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• Born-Oppenheimer approximation

• Hohenberg-Kohn theorems

• Kohn-Sham implementation

• The Exc functional

• The local density approximation (LDA)

• Limits of current implementations of DFT



The First Principles Approach

nucleus
electron

 it is free of adjustable parameters
 it treats the electrons explicitly
 cost of the calculation limits system size and simulation time
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Born-Oppenheimer approximation decouples the electronic problem
from the ionic problem. The electronic problem is:

Born-Oppenheimer Approximation
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Electron mass much smaller than nuclear mass:
 Timescale associated with nuclear motion much slower than that

associated with electronic motion
 Electrons follow instantaneously the motion of the nuclei,

remaining always in the same stationary state of the Hamiltonian
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depends only parametrically on {RJ}



Time-independent, non-relativistic Schroedinger equation in the
Born-Oppenheimer approximation [in atomic units:                   ]:

The Electronic Problem
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Density functional theory (DFT) offers a solution … 
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The external potential and the number of electrons, N,
completely determine the Hamiltonian

External potential

Theorem 1.

The external potential is uniquely determined by the electronic
charge density - n(r) - so the total energy is a unique functional
of the density  -   E[n] !

Theorem 2.

The density which minimises the energy is the ground state
density and the minimum energy is the ground state energy:

Density Functional Theory:
the Theorems
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Hohenberg & Kohn, PRB 136, 864 (1964)

there is a universal functional E[n] which could be minimised

 to obtain the exact ground state density and energy.



What is the Functional?
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Vext[n] is trivial:

T and Ve-e need to be approximated !
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where Te[n] is the kinetic energy and Ve-e is the electron-electron
interaction.
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E[n] – The Kohn Sham Approach

Write the density in terms of a set of N non-interacting orbitals:

The non interacting kinetic energy and the classical Coulomb
interaction
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This allows us to recast the energy functional as:
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where we have introduced the exchange-correlation functional:
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The Kohn-Sham Equations

Vary the energy with respect to the orbitals and ….

No approximations, So…

If we knew Exc[n] we could solve for the exact ground state
energy and density !
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where:

Kohn & Sham, PRA 140, 1133 (1965)

KS equations are solved via an iterative procedure until 
self-consistency is reached

The Non-interacting System

There exists an effective mean field potential which, when
applied to a system of non-interacting fermions, will generate
the exact ground state energy and charge density !!!
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Density Functional Theory:
The History

Thomas-Fermi-Dirac Model (1929):
First model where the energy is expressed in 
terms of the electron density

Kohn-Hohenberg-Sham (1964):
Exact univoque relationship between ground
state energy and electron density 

E. Fermi, Nobel laureate 1938

W. Kohn, Nobel laureate 1998

Exc[n] - Properties

– Does not depend on Vext(the specific system): it is a
‘universal’ functional.

– The exact dependence on n(r) is unknown

Exc must be approximated in applications
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n

!xc

For the homogeneous electron gas the exact dependence of !xc(n)

can be computed by Quantum Monte Carlo.

Local Density Approximation (LDA)

The idea: build Exc from the knowledge of the exchange-correlation
energy per particle, !xc, of the homogeneous electron gas

Kohn & Sham, PRA 140, 1133 (1965) 

Ceperley & Alder, PRL 45, 566 (1980)

LDA to Exc: How it is built
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Picture courtesy of Andreas Savin Kohn & Sham, PRA 140, 1133 (1965)



LDA: Performance

 Covalent bonds
 Metallic bonds
 Ionic bonds

 Hydrogen bonds: LDA not adequate

 Van der Waals bonds: DFT not adequate – but this is not just a
   LDA problem…

generally well described
(tends to overbind slightly)

Kohn & Sham, PRA 140, 1133 (1965): “We do not expect an
accurate description of chemical bonding”

In reality:

Why does LDA work in most cases ?

The Exchange-Correlation Hole

The exchange correlation hole, Pxc(r1,r2), is the probability of
finding an electron at r2 given that there is an electron at r1.

It is the hole the electron at r1 digs for itself in the surrounding
electronic density.

There are a number of properties which will be satisfied by the
exact exchange correlation hole. For instance it should normalise
to exactly one electron:
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LDA satisfies this rule.



Pxc is very poorly estimated the LDA

Jones & Gunnarsson, Rev. Mod. Phys. 61, 689 (1979)

How can Ve-e be reasonable
 if Pxc is wrong ?

Ve-e depends

only on the
spherical

average of Pxc

Jones et. al. 1979

LDA works in
part because it

generates a
reasonable

estimate of the
spherical
average

Spherical average of Pxc



The LDA energy densities

The difference between the exact (V-QMC) and LDA energy
density in bulk silicon (au)

Exchange Correlation

Hood et al PRB 57 8972 (1998)

So Why does the LDA work ?

• Exact properties of the xc-hole maintained

• The electron-electron interaction depends only on the
spherical average of the xc-hole – this is reasonably well
reproduced

• The errors in the exchange and correlation energy densities
tend to cancel



Some things that do not work
in this approach

• Van der Waals interactions: due to mutual dynamical
charge polarisation of the atoms          not properly
included in any existing approximations to Exc

• Excited states: DFT is a ground state theory (ways forward:
time-dependent DFT, GW, …)

• Non Born-Oppenheimer processes (i.e, non-radiative
transitions between electronic states)

• Self-interaction problem: each electron lives in the field
created by all electrons including itself ( ways forward: SIC,
hybrid DFT)

Self Interaction in H2
+

Courtesy of Ling Ge

• Self interaction problem particularly severe in the presence of 
  d and f electrons

• Self interaction leads to wrong dissociation limit:



Van der Waals Forces

B. Montanari et al. J. Chem. Phys. 108, 6947 (1998) 

Crystalline polyethylene

Top view

LDA

GGA-BP

GGA-PBE

Summary

• Born-Oppenheimer approximation

• Hohenberg-Kohn theorems

• Kohn-Sham implementation

• The Exc functional

• The local density approximation (LDA): how it is built, why it

   works in many cases

• Limits of current implementations of DFT (self interaction,

   van der Waals forces, …)

Next

The magical world of electrons in crystals
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