is fundamental approximation to shape of orbitals. How accurate
need it be?

■ The variational principle states that E0 ≤ <ψ|H|ψ>
<ψ|ψ>

so a more accurate

representation of the orbitals ψ arising from a more complete basis set
will always lower the computed ground-state energy.

■ corollary : Error in energy δE0 ∝ δ|ψ|2.
■ Increase size and accuracy of plane-wave basis set by adding more plane

waves with higher G (increase Ecut).
■ Increase size and accuracy of Gaussian basis set by adding additional

orbitals, sometimes called “diffuse” or “polarization” functions. Ad-hoc
because no single parameter to tune.

■ Whatever the basis set it is prohibitively expensive to approach full
convergence.

■ Fortunately well converged properties may frequently be computed using
an incomplete basis.
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■ Consider energetics of simple chemical reaction
MgO(s) + H2O(g) → Mg(OH)2,(s)

■ Reaction energy computed as
∆E = Eproduct −

P

Ereactants = EMg(OH)2 − (EMgO + EH2O )
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■ Consider energetics of simple chemical reaction
MgO(s) + H2O(g) → Mg(OH)2,(s)

■ Reaction energy computed as
∆E = Eproduct −

P

Ereactants = EMg(OH)2 − (EMgO + EH2O )
■ Energy change on increasing Ecut from 500→4000eV

MgO -0.021eV H2O -0.566eV Mg(OH)2 -0.562eV
Convergence error in ∆E -0.030eV

■ Errors associated with Hatom convergence are similar on LHS and RHS
and cancel in final result.
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and cancel in final result.

■ Energy differences converge much faster than ground-state energy.
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■ Consider energetics of simple chemical reaction
MgO(s) + H2O(g) → Mg(OH)2,(s)

■ Reaction energy computed as
∆E = Eproduct −

P

Ereactants = EMg(OH)2 − (EMgO + EH2O )
■ Energy change on increasing Ecut from 500→4000eV

MgO -0.021eV H2O -0.566eV Mg(OH)2 -0.562eV
Convergence error in ∆E -0.030eV

■ Errors associated with Hatom convergence are similar on LHS and RHS
and cancel in final result.

■ Energy differences converge much faster than ground-state energy.
■ Always use same cutoff for all reactants and products.
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Properties of a plane-wave basis.
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Properties of a plane-wave basis.

■ Why do energy differences converge faster than total energies?
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Properties of a plane-wave basis.

■ Why do energy differences converge faster than total energies?
■ Cutoff determines highest representable spatial fourier component of

density.
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Properties of a plane-wave basis.

■ Why do energy differences converge faster than total energies?
■ Cutoff determines highest representable spatial fourier component of

density.
■ Electron density is most rapidly varying near nuclei, where it is only

weakly influenced by bonding.

n(r)

rAtom 1 Atom 2
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Properties of a plane-wave basis.

■ Why do energy differences converge faster than total energies?
■ Cutoff determines highest representable spatial fourier component of

density.
■ Electron density is most rapidly varying near nuclei, where it is only

weakly influenced by bonding.

n(r)

rAtom 1 Atom 2

■ Ecut (and Gmax) depend only on types of atoms, not numbers.
■ Simulation cutoff is maximum over pseudopotentials used.
■ Required cutoff is system-independent but not property-independent.
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■ When performing cutoff test you can not
always assume completely smooth ap-
proach to convergence.

■ Can get plateaus or other non-asymptotic
behaviour

■ Sometimes cause is over-optimization of
the pseudopotential too low a desired cut-
off.

■ In cases with this behaviour can choose
criterion for convergence energy to be
plateau values.

■ Absolute energy convergence is rarely de-
sirable. Force and stress convergence is

much more useful criterion.

■ (Example is not a pseudpotential from the
CASTEP database)
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Some optimizations and tweaks of FFT grid dimensions ...
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Some optimizations and tweaks of FFT grid dimensions ...

■ FFT grid should be large enough to accommodate all G-vectors of
density, n(r), within cutoff: G ≤ 2GMAX.

■ Guaranteed to avoid ”aliasing” errors in case of LDA and
pseudopotentials without additional core-charge density.
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Some optimizations and tweaks of FFT grid dimensions ...

■ FFT grid should be large enough to accommodate all G-vectors of
density, n(r), within cutoff: G ≤ 2GMAX.

■ Guaranteed to avoid ”aliasing” errors in case of LDA and
pseudopotentials without additional core-charge density.

■ In practice can often get away with 1.5GMAX or 1.75GMAX with little
error penalty for LDA without core or augmentation charge.
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density, n(r), within cutoff: G ≤ 2GMAX.

■ Guaranteed to avoid ”aliasing” errors in case of LDA and
pseudopotentials without additional core-charge density.

■ In practice can often get away with 1.5GMAX or 1.75GMAX with little
error penalty for LDA without core or augmentation charge.

■ GGA XC functionals give density with higher fourier components, and
need 1.75GMAX - 2GMAX
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Some optimizations and tweaks of FFT grid dimensions ...

■ FFT grid should be large enough to accommodate all G-vectors of
density, n(r), within cutoff: G ≤ 2GMAX.

■ Guaranteed to avoid ”aliasing” errors in case of LDA and
pseudopotentials without additional core-charge density.

■ In practice can often get away with 1.5GMAX or 1.75GMAX with little
error penalty for LDA without core or augmentation charge.

■ GGA XC functionals give density with higher fourier components, and
need 1.75GMAX - 2GMAX

■ Finer grid may be needed to represent USP augmentation charges or
core-charge densities.

■ CASTEP incorporates a second, finer grid for charge density to
accommodate core/augmentation charges while using GMAX for orbitals.
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Frequently need to find crystal structure at mechanical equilibrium.
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Frequently need to find crystal structure at mechanical equilibrium.

■ Given guessed or exptl. initial structure, seek local minimum of
Born-Oppenheimer energy surface generated by K-S functional.

■ Energy minimum implies forces are zero but not vice versa.
■ CASTEP (like most ab-initio codes) provides for “geometry

optimization” using quasi-newton methods.
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Born-Oppenheimer energy surface generated by K-S functional.

■ Energy minimum implies forces are zero but not vice versa.
■ CASTEP (like most ab-initio codes) provides for “geometry

optimization” using quasi-newton methods.

■ Need to worry about accuracy of
forces.
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Frequently need to find crystal structure at mechanical equilibrium.

■ Given guessed or exptl. initial structure, seek local minimum of
Born-Oppenheimer energy surface generated by K-S functional.

■ Energy minimum implies forces are zero but not vice versa.
■ CASTEP (like most ab-initio codes) provides for “geometry

optimization” using quasi-newton methods.

■ Need to worry about accuracy of
forces.

■ Forces usually converge at lower

cutoff than total energy because
density in region of nucleus unim-
portant.
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Frequently need to find crystal structure at mechanical equilibrium.

■ Given guessed or exptl. initial structure, seek local minimum of
Born-Oppenheimer energy surface generated by K-S functional.

■ Energy minimum implies forces are zero but not vice versa.
■ CASTEP (like most ab-initio codes) provides for “geometry

optimization” using quasi-newton methods.

■ Need to worry about accuracy of
forces.

■ Forces usually converge at lower

cutoff than total energy because
density in region of nucleus unim-
portant.
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Frequently need to find crystal structure at mechanical equilibrium.

■ Given guessed or exptl. initial structure, seek local minimum of
Born-Oppenheimer energy surface generated by K-S functional.

■ Energy minimum implies forces are zero but not vice versa.
■ CASTEP (like most ab-initio codes) provides for “geometry

optimization” using quasi-newton methods.

■ Need to worry about accuracy of
forces.
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■ different physical quantities converge at different rates.
■ Always test convergence specifically of quantities of importance to

your planned calculation
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■ Energetics: same accuracy of result.
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■ How to control the iterative solvers?
■ Parameter elec energy tol specifies

when SCF energy converged.
■ Optimizer also exits if max cycles reached

– always check that it really did converge.

■ How accurate does SCF convergence need
to be?

■ Energetics: same accuracy of result.
■ Geometry/MD: much smaller energy

tolerance needed to converge forces.
■ Cost of higher tolerance is only a few ad-

ditional SCF iterations.
■ Coming soon to a code near you –

elec force tol to exit SCF using force
convergence criteria

■ Inaccurate forces are common cause of geometry optimization failure.
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Brillouin Zone sampling is another important convergence issue.

■ Convergence is not variational and fre-
quently oscillates.

■ Even simple metals like Alneed dense
meshes for primitive cell.

■ Finite-temperature smearing can accel-
erate convergence, but must extrapo-
late the result back to 0K.

■ In case of insulators some k-point error
cancellation occurs but only between
identical simulation cells.
Consequently comparative phase sta-
bility energetics and surface energet-
ics frequently demand high degree of
k-point convergence. 0 5 10 15 20 25 30
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Smear=0.08, a0=4.04975, PBE, Ec=160eV
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Sometimes we need to compute a non-periodic system with a PBC code.

■ Surround molecule by vacuum space to model using periodic code.
■ Similar trick used to construct slab for surfaces.
■ Must include enough vacuum space that periodic images do not interact.
■ To model surface, slab should be thick enough that centre is “bulk-like”.
■ Beware of dipolar surfaces. Surface energy does not converge with slab

thickness.
■ When calculating surface energy, try to use same cell for bulk and slab.
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■ Insufficiently large cell gives wrong bond-length.
■ Important scale is distance, not volume.
■ Convergence reached when result stops changing with cell length.
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■ Two ways to evaluate equilibrium lattice parameter - minimum of energy
or zero of stress.

■ Stress converges less well than energy minimum with cutoff.

■ Incomplete basis error in stress approximated by Pulay stress correction.
■ “Jagged” E vs V curve due to discreteness of NPW. Can be corrected

using Francis-Payne method (J. Phys. Conden. Matt 2, 4395 (1990))
■ Finite-size basis corrections for enery and stress automatically computed

by CASTEP.
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changes.
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lowers effective Ec.
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■ Need very well-converged cutoff for success.
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■ Two possibilities for variable-cell MD or geometry optimization when
using plane-wave basis set.

■ In fixed basis size calculation, plane-wave basis NPW is constant as cell
changes.

■ Cell expansion lowers Gmax and K.E. of each plane wave, and therefore
lowers effective Ec.

■ Easier to implement but easy to get erroneous results.
■ Need very well-converged cutoff for success.
■ fixed cutoff calculations reset basis for each volume, changing NPW but

keeping Gmax and Ec fixed.
■ This is almost always the correct method to use.
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■ Used with care, first principles simulations can give highly accurate
predictions of materials properties.

■ Full plane-wave basis convergence is rarely if ever needed. Error
cancellation ensure that energy differences, forces and stress converge at
lower cutoff.

■ Convergence as a function of adjustable parameters must be understood
and monitored for the property of interest to calculate accurate results.

■ Don’t forget to converge the statistical mechanics as well as the
electronic structure!

■ A poorly converged calculation is of little scientific value.
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