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Summary

Multiscale Hybrid Simulation of Brittle Fracture

James Kermode
Pembroke College

When a brittle material is loaded to the limit of its strength, it fails by nucleation

and propagation of a crack. The conditions for crack propagation are created by the

concentration of a long-range stress field at an atomically sharp crack tip, creating

a complex and strongly coupled multiscale system.

This thesis reports the results of multiscale simulations of the brittle fracture of

silicon on the (111) cleavage plane. The simulations are made possible by combining

a quantum mechanical description of the processes taking place near the crack tip

with a classical atomistic model that captures the long-range elastic relaxation. The

‘Learn on The Fly’ technique is used to couple the quantum and classical models,

allowing accurate quantum forces to be combined with classical forces using a simple

adjustable potential to give stable dynamics.

The simulations predict that fracture is unstable on the (111) plane at low speeds;

conventionally this has been thought of as the most stable crack plane. The instabil-

ity is caused by a crack tip reconstruction which triggers a positive feedback ‘sinking’

mechanism leading to macroscopic, experimentally observable corrugations. Recent

experiments have observed crack surface features consistent with these predictions.

The instability is the first example in a crystalline material of a fracture instability

which onsets below a critical velocity, and shows how subtle atomistic details at the

crack tip can control the qualitative macroscopic fracture behaviour.

xi
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Chapter 1

Introduction

A
tomistic simulation is a discipline based on numerically solving the funda-

mental equations of classical and quantum physics in order to directly predict

the trajectories of the atoms which make up a physical system. That this can be

done in principle has been appreciated for some time — centuries in the case of clas-

sical mechanics — but it is only with the advent of computers capable of carrying

out this procedure accurately and reliably that simulation has become an indispens-

able research tool, complementary both to experimental and theoretical approaches.

In Chapter 2, I review the background to two of the main methods currently used

to model physical systems at the atomic level: classical molecular dynamics and

first principles quantum mechanical calculations. The former allow simulations of

millions of atoms to be carried out on a nanosecond timescale [1, 2, 3, 4], but the ac-

curacy is limited by the requirement to use simple parameterisations as interatomic

potentials [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. If the scientific question

of interest can be effectively answered by considering the behaviour of a very small

number of atoms, up to around a hundred, then ab initio approaches allow this

limitation to be overcome [19, 20, 21, 22, 23, 24].

In many cases we can extract enough information from these accurate quan-

tum mechanical calculations to parametrise less transferable, but far less expensive,

models and use them on a larger length scale [25]. For some systems however, it

is impossible to separate the behaviour on the various length scales, since the cou-

pling between them is strong and bidirectional. Then the only option is to carry

out a hybrid simulation, where some parts of the system are treated at a higher

level of accuracy [26, 27, 28, 29]. An overview of existing hybrid schemes is given in

Chapter 3.



2 Introduction

Figure 1.1: Maximum principal stress near the the tip of a crack under uniaxial
tension in the opening mode, from the linear elastic solution (discussed in detail
in Section 5.2). Black areas are the least stressed and yellow the most.

The best known example of such a multiscale system is the fracture of brittle

materials, which forms the subject of Chapter 5. The conditions for crack propa-

gation are created by stress concentration at the crack tip, and depend on macro-

scopic parameters such as the loading geometry and dimensions of the specimen

[30, 31, 32, 33]. In real materials, however, the detailed crack propagation dynam-

ics, are entirely determined by atomic scale phenomena since brittle crack tips are

atomically sharp and propagate by breaking bonds, one at a time, at each point

along the crack front [34, 35]. This means the tip region is primarily a one di-

mensional line, perpendicular to the direction of propagation, and so it should be

possible to define a contiguous embedding region to be treated with a more accu-

rate model in a hybrid simulation. There is a constant interplay between the length

scales because the opening crack gives rise to a stress field with a singularity at the

tip [36], as illustrated in Fig. 1.1, and in turn it is this singular stress field which

breaks the bonds that advance the crack. Only by including the tens of thousands

of atoms that contribute significantly to the elastic relaxation of this stress field can

we hope to accurately model the fracture system, and thus a multiscale approach

is essential. This thesis is concerned with the application of hybrid methods to the

brittle fracture of silicon, in particular, I consider low-speed fracture on the (111)

cleavage plane.

The major difficulty in hybrid simulation is dealing with the boundary between
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the two different descriptions of material; often unphysical forces arise here when

two incompatible models are combined [37, 38, 39]. The ‘Learn on the Fly’ (LOTF)

hybrid method [40, 41, 42, 43, 44], described in Chapter 4, is a recently introduced

strategy to solve the boundary problem, at least in materials that can be described

using short range forces. LOTF couples the quantum and classical dynamics in such

a way that the system behaves instantaneously as if the entire specimen is being

treated at a quantum mechanical level of detail. This is achieved by combining ac-

curate quantum forces for the region of interest obtained from ab initio calculations

with qualitatively correct classical forces further away, using an adjustable potential

to give stable dynamics.

Chapter 6 sets out the methodology for the fracture simulations and describes

a series of validation tests, whilst the main results of this work are presented in

Chapter 7. I find that fracture is unstable on the (111) plane at low speeds; conven-

tionally this has been thought of as the most stable crack plane. The instability I

report in this thesis is caused by a crack tip reconstruction which triggers a positive

feedback ‘sinking’ mechanism leading to macroscopic, experimentally observable,

corrugations. As discussed in Chapter 8, recent experiments have observed surface

features consistent with these predictions [45, 46].





Chapter 2

Classical and Quantum Simulation

2.1 Introduction

This aim of this chapter is to review the necessary theoretical background to this

thesis. Since the range of topics to be covered is quite large, each has been described

as briefly as possible, with references to sources of further information. The work

contained within this thesis applies ideas from both classical and quantum physics.

I start with a review of the background necessary to carry out classical molecular

dynamics simulations on large numbers of atoms, and then look at the interatomic

potentials used for these simulations in a little more detail. The next section focuses

on a much smaller length scale: we discuss the ab initio quantum mechanical ap-

proach to electronic structure calculation. Finally, I shall look at the tight binding

method, often thought of as a way to bridge the gap between quantum and classical

simulations.

2.2 Classical Methods

Classical Molecular Dynamics

Molecular dynamics (MD) is a tool to simulate the motion of a system of clas-

sical particles based on Newton’s Laws of Motion, to facilitate atomically precise

computer-based experiments. In this section I give only a brief introduction to

some relevant areas of classical MD, see Haile [1] and Rapaport [2] for further de-

tails. The particle trajectories are the immediate outcome of a simulation but,
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in addition, these trajectories can be used to compute a variety of structural and

thermodynamic properties.

Classical MD is most useful when applied to very complex structures containing

millions of atoms, where we have no idea of the microscopic processes taking place

before carrying out the simulation. It is particularity useful for exploring the phase

space of systems such as liquids and amorphous solids where it is very difficult to

find a unique ground state structure using simple geometry optimisation techniques.

Newtonian Equations of Motion

For an isolated system of N particles with masses {mi}, the total energy E = T +V

is conserved. We can write the Hamiltonian for this system as

H = T ({pi}) + V ({ri}) (2.1)

where ri and pi are the position and momentum of the i th particle, V ({ri}) is the

potential energy and T ({pi}) is the kinetic energy, given by

T ({pi}) =
N∑

i=1

p2
i

2mi
. (2.2)

Molecular dynamics is essentially independent of how the potential energy V is

calculated, whether it be from a simple interatomic potential (see Section 2.3), a

more complex quantum mechanical method such as tight binding (Section 2.5) or

even a fully ab initio calculation (Section 2.4).

Using the Lagrangian formulation of dynamics and applying the Euler-Lagrange

equation, this Hamiltonian gives rise to the well known Newtonian equation of

motion for each particle

Fi = mi r̈i (2.3)

where Fi is the total force on the ith particle caused by all the other particles, and

is given by Fi = −∇iV .
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Integrating the Equations of Motion

To perform an MD simulation, we need to numerically integrate Eq. 2.3. Taylor

expanding the trajectory to third order in ∆t gives

r(t+ ∆t) = r(t) +
dr

dt

∣∣∣∣
t

∆t+
1

2

d2r

dt2

∣∣∣∣
t

∆t2 +
1

6

d3r

dt3

∣∣∣∣
t

∆t3 +O(∆t4). (2.4)

This inspires the simplest possible integration scheme, the Euler method:

r(t+ ∆t) = r(t) + ṙ(t) ∆t+ O(∆t2), (2.5)

ṙ(t+ ∆t) = ṙ(t) +
F(t)

m
∆t+O(∆t2). (2.6)

While it has the advantage of being extremely simple, the Euler method is not

widely used because of its limited accuracy. In fact for no more work, we can do

much better by summing the Taylor series of Eq. 2.4 with a similar expansion for

t− ∆t to eliminate the terms of odd order:

r(t+ ∆t) = 2 r(t) − r(t− ∆t) +
F(t)

m
∆t2 +O(∆t4). (2.7)

This is the widely used Verlet scheme [3]. Due to cancellation of errors, it has

third-order accuracy even though it contains no third-order derivatives. It also

has time-reversal symmetry, which gives the algorithm excellent numerical stability,

even for moderately large time steps.

A disadvantage of the method is that it treats velocities as less important than

positions; the velocities are not directly integrated but calculated from the atomic

positions using a first-order central difference method:

ṙ(t) =
r(t+ ∆t) − r(t− ∆t)

2 ∆t
+O(∆t2). (2.8)

Although there is no accumulation of error since the velocities are recalculated

at each time step, subtracting numbers of similar magnitude like this can lead to

computational round-off error, and so the basic Verlet method is seldom used when

accurate velocities are required. This disadvantage is overcome by the Velocity-

Verlet scheme [4], where the positions and velocities are treated on an equal footing.
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In the Velocity-Verlet algorithm, Eqs. 2.7 and 2.8 are replaced by

r(t+ ∆t) = r(t) + ṙ(t) ∆t+
1

2

F(t)

m
∆t2 +O(∆t4), (2.9)

ṙ(t+ ∆t) = ṙ(t) +
1

2

[
F(t)

m
+

F(t+ ∆t)

m

]
∆t+O(∆t4). (2.10)

Velocity-Verlet is also known as the ‘leapfrog’ method. It has all the desirable

properties of the basic Verlet scheme, with the added advantage that the velocities

are also accurate to third-order. The algorithm ensures that the area of phase-

space occupied remains constant as the simulation evolves, which guarantees time-

reversibility and energy conservation. It is important to ensure that energy is being

numerically conserved in an MD simulation to verify that the time step selected

is not too large; the Velocity-Verlet will often appear to give reasonable looking

trajectories for large time steps that give a considerable drift in the total energy.

Thermodynamic Properties

To extract macroscopic thermodynamic properties from an MD simulation, we need

to have good sampling of the phase space of the system. This is the ergodic hy-

pothesis : that each microstate is accessed with equal probability. We can then take

time averages of observables from thousands of steps in an MD trajectory:

〈A〉 = lim
t→∞

1

t

∫ t0+t

t0

A(τ) dτ. (2.11)

In the limit of long run times, these will be the same as statistical mechanics en-

semble averages, so we can use them to measure various properties, for example the

average temperature, pressure or kinetic energy.

Geometry Optimisation

Given a system of particles and a potential energy function, we can ask the question:

which arrangements of atoms correspond to local minima in the total energy? This

is the geometry optimisation problem, and many different approaches to solving it

have been proposed.
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Steepest Descent Conjugate Gradients

Figure 2.1: Comparison of the steepest descent and conjugate gradient minimi-
sation methods. Steepest descent takes many more steps to reach the minimum
since it has to zig-zag along the elliptical valley.

Direct Minimisation

If we reshape the atomic positions into a 3N dimensional vector R, then geometry

optimisation can be reformulated as a straight-forward minimisation problem. The

simplest way to proceed is by steepest descent where we simply follow the gradient

of the potential energy downhill

Rn+1 = Rn − γ∇V (R) (2.12)

where the step size γ is chosen by a line search in the ∇V direction. This approach

can be very inefficient because the algorithm can take many iterations to converge

to a local minimum if the curvature of the energy surface is very different in different

directions.

The conjugate gradient method is a much improved minimisation approach which

uses conjugate directions instead of the local gradient to go downhill; this is par-

ticularly advantageous if there is a long, narrow valley near to the minimum, as

illustrated in Fig. 2.1.

An even more efficient method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [47]. This is one of a large number of quasi-Newton methods which build

up knowledge of the Hessian matrix of second derivatives of the energy function

without having to evaluate the matrix explicitly at each step. BFGS combines this

with a more sophisticated line search algorithm to find the optimal step size.

It is possible to allow the lattice parameters of the system under consideration

to vary during the geometry optimisation process in response to the total stress.
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These variable-cell methods make it easy to determine properties such as the lattice

constant for a system at the same time as relaxing the internal atomic configuration.

Damped Molecular Dynamics

It is possible to perform geometry optimisation using molecular dynamics by adding

a fictitious frictional force to drive the system downhill in energy. The total force

on the i th particle becomes

Fi = −∇iV − γ ṙi. (2.13)

This is known as damped molecular dynamics, and can be extended for systems with

multiple local minima in an approach known as simulated annealing.

It is important to choose the damping coefficient γ appropriately to be close to

the critical damping factor for the system to proceed to the minimum as efficiently

as possible; this can be done for each atom independently. A procedure for doing

this was proposed by Probert [48], where it is reported that the resulting damped

MD can be comparable in efficiency to the BFGS algorithm.

Fast Inertial Relaxation Engine

FIRE (Fast Inertial Relaxation Engine) is a recently proposed optimisation algo-

rithm [49]. It is based on damped MD but with some modifications that speed up

convergence, such as an adaptive time-step. The authors describe FIRE as the route

that a blind skier would take when descending a mountain, following the equation

of motion

v̇(t) =
F(t)

m
− γ(t)|v(t)|

(
v̂(t) − F̂(t)

)
, (2.14)

with the mass m, velocity v = ṙ, force F and hats denoting unit vectors. The

function γ(t) is chosen to introduce acceleration in a steeper downhill direction when

the power P = F · v is positive. FIRE is particularity well suited to pathological

situations such as a spiral shaped potential energy surface where conjugate gradient

based algorithms are held back by the inefficiency of the line minimisation, but it

has also been shown to give performance comparable with BFGS in more realistic

situations.
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Ensembles and Thermostats

A standard molecular dynamics simulation using the Velocity-Verlet algorithm of

Eq. 2.9 conserves the total energy, so it generates the microcanonical ensemble

NV E. Here the number of particles N , volume V and total energy E are kept

constant. In this approach, the temperature can be set by rescaling velocities until

the system equilibrates at the desired temperature, and monitoring the total energy

E to ensure that the microcanonical ensemble is sampled correctly.

In 1980 Andersen noted the possibility of generating other ensembles for the first

time [50], with the aim of more closely matching experimental conditions. In partic-

ular it is desirable to generate the canonical ensemble NV T , where the temperature

T is kept constant instead of the total energy. For a very large system containing

many thousands of atoms, we approach the thermodynamic limit, the system acts

as its own heat bath, and the NV E and NV T ensembles become equivalent. In

order to generate the canonical ensemble in a smaller system we need a thermostat

which adds or removes heat from the system, maintaining a constant temperature

by simulating the coupling of the system to a heat bath.

Simple Thermostats

Many different thermostats have been proposed. Andersen’s first method consisted

of choosing a particle at random and choosing a new velocity for it from the cor-

rect Maxwell distribution. Whilst this generates the correct ensemble, it proved

unpopular since the impulses applied to particles significantly affect the dynamics.

An even simpler approach is to periodically rescale the velocities directly to the

target temperature. However this can have a pronounced effect on atomic trajecto-

ries and still does not generate the correct ensemble. A widely used improvement is

the Berendsen thermostat [51], which smoothly rescales the kinetic energy towards

the target value, with a driving force equal to the difference between the instanta-

neous and target kinetic energies. This results in a stable and easy to implement

method, but it is still not guaranteed to generate the correct ensemble.

Nosé-Hoover Thermostat

This popular thermostat was first proposed by Nosé in 1984 [52], and subsequently

by Hoover in an equivalent form [53]. A major attraction is the existence of a

conserved quantity in the extended dynamics of the combined system and heat
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bath. It guarantees sampling from the isothermal ensemble, however, Nosé-Hoover

type thermostats can behave non-ergodically, since there is no stochastic component.

This shortcoming can be overcome, to an extent, by chaining several thermostats

together; this is now common practice. This results in a more chaotic scheme, but

it is still fundamentally deterministic and can result in long correlation times.

Langevin Thermostat

The stochastic nature of a heat bath can be modelled using Langevin dynamics to

give a straightforward thermostat that maintains ergodic sampling and samples the

canonical ensemble correctly, in an approach that has become known as a Langevin

thermostat [54]. The Newtonian equations of motion are modified by the addition of

a dissipative term representing viscous damping due to fictitious heat bath particles,

and a random force to represent the effect of collisions with those particles:

Fi = −∇iV − γ ṙi + ξi. (2.15)

The random forces ξi are drawn from a Gaussian distribution with zero mean and

unit variance scaled according to the Stokes-Einstein fluctuation-dissipation relation

for the diffusion coefficient, i.e. by a factor

√
2mkBTγ

∆t
. (2.16)

where m is the particle mass, T the simulation temperature and ∆t the molecular

dynamics time-step. This approach can be readily integrated into the Velocity-

Verlet scheme [55]. We can identify the damping coefficient γ with 1/τ , where τ is

the characteristic time scale over which the thermostat acts.

Deterministic and stochastic thermostats affect the trajectories in different ways.

A strongly deterministic thermostat does not exhibit ergodicity, and so the region

of phase space explored by the simulation is restricted. Conversely, a very strongly

stochastic thermostat makes the MD simulation equivalent to Monte Carlo: this

is useless if the aim is to understand the microscopic dynamical processes. The

approach used in this work is to use a stochastic Langevin thermostat with τ chosen

to be as large as possible while still maintaining a constant temperature, so that the

effect on the dynamics is as small as possible.
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Calculation of Elastic Properties

The elastic constants of a material place constraints on crystal structure stability

and they determine the response of a crystal to external forces. In order to com-

pare the accuracy of the description of a material provided by different interatomic

potentials and quantum mechanical methods, and to compare with experimental

measurements, we need to be able to calculate values for the elastic constants pre-

dicted by a particular model. For simplicity, here we restrict the discussion to the

particular case of cubic crystals, but the method described can be extended to other

crystal structures.

The elastic constant tensor cijkl relates the applied stress tensor σ to the resulting

strain tensor ǫ, and is defined by σij = cijkl ǫkl. Symmetries of ǫ and σ, and the

requirement for the strain energy density to be positive definite, reduce the fourth

order tensor cijkl to a 6 × 6 matrix Cij. For a cubic cell, there are only three

independent elements, so the equation relating stress and strain becomes




σxx

σyy

σzz

σxy

σxz

σyz




=




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44







ǫxx

ǫyy

ǫzz

ǫxy

ǫxz

ǫyz




. (2.17)

From the three non-zero elements of this matrix, C11, C12 and C44, it is possible to

calculate all other elastic constants, for example the bulk modulus is

B =
C11 + 2C12

3
. (2.18)

The Young’s modulus and Poisson ratio of a cubic material can be calculated from

the Cij as a function of crystallographic orientation [56]. There are two different

C44 constants in common use: C44 is the elastic response when the internal degrees

of freedom of the cell are allowed to relax, whilst for C0
44 the atoms are fixed. C0

44

is not accessible to experiment, and so was largely ignored in the early literature

on elastic forces, but modern ab initio methods that can predict elastic constants

within a few percent of experiment have greatly increased its utility.

For cubic cell materials such as silicon, we have seen there are only three in-

dependent elastic constants so we can evaluate them by calculating the values of
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any three linearly independent combinations. It is common to choose the physically

important combinations B, C11 − C12 and C44. This is because a cubic material

will not be mechanically stable unless all of these are positive. Firstly, we need to

calculate the bulk modulus, defined by

B = −V ∂p

∂V
= V

∂2E

∂V 2
. (2.19)

An estimate for the bulk modulus of a cubic crystal can therefore be obtained by

expanding and compressing the cell and measuring the curvature of the energy. The

minimum of this curve corresponds to the equilibrium lattice constant a0. To calcu-

late the other two combinations, we define a reduced strain tensor that transforms

the primitive cubic cell lattice vectors ai to new vectors via the relation

a
′

i = ai (I + ǫ) (2.20)

where I is the 3×3 identity matrix. For non-rotating strains ǫ is a symmetric tensor

with six independent components:

ǫ =




e1
1
2
e6

1
2
e5

1
2
e6 e2

1
2
e4

1
2
e5

1
2
e4 e3


 . (2.21)

If we apply this strain to a lattice, then by Hooke’s Law the total energy of the

system changes by an amount

∆E(ǫ) = −P (V )∆V +
1

2
V

6∑

i=1

6∑

j=1

ei Cij ej +O(ǫ3) (2.22)

where V is the volume of the undistorted lattice, P (V ) the pressure of the undis-

torted lattice and ∆V is the change in volume of the lattice due to the strain ǫ.

The combination C11 − C12 can be calculated using the volume preserving or-

thorhombic strain e1 = −e2 = x, e3 = x2/(1 − x2), e4 = e5 = e6 = 0, which

yields

∆E(x) = V (C11 − C12)x
2 +O(x4). (2.23)

The C44 constants can be calculated using a volume conserving monoclinic strain
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e6 = x, e3 = x2/(4 − x2), e1 = e2 = e4 = e5 = 0, giving

∆E(x) =
1

2
V C44 x

2 +O(x4). (2.24)

For C44, we carry out the internal relaxation using a geometry optimisation tech-

nique to minimise the forces on all atoms for each point on the E(x) curve. For the

unrelaxed modulus C0
44 we simply omit the minimisation step.

For a crystal structure to be stable, there are a series of Cauchy-Born rela-

tionships [57] between elastic constants that must be satisfied. Harrison [58] has

developed these relationships for the diamond structure, and they have recently

been further extended to include the unrelaxed shear modulus C0
44 by Bazant et al.

[13]. The final relation is

C0
44 − C44 =

(C11 + 8C12)
2

9 (7C11 + 2C12)
. (2.25)

Any empirical model that does not obey this condition will not give a good descrip-

tion of elastic properties in the diamond phase.

2.3 Interatomic Potentials

So far we have not discussed the form of the potential energy function V ({ri}) in

Eq. 2.1 from which the forces used for molecular dynamics are derived. An inter-

atomic potential is constructed by choosing a functional form and then fitting the

parameters of this potential to reproduce observables such as the lattice constant,

cohesive energy and other elastic constants. The fit target can either be experi-

mental results, in which case the potential is referred to as an empirical interatomic

potential, or the results of ab initio calculations.

Any interatomic potential can be decomposed into a sum of one-body, two-body,

three-body, etc. contributions

V ({ri}) =
∑

i

V1(ri) +
∑

bonds
i,j
i<j

V2(ri, rj) +
∑

angles
i,j,k

i<j<k

V3(ri, rj, rk) + · · ·+ VN(r1, . . . , rN)

(2.26)

where the conditional sums avoid double-counting. For this expression to be useful,

the Vn functions must converge quickly to zero with increasing n. The one-body
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term V1 describes an external force applied to the system so is often absent. The

simplest interatomic potentials consist of only two-body contributions. The two-

body term is commonly a function only of the bond length rij = |rj − ri|, and the

three-body term of the bond lengths rij and rik and the angle θjik between the bonds

ij and ik, defined by

cos θjik =
rij · rik

|rij| |rik|
. (2.27)

A general two- and three-body interatomic potential can therefore be written

V ({ri}) =
∑

i,j
i<j

V2(rij) +
∑

i,j,k
i<j<k

V3(rij, rik, θjik). (2.28)

Lennard-Jones Potential

One of the simplest two-body potentials was proposed by Lennard-Jones [5] in 1924.

It combines a short-range repulsive term to prevent the substance from collapsing

in on itself with a longer range, attractive, dispersion term which prevents the

substance from disintegrating. A popular version of the potential chooses to make

the short-range term proportional to 1/r12 and the dispersion term proportional to

1/r6, the latter having some theoretical justification as it matches the long range

behaviour of van der Waals forces [59]. The potential is thus given by

V2(r) = 4ǫ

[(σ
r

)12

−
(σ
r

)6
]

(2.29)

where σ is the distance to the zero in V2(r) and ǫ is the energy at the minimum

as depicted in Fig. 2.2 The Lennard-Jones potential is widely used for ionic and

metallic systems, but it is too simplistic to accurately model the behaviour of atoms

in a covalent material.

Stillinger-Weber Potential for Silicon

The Stillinger-Weber (SW) potential [6] was one of the first attempts at modelling

a semiconductor material with an interatomic potential. Since it was proposed in

1985 it has been very widely used for a great variety of applications including lattice

dynamics [60], point defects [61], surfaces [62], and the liquid state [63]. It consists
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Figure 2.2: The Lennard-Jones (12, 6), Stillinger-Weber and Tersoff two-body
potentials in terms of the reduced units r/σ and V2/ǫ. The Tersoff bond-order
potential B(ζ) has been evaluated for a representative atom in a diamond bulk
structure with the cohesive energy scaled to match the Lennard-Jones well depth.

of two- and three-body potentials of the form

V2(r) = ǫ f
( r
σ

)
(2.30)

V3(rij , rik, θjik) = ǫ g
(rij

σ

)
g

(rik

σ

)
h (θjik) (2.31)

where ǫ sets the energy scale and σ the distance scale.

The functional forms of f(r) and h(θ) are

f(r) =

(
A

r4
− B

)
fcut(r) (2.32)

h(θ) = λ (cos θ − cos θ0)
2 (2.33)

where fcut(r) is a cutoff function that is zero for r > σrc, and A, B and λ are param-

eters. f(r) is shown in Fig. 2.2 for comparison with the Lennard-Jones potential.

Its range is just below the second neighbour distance in the diamond lattice and

there is a deep well at the first neighbour distance to represent the restoring force

of stretched sp3 bonds. The value of cos θ0 is set to −1
3

so that h(θ) penalises angles

away from the ideal tetrahedral bond angle; this is a simple way of describing the

directional sp3 bonding. The radial parts g(r) of the three-body term decrease its

effect when bonds are stretched. g(r) contains a similar cutoff function to f(r), with
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Expt DFT SW Tersoff EDIP
C11 166 159 151 122 175
C12 64 60 76 86 62
C44 80 85 56 10 71
C0

44 - 111 109 92 112

Table 2.1: Elastic constants of diamond structure silicon, in units of GPa. Ex-
perimental values are from Harrison [58]. DFT calculations were performed using
castep [24] with the GGA approximation and a cutoff energy of 400 eV. SW is
the Stillinger-Weber potential [6]. The Tersoff potential is the version proposed
in Ref. 7 and the EDIP values are from Justo et al. [14].

the same range.

The parameters in the Stillinger-Weber potential were determined by fitting to

experimental data, with the requirement that the diamond structure be the most

stable at low pressure and that the melting point agrees reasonably with experiment.

The SW potential is qualitatively successful at representing the condensed phases

of silicon, and does a reasonable job for the liquid phase.

It is possible to calculate the elastic constants for the SW potential analytically

[64], and this gives excellent agreement with the procedure outlined in Section 2.2.

The potential gives a very good description of the elastic properties of silicon in

the diamond structure, despite not having been fit to these. This is because the

potential is constrained by its simple functional form to nearly obey the Harrison

condition of Eq. 2.25, regardless of the values of the empirical parameters.

The SW potential has been extended to model the interaction of hydrogen with

silicon surfaces [65] by introducing additional two- and three-body parameters for

the Si-H interactions. Parameters to describe the diamond polytype of carbon have

been determined using ab initio calculations [66]; since these are not derived from

experiment this version of the potential cannot really be considered to be empirical,

but this makes little practical difference. For the theoretical reasons outlined above,

the carbon parametrisation of the SW potential gives a good description of the

elastic properties of diamond.

Tersoff and Brenner Potentials

The Tersoff potential [7, 8, 9] is another very popular empirical model for silicon,

based on the bond order concept, which is that the strength of bonds is affected by
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the presence of surrounding atoms. Like the SW potential, the Tersoff potential has

also been widely applied, for example to lattice dynamics [60], point defects [8, 9]

and the liquid and amorphous phases [67].

The Tersoff potential is the sum of a repulsive pair potential φR(rij) and an

attractive potential φA(rij) modified by a bond order function B(ζij):

V =
∑

i,j
i<j

φR(rij) +B(ζij)φA(rij) (2.34)

ζij is essentially a weighted measure of the number of bonds competing with the

bond ij, and is formed from a sum of three-body terms similar to Eq. 2.31, but

without a fixed minimum in the angular part h(θ) at the tetrahedral angle. Whilst

the potential resembles a two-body model, the functional form includes many-body

interactions in the bond order term. The bond-order potential is approximately

given by B(ζij) = ζ−δ
ij , with δ a parameter to be fitted.

The original version [7] of the potential had only six adjustable parameters, while

subsequent versions have added a further seven to improve the elastic properties.

The parameters were fitted to ab initio calculations on the various polytypes of

silicon. A representative plot of the effective two-body Tersoff interaction when the

atomic neighbourhood is a perfect bulk crystal is shown in Fig. 2.2 — the potential

very closely resembles the SW potential in this case. As can be seen in Table 2.3,

despite its greater theoretical justification due to the use of the bond order, the

Tersoff potential does not give as good as description of the elastic properties of

bulk silicon as the SW potential; this is because it does not satisfy the Harrison

condition (Eq. 2.25) as closely as the SW potential.

Soon after the Tersoff potential was developed, an extension to allow simulation

of hydrocarbon materials was proposed by Brenner [10]. In its initial form the Bren-

ner potential was a simple extension of the Tersoff model to correct the overbinding

of radicals which results in a non-physical description of the bonding process in

many common situations, for example vacancy formation. This can be achieved by

rewriting the Tersoff potential in the form

V =
∑

i,j
i<j

φR(rij) + B̄ijφA(rij) (2.35)
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where the Tersoff bond order factor B(ζij) has been replaced by

B̄ij =
B(ζij) +B(ζji)

2
+ Fij. (2.36)

It is formed by averaging Bij and Bji and adding a correction Fij for bonds between

pairs of atoms with different coordinations.

A second generation Brenner potential was proposed in 2000 [11] and further

developed in 2002 [12]. This potential describes atomic hybridisations, allowing for

covalent bond breaking and formation, and thus providing a better description of the

elastic, defect and surface properties of diamond. The revised potential is primarily

intended, however, for the simulation of hydrocarbon molecules and the additional

complexity of the potential and number of fit parameters required is considerable.

For many applications, particularly those focused on the solid state, the simplicity

of the earlier potential outweighs the gains in transferability of the newer potential,

and so the 1990 potential continues to be widely used. Recent applications of the

Brenner potential include simulations of the mechanical properties of nanotubes

[68], modelling of amorphous carbon [69] and calculation of the elastic properties of

graphene [70].

Environment Dependant Interatomic Potential

The Environment Dependant Interaction Potential (EDIP) [13, 14] is a development

of the SW potential which incorporates some of the environment dependent ideas of

Tersoff-like potentials, through an effective coordination number for each atom. The

potential has more adjustable parameters than either SW or Tersoff, and was fit to

ab initio calculations of bulk phases and defect structures. The simple functional

form guarantees an accurate description of the elastic properties of silicon in the bulk

phase, and the coordination dependent extensions include the essential features of

chemical bonding well enough to describe various bulk defects, and the liquid and

amorphous phases.

The added complications make EDIP more difficult to implement than the SW

potential, and more computationally expensive to evaluate. Its real benefit is an

improved description of the energetics of defects, since the bulk elastic behaviour is

essentially unchanged from that of the SW model. EDIP has been widely applied,

for example to compute thermodynamic properties [71], elastic properties of the

amorphous phase [72] and recently to model nanoparticle surface interactions [73].
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EDIP has recently been generalised to allow it to be used for carbon [15],

with additional coordination functions to describe dihedral rotation, non-bonded

π-repulsion and fractional coordination. This gives a transferable potential with

good elastic constants and an accurate description of the molten state. However,

even more so than for silicon, the generalisations make the potential more difficult

to implement and significantly more computationally expensive, and thus it has not

been as widely applied as the simpler but less transferable Brenner potential.

Implementation of Interatomic Potentials

The most time consuming part of a molecular dynamics simulation is evaluating the

forces on all the atoms. For practical purposes, potentials are truncated at a finite

cutoff radius rc in order to reduce the computational effort required to evaluate

them. This means that we only need to evaluate a small subset of the 1
2
N(N − 1)

unique interatomic distances, since most pairs of atoms (i, j) will be separated by a

distance rij > rc and will not contribute to the potential.

The force evaluation can be made more efficient by maintaining a list of all the

neighbours {j} of each atom i together with their separations {rij}. We include all

atoms in this neighbour list that lie within a distance rC of the atom, with rC > rc.

The neighbour crust, equal to rC − rc, should be chosen so that atoms cannot cross

it in one time step, i.e. rC − rc > 〈ṙ〉∆t.

Limitations of Classical Potentials

Despite the huge amount of effort expended on the development of classical inter-

atomic potentials in recent decades, in many circumstances they do not provide

sufficient accuracy for molecular dynamics simulations. This may be because they

are being used outside the regime in which they were fitted, or because they are too

simple to describe the physical processes taking place. Often this occurs when bonds

break during chemical reactions: a classical potential cannot be used to model the

entire system unless it can be made accurate enough to describe the full range of

chemical reactions that may take place.

Recently, there has been much work to develop reactive classical potentials capa-

ble of high accuracy for particular materials and specific classes of reactions. These

go some way to overcoming the limitations of traditional classical potentials. The

revised version of the Brenner hydrocarbon potential [11] discussed above is an ex-
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ample of the large amount effort required to do this. Other examples include the

ReaxFF [16] force field and many potentials based on the bond order idea [17, 18].

The effort required to create and test a reactive potential is enormous. These

potentials attempt to be transferable, but the fitting process still has to be repeated

for new chemical environments. Moreover, the potential is not demonstrably correct

apart from where it has been fitted, in contrast to the ab initio approach discussed

below. For many systems, reactive potentials are either too difficult to produce

or insufficiently robust to be useful. In these cases we must use a first principles

quantum mechanical method, as described in the following section.

2.4 The Ab Initio Method

Over the last twenty years, first principles methods have developed to the extent

that it is now possible to solve the many-body Schrödinger equation approximately

for systems containing hundreds of atoms with a sufficient level of detail to allow

the electronic structure of a system to be calculated. Since no empirical parameters

are required, these calculations do not suffer from the transferability problems of

interatomic potential, and, to a lesser extent, tight binding based approaches. In

this section we give only a brief overview of the ab initio method; more details can

be found in, for example, Payne et al. [23].

The time-independent, non-relativistic, many-body Schrödinger equation for a

system of N interacting electrons and M nuclei is

H|Ψ〉 = E|Ψ〉 (2.37)

where E is the energy eigenvalue of the many-body wavefunction |Ψ〉 and the Hamil-

tonian H is given by

H = −1

2

N∑

i=1

∇2
i +

1

2

∑

i,j
i<j

1

|ri − rj |
−

∑

i,I

ZI

|ri − RI |

− ~
2

2mI

∑

I

∇2
I +

1

2

∑

I,J
I<J

ZIZJ

|RI − RJ |
(2.38)

in atomic units. The indices i and j are summed over electrons, and I and J over

nuclei, which have positions {ri} and {RI} respectively. ZI and mI are the atomic
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number and mass of the I th nucleus. The first term is the electronic kinetic energy,

and the fourth the ionic kinetic energy. Electron-electron interaction is described by

the second term, electron-ion interaction by the third and the last term represents

the ion-ion interactions.

In principle, solving Eq. 2.37 to get all the eigenstates and eigenvalues of the

Hamiltonian would allow all the physical properties of the system to be calculated.

However, an analytical solution cannot be obtained for systems containing more

than one electron: we clearly need to approximate in order to proceed.

The approximations required include the Born-Oppenheimer approximation to

simplify the Hamiltonian, density functional theory to model the electron-electron

interactions and pseudopotential theory to model the electron-ion interactions. Each

of these is described briefly in the following sections.

The Born-Oppenheimer Approximation

An essential step along the road to a practicable method for approximately solving

the many-body Schrödinger equation is the well known Born-Oppenheimer approx-

imation [74], proposed in 1927. Since the mass of the electron is several orders of

magnitude smaller than that of the nuclei, they move on much faster time scales.

We can therefore assume that the as the nuclei move, the electrons immediately

relax to their instantaneous eigenstate. In this case, the motion of the electrons can

be decoupled adiabatically from that of the ions. Eq. 2.38 reduces to the electronic

Hamiltonian

H = −1

2

N∑

i=1

∇2
i +

1

2

∑

i,j
i<j

1

|ri − rj |
−

∑

i,I

ZI

|ri − RI |
. (2.39)

This approximation applies to high accuracy in most solid state systems. It breaks

down when there is significant vibronic coupling between the nuclear and electronic

degrees of freedom. This is common in linear molecules where symmetry gives rise to

degeneracy of the electronic states. The first calculation to go beyond the adiabatic

approximation and to include extra terms to take account of these coupling effects

was performed by Renner [75] in 1934 for the case of an electronically excited Π-state

in CO2.
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Density Functional Theory

Density functional theory (DFT), developed by Hohenberg, Kohn and Sham in the

mid 1960s, proves that the ground state energy of an electron gas is a unique and

universal functional of the electron density [19], and that it is possible to replace the

many-electron problem by an equivalent set of self-consistent one effective particle

problems [20]. Within this framework the energy E of a set of N electrons in an

external potential Vext(r) is

E [n(r)] = FHK [n(r)] +

∫
Vext(r)n(r) d3r (2.40)

where square brackets denote functionals, n(r) is the electron density and FHK is

the unique Hohnberg-Kohn functional. Variational minimisation of this equation

leads to the ground-state density n0(r) and ground-state energy E0. The second

central principle of DFT is now applied: we rewrite the density in terms of a set of

orthonormal non-interacting single particle functions |φi〉:

n(r) =
N∑

i=1

|φi(r)|2 (2.41)

We separate the unknown functional FHK [n(r)] into a sum of three contributions:

the kinetic energy of these non-interacting electrons, the Hartree electron-electron

interaction energy and a final term which captures the effects of electron exchange

and correlation:

F [n(r)] = TS [n(r)] + EH [n(r)] + EXC [n(r)] . (2.42)

The kinetic energy TS and the Hartree energy EH can be written exactly:

TS [n(r)] = −1

2

∑

i

∫
φ∗

i (r)∇2φi(r) d3r

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| d3r d3r′
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Minimising this energy functional with respect to each of the |φi〉 leads to a set of

N single particle Schödinger equations, called the Kohn-Sham equations


−1

2
∇2 + VH(r) + Vext(r) + VXC(r)︸ ︷︷ ︸

=VKS(r)


φi(r) = ǫiφi(r) (2.43)

where VH and VXC are obtained by taking functional derivatives of EH and EXC ,

and VKS is the Kohn-Sham effective potential.

These equations are exact, but to make progress we must approximate EXC .

The choice of this functional is the only uncontrolled approximation in the DFT

formalism and the development of improved approximations to the functional has

been an active topic of research since the method was first proposed. Since we’ve

now separated out all the dominant long-range contributions to the energy, EXC

can be approximated, either as a local functional of the density in the Local Density

Approximation (LDA) or of the density and its gradient in the Generalised Gradient

Approximation (GGA). The GGA is more robust in systems where the electron

density varies rapidly.

Both LDA and GGA are parametrised using accurate but computationally very

expensive quantum Monte Carlo (QMC) calculations on the electron gas at a range

of densities. Some GGA parametrisations are additionally fit to experimental data

for a large number of atomic and molecular systems; these are referred to as hybrid

functionals, with the BLYP functional being the most widely used example [76].

In this work I shall use the popular Perdew, Burke and Ernzerhof (PBE) GGA

functional which has no semi-empirical parameters apart from those of the local

spin density approximation from which it is derived [21].

Basis Set and k-point Sampling

To solve the Kohn-Sham equations numerically, we need a basis set in which to repre-

sent the wavefunctions. Possible basis sets fall into two broad categories: those that

are atom centred, e.g. gaussians or linear combinations of atomic orbitals (LCAO),

and basis sets derived from planewaves that have the same accuracy throughout the

system. Localised basis sets allow an efficient treatment of molecular systems, since

the number of states required will often be far fewer than that required to give the

same accuracy with a planewave calculation (however the operations are much more
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expensive per basis function). Thus they are popular in quantum chemistry and for

biomolecular calculations. For periodic systems, planewaves are often preferred as

they provide a mathematically straightforward representation, and only have to be

converged with respect to a single parameter, the total number of plane waves in

the basis set, usually represented in terms of a cutoff energy for the plane waves

retained in the set. Since they treat all areas of the system equally, plane waves are

free of the bias that can afflict calculations using localised basis sets. In this work I

will use a planewave basis set, as implemented in the castep package [24].

Bloch’s theorem tells us that the eigenstates of a one-electron Hamiltonian in a

periodic potential, with V (r + R) = V (r) for all Bravais lattice vectors R, are of

the form

φi,k(r) = eik·rui(r) (2.44)

where the {ui} are periodic Bloch functions. We can expand these functions as a

sum over the reciprocal lattice vectors G of the periodic system, giving

φi,k(r) =
∑

G

ci,k+G e
i(k+G)·r (2.45)

where the ci,k+G are the expansion coefficients for the i th band. Since these coeffi-

cients are typically smaller the larger the planewave kinetic energy, we can truncate

this sum at some cutoff energy radius, with 1
2
|k + G|2 ≤ Ecut, and then converge

the basis set by increasing Ecut until the final total energy of the system does not

change.

In principle, once we have solved the Kohn-Sham equations, we can calculate

physical properties such as the total energy by integrating over all k in the first

Brillouin zone. In practice it turns out to be sufficient to use a finite k-point sampling

scheme, since the Kohn-Sham eigenstates, eigenvalues, and electron density are

all smoothly varying functions of k. In this work I will use the Monkhorst-Pack

sampling scheme [77]. This consists of a uniform grid of k-points that follow the

shape of the Brillouin zone. Symmetries of the supercell can be used to further

reduce the number of k-points required. If a system is very large, then the Brillouin

zone volume will be very small, so a smaller number of k-points are required to

adequately sample it. In the limit of a very large system, we can consider only a

single point, often the Γ point for which k = 0.

Since the Bloch formalism only applies to periodic systems, if we wish to study

non-periodic systems such as molecules, defects or surfaces then we have to simulate
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Z/r

Pseudopotential

Pseudowavefunction

Figure 2.3: Schematic illustration of the all-electron potential and the pseudopo-
tential, and the corresponding wavefunctions.

non-periodicity using the supercell approximation: our periodic system is a regular

array of widely spaced copies of the non-periodic system, with enough vacuum-

padding to prevent spurious interaction between images.

The Pseudopotential Approximation

Close to the nucleus, the requirement for the valence and core electron wavefunc-

tions to be orthogonal causes rapid variations in both wavefunctions and oscillations

in the valence wavefunction. A very large number of planewaves would be required

to accurately describe these oscillations. We can avoid this by replacing the true

all-electron potential with a much weaker, smoother, pseudopotential in this region,

which takes into account the combined effect of the nucleus and the core electrons,

removing these oscillations. This is illustrated in Fig. 2.3. The resulting ‘pseu-

dowavefunction’ can be represented to the same accuracy by a basis containing far

fewer planewaves, so the computational cost of the calculation is reduced.

Pseudopotentials are normally constructed from DFT calculations on isolated

atoms. The valence wavefunctions are modified in the core region to remove the

rapid oscillations, then the Schrödinger equation is inverted to find the correspond-

ing pseudopotential. It is common to require that the core region of the all-electron

and pseudowavefunctions must enclose the same charge; this leads to what are known
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as norm-conserving pseudopotentials [78]. Providing the pseudo- and all-electron

wavefunctions match outside the core region, norm-conserving pseudopotentials re-

sult in the correct first-order variation of phase shifts with energy, giving an accurate

description of scattering over a wide range of energies.

Relaxing the norm-conservation constraints leads to an alternative class of pseu-

dopotentials, called ultrasoft pseudopotentials, in a procedure first proposed by Van-

derbilt [79]. They are smoother than norm-conserving pseudopotentials, so require

even fewer planewaves to describe the pseudowavefunctions; typically the cutoff

energy Ecut can be reduced by about a factor of two. A charge augmentation func-

tion acting within the core region is used to compensate for the relaxation of the

norm-conservation constraint. Ultrasoft pseudopotentials no longer predict the cor-

rect dependence of phase shift on energy, so it is common to interpolate between

pseudopotentials parameterised at several reference energies.

Minimisation of the Total Energy

The Kohn-Sham equation (Eq. 2.43) must be solved self-consistently to obtain the

ground-state electron density and hence the ground-state total energy. The original

approach was to do this directly by matrix diagonalisation, however this is very time

consuming and inefficient since the computational cost of diagonalisation scales as

the cube of the number of plane waves but only a small number of the solutions

require occupied Kohn-Sham orbitals.

The Car-Parrinello method [80] improves upon this by iteratively improving a

trial wavefunction using fictitious electron dynamics to minimise the total energy.

This process can be greatly sped up by instead using a preconditioned conjugate

gradient method to minimise the energy function [22]. The overall scaling of the

calculation is still cubic in both cases since maintaining orthonormalisation of the

wavefunctions requires an integral with cost proportional to N to be evaluated for

each of the 1
2
N(N − 1) orbital pairs. The conjugate gradient approach is taken in

the castep package used in this work.

The Hellman-Feynman theorem

In order to perform molecular dynamics or carry out geometry optimisation using

the ab initio method, we need to evaluate the quantum mechanical forces acting on

the ions. The Hellman-Feynman theorem [81, 82] simplifies the evaluation of these
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forces; it shows that the partial derivative of the total energy with respect to the

Kohn-Sham wavefunctions vanishes when we sum over all bands, so the force on the

Ith nucleus at position RI is simply given by

FI =
∂EKS

∂RI

=
∑

i

〈φi|
∂HKS

∂RI
|φi〉

Once these forces have been calculated, geometry optimisation or molecular dynam-

ics can be carried out in a straightforward fashion. This approach is in contrast to

the Car-Parinello Molecular Dynamics (CPMD) method, where the fictitious elec-

tronic and real ionic degrees of freedom are integrated simultaneously. This requires

a far smaller timestep but it is not necessary to solve the electronic problem to full

self-consistency at each step.

2.5 Tight Binding

Originally proposed by Slater and Koster in 1954 [83], the Tight Binding (TB)

method [84] lies in between fast but inaccurate empirical potential modelling and

very expensive, very accurate ab initio techniques. Since the TB method retains

essentially a quantum mechanical description of bonding, it is useful where quantum

mechanics is needed but a large system size means ab initio calculations are not

feasible.

Semi-Empirical Orthogonal Tight Binding

The TB method works by writing eigenstates of the Hamiltonian in an atomic-

like basis set, and replacing the exact many-body Hamiltonian with a parametrised

Hamiltonian matrix HTB. The total electronic energy is a sum of the energy eigen-

values of the filled states:

Eband =

N∑

i=1

〈ψi|HTB|ψi〉 =

N∑

i=1

ǫi. (2.46)

To apply tight binding as a molecular dynamics technique, we must choose a con-

tinuous functional form for the distance dependence of the matrix elements of HTB.
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We also add a repulsive energy term to account for ion-ion repulsion and the over

counting of the electron-electron repulsion in Eband. Typically this term is formed

from a sum of pair potentials. Adding this repulsive term to the ionic kinetic energy,

we arrive at the TB molecular dynamics Hamiltonian:

H =

M∑

I=1

p2
I

2mI
+ Eband + Erep (2.47)

where I is summed over the M ions. In the orthogonal tight binding method, the

basis functions {ψi(r)} are formed from the non-orthogonal but short-ranged atomic

orbitals in such a way as to preserve their symmetry properties; the resulting basis

functions are known as Löwdin functions. We assume that these functions are also

short-ranged. The eigenvalues ǫi and eigenvectors of HTB can be evaluated using

exact matrix diagonalisation which means the scaling with the number of atoms is

O(N3) and the method is practical for around a thousand atoms.

Once we have diagonalised HTB, we calculate the forces on the ions by evaluating

the density matrix ρ in either real space or basis space and taking the derivative

with respect to an ionic position RI . For a real space density matrix the energy and

force are

Eband = 2 Tr [ρHTB]

FI = −2 Tr

[
ρ
∂HTB

∂RI

]

Early TB implementations [85] used simple repulsive pair potentials proportional

to 1/r2, and fitted to bulk elastic properties. Atomic energies and hopping matrix

elements were fit to band structures derived from ab initio calculations. This gives

an accurate description of crystalline systems but is not very transferable. Goodwin

et al. [86] suggested using short-range scaling functions to control the range of the

TB interactions in order to make calculations feasible for larger systems. Further

developments to these scaling functions gave rise to more broadly applicable TB

potentials [87, 88] for silicon. However transferability is still limited by the need to

fit to well defined chemical surroundings.
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Extensions to Orthogonal Tight Binding

Self-consistency

Commonly TB is used non self-consistently: the Hamiltonian matrix does not de-

pend on the distribution of electrons. This can cause problems when net charge

transfer between atoms is important, for example in materials with a large degree

of ionic bonding, or when spurious charge transfer — that should be prevented by

Coulombic screening — arises. The simplest approach to overcome this problem is

Local Charge Neutrality (LCN), where the on-site energies are adjusted by a local

offset chosen iteratively so that the number of electrons on each atom balances the

ionic charge. LCN works well for metallic systems where the atoms do not carry

significant charge because the screening length is typically less than the interatomic

spacing. If there is a greater amount of charge transfer then an extra correction

term can be added to the on site energies in the Hamiltonian. The correction to the

energy is

δEI = U(QI − ZI) (2.48)

where QI is the number of electrons on the atom (evaluated as a sum of the occu-

pation factors of each eigenstate), ZI is the nuclear charge, and U is the strength

of the correction, referred to as the Hubbard U . This introduces an energy cost for

charging an atom, which acts to prevent unphysical charge transfer.

Non-orthogonal Tight Binding

The orthogonal TB method outlined above has many advantages and is a very

popular simulation technique, allowing systems containing thousands of atoms to

be modelled in a way that includes quantum many-body effects which are totally

inaccessible to an empirical interatomic potential. However a major drawback of

the method, in common with empirical potentials, is its lack of transferability. For

example, a parametrisation developed for crystalline silicon is unlikely to accurately

describe the liquid phase without expanding the fitting data but if this were tried,

the large dataset required would result in a dramatic drop in overall accuracy.

One obvious improvement consists of incorporating the overlap integral between

basis functions, by solving for the eigenstates ψi and energies Ei of the generalised

eigenvalue problem

(H − Ei S)ψi = 0 (2.49)
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where H and S are the Hamiltonian and overlap matrices in the atomic basis set

representation. This approach is used in a variety of non-orthogonal tight binding

methods, which have enjoyed considerable success in improving the accuracy of TB

calculations for semiconductor systems, for example in silicon clusters [89].

Density Functional Tight Binding

Density functional tight binding (DFTB) is based on a more sophisticated second-

order expansion of the Kohn-Sham energy with respect to fluctuations in charge

density [90, 91]. However, it retains many aspects of the traditional TB formalism,

such as tabulated Hamiltonians and the two-centre approximation to the hopping

integrals.

An atomic basis set {φi (r)} is used to solve a simplified Kohn-Sham equation

(c.f. Eq. 2.43) with a pseudo-atom potential consisting of a nuclear potential, the

Hartree potential VH and the exchange correlation potential VXC

[
−1

2
∇2 + VH(r) + Vnuc(r) + VXC(r) +

(
r

r0

)N
]
φi = ǫiφi (r) . (2.50)

The purpose of the last term in the potential is to concentrate charge density closer

to the nucleus to make bulk calculations easier. The solutions for the {φi} are used

to tabulate Hamiltonian matrix elements. To complete the model the repulsive pair

potential is calculated for each atomic configuration by taking the energy difference

between the band energy given by this method and that of a full self-consistent

solution to the modified Kohn-Sham equation.

Despite its relative simplicity, the DFTB method does a good job of produc-

ing transferable tight-binding parametrisations. Since the Kohn-Sham energy also

includes the Coulomb interactions between charge fluctuations long range electro-

static forces are handled correctly. By modifying the DFTB matrix elements to

redistribute Mulliken charges, it is possible to include charge self-consistency effects

into the model [92]. This further improves the method’s transferability and allows it

to be applied to organic and biological systems where charge transfer and long-range

Coulomb interactions are important so traditional non-self-consistent TB cannot be

used.
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2.6 Summary

This chapter has outlined the major ingredients that are fundamental to this thesis:

classical molecular dynamics and accurate quantum mechanical calculation of forces.

In the next chapter I will look at how these can be combined to create a multiscale

hybrid model, before describing the ‘Learn on the Fly scheme’ in Chapter 4 and

then going into more detail on the specific problem to be attacked with this method

in Chapter 5.





Chapter 3

Hybrid Simulation

3.1 Introduction

Over the last twenty years, the ab initio methods described in the previous chapter

have made modelling of simple semiconductor systems reliable, accurate and rou-

tine. This is partly due to the significant increase in capacity and speed of available

computers and partly to the development of high quality codes that make effective

use of these resources. As a result, attention is now focusing on modelling larger

scale, more complex systems. Representative examples from fields as disparate as
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Figure 3.1: Schematic representation of the range of length- and time-scales ac-
cessible to a variety of modelling methods, from quantum Monte Carlo (QMC) for
very accurate, very expensive static calculations through to approximate methods
such as finite-element modelling.
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biology and materials science include enzyme catalysis [28] and defect migration

in semiconductors; both of these systems are described in more detail below. Ide-

ally, we would simulate such systems using entirely first principles methods, free

of empirical parameters and the accuracy and transferability problems associated

with them. However, ab initio molecular dynamics is limited to simulating a few

hundred atoms for up to a few picoseconds. Using more approximate methods (e.g.

tight binding), the number of atoms can be extended to perhaps thousands, or the

time period increased by a few orders of magnitude, but for many problems this is

still insufficient. Fig. 3.1 illustrates the approximate range of application of various

modelling techniques and makes clear the challenges we face if we wish to model

complex problems with high accuracy.

Hierarchical Modelling

In recent years, there has been a great deal of work on multiscale methods that

attempt to apply accurate quantum calculations to larger systems in one way or

another. Most commonly, such methods are examples of hierarchical multiscale

modelling, where the results of a calculation at one scale are used to parameterise less

accurate calculations at a larger scale, making bigger systems or longer simulation

times possible 1.

For many biological processes, the relevant timescale is of the order of mil-

liseconds, well beyond the capability of traditional molecular dynamics. To make

progress we can either form a hierarchical multiscale model by coarse-graining the

system and considering the dynamics of the aggregate particles, or we can try to ex-

tract activation energies and reaction pathways from static calculations or short MD

runs to parameterise Monte Carlo models. For a review of hierarchical multiscale

methods and examples of their application, see Nieminen [25].

Simultaneous Modelling

There is a large class of problems where the physical processes on the various length

scales are strongly coupled and cannot be separated into a series of independent

calculations; often this is because the nanoscale phenomena is driven by forces

determined at least partially on the macroscopc scale. Simulation of such systems

1We have seen this approach already in Section 2.3 — for example the Tersoff potential is a
classical potential fitted to ab initio data, capturing aspects of the quantum mechanical bonding.
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requires simultaneous coupling of length scales. Over the last ten years there has

been much effort to devise schemes, referred to as hybrid or embedded methods, that

combine a range of modelling techniques into a single simulation.

Occasionally, the large scale processes are so simple that they can be simulated

very easily, as an example Martoňák et al. [93] added a classical pressure reservoir

of soft spheres to an ab initio simulation of a small molecule. Usually, however,

the large scale behaviour requires a more complex model to accurately capture the

physics; this will be assumed to be the case for the remainder of the work discussed

in this chapter.

Multiscale Applications in the Solid State

Stress induced defect processes in metals and semiconductors often give rise to

strongly coupled multiscale phenomena. Examples include point-defect diffusion,

dislocation motion, grain boundaries and, of course, the prototypical multiscale

modelling problem: fracture.

Point-Defect Diffusion The stability and migration of point defects in semiconduc-

tors is affected both by local chemical interactions and long range strain fields. An

example long range effect is the strain field resulting from the lattice mismatch be-

tween epitaxial layers in semiconductors. Although the quantum mechanical treat-

ment of the bonding rearrangement around a defect requires only a few hundred

atoms, we would need to include thousands more atoms to accurately represent

the inhomogeneous strain environment, particularly if we are to model interactions

between multiple defects.

Dislocation Motion The strength of many materials is dominated by the behaviour

of their dislocations. The core of a dislocation is a 1D region in which the bonding

is significantly distorted. Dislocations in covalent materials move by the formation

of kinks in the dislocation, where the bonding is very highly distorted. As the kink

moves, so does this region of distortion. This motion requires bond breaking and

reformation, therefore this region should be modelled by a highly accurate quantum

mechanical technique.

Grain Boundaries It is not always possible to assume perfect single crystal structure

and ignore the effect of grain boundaries when studying the physical and electronic
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properties of semiconductors. This is true for many materials of growing tech-

nological relevance, for example gallium nitride, silicon carbide and diamond [94].

Grain boundaries change the crystal structure on two length scales: they introduce

long-range elastic distortion and local bonding disorder. They also act as sinks and

sources for dislocations and traps for dopants, electrons and holes, further increasing

the local chemical complexity. A multiscale description is needed to describe these

systems since empirical interatomic potentials describe the long range-interactions

adequately but local rebonding requires quantum mechanical accuracy.

Brittle Fracture As discussed in the introduction to this thesis, fracture is perhaps

the best example of a multiscale materials process. It is the prototypical problem

that has spurred many recent advances in the field of hybrid modelling of materials

systems, and thus reviewing these developments is most easily accomplished by

briefly considering the history of multiscale fracture simulation. We will delay a

full discussion of fracture to Chapter 5, and in this chapter concentrate only on its

multiscale nature.

3.2 Coupling Continuum and Atomistic Systems

In this thesis, I concentrate on hybrid schemes which link quantum mechanical and

classical modelling, but we shall first look briefly at a larger length scale. The pio-

neering hybrid simulations of materials systems were performed by Kohlhoff et al.

[26], where classical atomistic and continuum elastic models were coupled to suc-

cessfully model the directional cleavage anisotropy of a BCC crystal. This approach

has been developed in the quasicontinuum (QC) method of Tadmor et al. [27].

The key problem with coupling atomistic and continuum models of matter is find-

ing ways to connect these conceptually very different descriptions. Atomic positions

need to be mapped onto a continuous displacement field, and energy calculations

from interatomic potentials in the atomistic region and constitutive laws in the con-

tinuum region need to be harmonised. In the QC approach, a small subset of the

atoms that would appear in a fully atomistic model are selected to represent the

system as a whole, with a higher sampling density in highly deformed regions. The

system is divided into cells, with one representative atom in each cell, as illustrated

in Fig. 3.2. We assume that the energy of all the atoms in each cell is the same

as that of the representative atom. The energies of these representative atoms are
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Figure 3.2: Schematic illustration of the finite element discretisation of a solid in
the quasicontinuum method. The lower panel shows the representative atom for
a particular triangular element. Reproduced from Tadmor et al. [27]

computed from the local environment, either from constitutive laws in areas that are

nearly homogeneously deformed, or fully atomistically for non-uniformly deformed

regions.

The atomistic and continuum methods are not completely compatible: non-

physical forces arise on the continuum side of the boundary since it looks like an

artificial surface. The atomistic interactions used in QC are limited to be nearest

neighbour models so there are no artificial forces in the atomistic region. In a

refinement of the QC method, Shenoy et al. [95] removed these ghost forces in what

they called the dead load approximation. The QC method has been applied to many

systems, for example to study the interaction of dislocations with grain boundaries

[96] and the effect of grain orientation on fracture [97].

3.3 Coupling Two Classical Atomistic Systems

As a prelude to looking at the difficulties posed when attempting to couple quantum

and classical systems, let’s consider how two classical atomistic models could be

combined. Providing the models are both short ranged, a straightforward treatment

of the boundary is possible. We allow the regions to overlap as shown in Fig. 3.3,

then evaluate the energy for the two regions separately, with a buffer region for
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Buffer B 1

Buffer B 2

Overlap region

Region I 2

Model 1 Model 2

Region I 1

Figure 3.3: Schematic showing how overlap buffers can be used to solve the
boundary problem in a classical/classical embedding scheme, where all interac-
tions are short ranged.

both calculations. The locality of the classical potentials means that each of these

energies is a sum of local energies ǫi for each atom, so it is easy to separate the energy

into a contribution due to the interior atoms and one due to the buffer atoms. For

example, the energy for Model 1 of Fig. 3.3 can be decomposed as

E(1) =
∑

i

ǫi =
∑

i ∈ I1

ǫi

︸ ︷︷ ︸
E

(1)
I

+
∑

i ∈ B1

ǫi

︸ ︷︷ ︸
E

(1)
B

(3.1)

where I1 and B1 denote the interior and buffer sections of region one, as shown in

Fig. 3.3. The same decomposition can be applied to give E(2) for Model 2. The

total hybrid energy is then obtained by summing the contributions from the two

interior regions, neglecting the buffers:

Ehybrid = E
(1)
I + E

(2)
I (3.2)

The artificial surfaces created at the boundary will be much more of a problem when

we come to consider embedding a non-local quantum system which is described in

the next section.
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3.4 Coupling Quantum and Classical Systems

Coupling quantum and classical systems poses significantly greater challenges than

combining two classical descriptions of matter. As quantum mechanics is non-

local the simple partitioning scheme described above will not work. To overcome

this problem we need to provide appropriate boundary conditions for the quantum

calculations and find a way to spatially localise their effects.

The quantum mechanical model is assumed to be accurate enough to describe

the physics of the region of interest correctly, perhaps using tight binding or an

ab initio approach. The classical model needs only to correctly capture the basic

topology of bonding and give the correct response to small elastic deformations,

while remaining inexpensive to compute: empirical interatomic potentials are ideal

for this purpose. Furthermore, since we shall use the quantum model anywhere we

suspect the classical model will be unreliable, we prefer that the classical model

be robust and inexpensive rather than being highly transferable. There has been

a great deal of effort in recent years to produce potentials which attempt to model

complex processes such as defect formation — generally we have found that such

potentials are not useful in a hybrid simulation. We prefer simple potentials such

as the Stillinger-Weber model to more complex ones such as EDIP.

The widely used assumption, upon which all quantum/classical hybrid schemes

rely, is that the physics is local so that observables can be computed locally, taking

into account only atoms which lie within some finite distance of the region of interest.

Equivalently, we require that distant trajectories are instantaneously independent.

Providing the quantum region is large enough, the trajectories that are important

are not affected by the fact that, far away, the system is treated classically. However,

it is also necessary, from a practical point of view, that the quantum trajectories

can be computed accurately using a small quantum region. Both these conditions

are satisfied by the strong locality condition:

∂n

∂rn
j

∂Etotal

∂ri

→ 0 as |ri − rj | → ∞ ∀n ∈ N, i 6= j (3.3)

where ri and rj are the positions of atoms i and j. This spatial localisation of

observables is a stronger requirement than that the density matrix be sparse so

that its elements decay rapidly as the separation between two atoms increases. The

strong locality assumption can be tested for a particular system by testing the rate

of convergence of the force on the central atom of a cluster as the cluster radius is
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Figure 3.4: Top: distribution of force component errors at the centre of a finite
cluster for a range of cluster sizes. The peaks on the right represent the integrated
distribution of errors which are larger than 0.02 eV Å−1. The system is a silicon
self-interstitial in a 512-atom cubic cell with periodic boundary conditions, equili-
brated at 1400 K. Bottom: the mean of the absolute error in the force components
as a function of cluster radius. The peak at 10.5 Å is due to the periodicity of the
underlying system. Clusters were terminated with hydrogen atoms. The force
model is tight binding, from Bowler et al. [88]. This figure is reproduced from
Csányi et al. [40].

increased. Fig. 3.4 shows an example of a test of strong locality for silicon using a

tight binding force model. Most quantum systems either obey strong locality, or at

least the parts of the Hamiltonian that do not, such as long range Coulomb and van

der Waals interactions, can be dealt with in a purely classically manner.

Before we consider the details of the coupling strategy, it is appropriate to ask

what we want from an ideal hybrid simulation. It is not feasible for the atoms

in the quantum region to move as if the whole system were described quantum

mechanically, since the classical atoms still move along classical trajectories, and

the quantum atoms will respond to the new positions of the classical atoms. Hence,

the best we can aim for is for the quantum atoms to behave instantaneously as if

they are embedded in a fully quantum system.
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3.5 The QM/MM Approach

The earliest quantum/classical hybrid simulation was performed by Warshel and

Levitt [28] in 1976 in which they model the reaction of the enzyme lysozyme. En-

zyme catalysis is often controlled by large scale motion of macromolecules, with a

small active site at which the chemical reaction takes place. Warshel and Levitt

noted the need to describe the active site at a quantum mechanical level of detail

to give an accurate description of hydrophobic interactions and hydrogen bonding

during catalysis. The electrostatic environment at the active site is determined by

the configuration of the entire system of enzyme, substrate and solvent. The long

range nature of electrostatic forces in such systems means that atoms far from the

active site respond to the presence of a substrate, which in turn causes a change in

the local electrostatic environment.

Hybrid methods of this kind, where the dominant interaction is electrostatic,

have become known as quantum mechanical/molecular mechanical (abbreviated

QM/MM) methods. They have become very popular in the biological and bio-

chemical modelling communities in recent decades. All the fundamental aspects

of modern QM/MM techniques were contained in Warshel’s pioneering work: the

quantum region was chosen very carefully by hand, and the boundary atoms were

terminated with a frozen hybrid orbital.

In this section I will give only a brief overview of the QM/MM method; for

reviews of recent developments in the QM/MM field see Lin and Truhlar [98] and

Ruiz-Lopez [99]. Within the QM/MM framework, the total energy is the sum of

three contributions: the quantum mechanical energy of the quantum region, the

classical energy of the rest of the system, and a term representing the interaction

between the two. There are two distinct approaches to performing a QM/MM calcu-

lation, which differ in their treatment of the interaction between regions: mechanical

embedding and electrostatic embedding. I describe each of these below.

Mechanical Embedding

Mechanical embedding schemes perform quantum calculations for the QM region

in the absence of the MM region, treating the interactions between the regions

classically. The simplest mechanical embedding scheme is the two-layer ONIOM

method [29], illustrated in Fig. 3.5. Here the total energy is obtained from three
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Figure 3.5: The two-layer ONIOM-style QM/MM scheme. Regions coloured red
are treated with QM and those coloured yellow with MM. The termination atoms
indicated as H could in fact be a more complex pseudoatom termination.

independent calculations:

EQM/MM = EQM(QM) + EMM(QM +MM) −EMM (QM) (3.4)

where the subscripts denote the energy model and the function arguments indicate

the parts of the system to be included in each calculation. The MM system contains

all the atoms and the quantum system contains the atoms of quantum mechanical

interest plus link atoms used to cap dangling covalent bonds. ONIOM relies on

cancellation of errors between the two surface energies.

There are two major drawbacks to the mechanical embedding approach. Firstly

it is not always possible to obtain an accurate set of electrostatic MM parameters

for atoms in the QM region; this is a particular problem since it is often the unavail-

ability of such parameters which motivates the desire to treat this region quantum

mechanically in the first place. Secondly, the scheme ignores perturbations in the

electronic structure of the QM region caused by the charge distribution of the MM

region. The three layer ONIOM method [100, 101] goes some way to solving these

problems by introducing an intermediate layer, treated at semi-empirical quantum

mechanical accuracy. This allows a consistent treatment of the polarisation of the

active site.

Electrostatic Embedding

In an electrostatic embedding scheme the QM calculation is carried out in the pres-

ence of the classical charge distribution by adding terms that describe the electro-

static interaction between regions to the QM Hamiltonian. Normally atom centred

partial point charges are used, but more advanced techniques employ a multipole

expansion of the electric field for increased accuracy. Bonded and van der Waals
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interactions between the regions are still treated classically.

One problem of the standard electrostatic embedding approach is that classical

atoms just outside the quantum region appear as bare coulomb charges in the quan-

tum calculation. There is a tendency for electron density to unphysically ‘spill-out’

onto these atoms to neutralise these charges. Laio et al. [102] have developed an

efficient implementation of an electrostatic embedding scheme that addresses this

issue by dealing with the short and long range electrostatic interactions differently

to avoid spill-out.

Termination of Covalent Bonds

The QM/MM method has been applied fairly extensively to multiscale solid state

systems of the types described at the beginning of this chapter. Electrostatic screen-

ing is very effective in metals and small band gap insulators, so mechanical embed-

ding schemes are widely used for such systems. Bonded interactions between the

QM and MM regions are much more of a problem in the solid state, since for a

typical spherical QM region the number of covalent bonds that have to be cut to

generate the QM cluster is of the same order as the number of atoms in the region.

To incorporate a quantum mechanical calculation of a subsystem into the total

Hamiltonian, these artificially cut bonds must be terminated. There are various

methods for doing this, usually based on using hydrogen link atoms or parameterised

semiempirical ‘pseudoatoms’ that attempt to mimic the electronic effect of the region

outside the subsystem that has been removed. A localised orbital parameterised with

calculations on small model systems can be used to provide a quantum mechanical

description of the charge distribution around the QM/MM boundary [103] 2.

We have seen in Section 3.2 that these termination strategies are sufficient to

give accurate classical forces, since the classical description of covalent bonding is

very near sighted. Quantum mechanics, however, is not a nearest neighbour model,

so atoms close to the terminated boundary of the QM subsystem feel an artificial

environment, no matter how complex the passivation scheme employed. Moreover,

it is impossible to exclude the contribution of the termination atoms to the total

quantum mechanical energy of the subsystem. In a typical covalent system the

length scale for strong locality of the electronic energy is the order of a nanometre,

so any termination method that merely replaces a broken bond with a single atom

2This approach is less widely used since is not possible to include these hybrid orbitals in a
plane wave ab initio code.
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Figure 3.6: Comparison of (a) QM/MM and (b) force mixing approaches to the
electronic termination problem.

cannot hope to give accurate forces at the boundary, due to the non-local nature of

the quantum mechanical forces.

Force Mixing

An alternative to the standard QM/MM termination method is to move smoothly

from quantum to classical forces over a transition region. This is the force mix-

ing technique, where the forces used for the dynamics are interpolated, commonly

linearly according to

F = λFQM + (1 − λ)Fclassical (3.5)

with λ varying from zero on the classical edge of the transition zone to one at the

QM edge. Higher order interpolation is also possible. A comparison of traditional

QM/MM termination and force mixing is illustrated in Fig. 3.6.

Compared to the link atom method, force mixing slightly reduces the effect of

inaccurate forces on atoms near to the edge of the QM region, since they are reduced

in weight and mixed with classical forces. However, since the strong locality length

scale is large, the transition zone must be very wide for this to have much of an

effect, so large quantum mechanical zones are required.

A major disadvantage of force mixing is that since the forces no longer come

from a single Hamiltonian neither energy nor momentum are conserved. The re-

sulting dynamics can be unphysical. The action-reaction principle is not obeyed

so, for example, the forces on a dimer spanning the boundary do not sum to zero.

This creates a mechanical incompatibility across the boundary, which can lead to
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(a) (b)

Figure 3.7: Early hybrid fracture simulation techniques. (a) Relaxed 324 atom
structure obtained using flexible boundary conditions. Region I (120 atoms) was
treated with an ab initio method and Region II with an interatomic potential.
Reproduced from Spence et al. [37]. (b) Snapshot from a MAAD simulation of
fracture, showing the decomposition of the simulation into finite element (FE),
molecular dynamics (MD) and tight binding (TB) regions. Reproduced from
Broughton et al. [38].

instabilities in the dynamics. Nevertheless, force mixing continues to be the most

widely used approach for hybrid simulation of solid state systems.

The earliest quantum/classical multiscale fracture simulations were published in

1993 by Spence et al. [37]. They describe their approach as a flexible boundary

condition for an ab initio calculation, but it is effectively a force mixing embed-

ding scheme. Alternate relaxations of the two regions illustrated in Fig. 3.7a were

performed, with an overlap buffer to ensure self consistency. Some years later,

Broughton et al. [38] proposed the MAAD (macroatomistic ab initio dynamics)

method which couples finite elements, molecular dynamics and semiempirical tight

binding in a QM/MM approach to model crack propagation; a snapshot of the dy-

namics is shown in Fig. 3.7b. Pseudoatom terminator ‘silogens’ designed to behave

like monovalent silicon atoms were used to terminate the tight binding region and

a force mixing embedding approach was used.

Ogata’s group has applied the ONIOM method to the simulation of cracks [104],

surface oxidation [105], and more recently they have investigated the effect of water

on the initiation of corrosion induced cracks [106]. The group uses an improved

version of ONIOM called the buffered-cluster method [107]. The QM region is cut
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out as normal, but then buffer atoms are added to terminate broken covalent bonds.

The buffer is then relaxed using the classical force model, resulting in a relaxed

buffered cluster which gives better surface error cancellation since it is closer to the

equilibrium bulk structure.

Multiple Layer Termination

In 2001, Bernstein [39] proposed a modified treatment of the quantum zone bound-

ary that addresses the electronic termination problem. He used a Green’s function

technique to create a transition zone with a thickness of several atomic layers which

is included in the quantum mechanical calculation. Forces from this zone are not

included in the dynamics. This method was later employed in a hybrid classical

and tight binding simulation [108], referred to as the DCET (dynamic coupling of

empirical potential and tight binding) method. The combination of transition zone

and force mixing gives accurate quantum mechanical forces and allowed the QM

region to be moved during a simulation for the first time. However, the force mixing

technique requires a large QM region, making the method difficult to scale up to a

full ab initio calculation.

There is an alternative, more straightforward, termination strategy: we can

obtain accurate forces for all atoms in the quantum region by using a wider buffer

region. If we include a thick enough shell of nominally classical atoms in the quantum

calculation, then the forces on the QM atoms themselves will be accurate. Since

these forces are local quantities, we can easily discard the contaminated termination

region and keep only the forces on the original QM atoms. This finite buffer scheme,

illustrated in Fig. 3.8, is a major ingredient of the ‘Learn on The Fly’ hybrid method

which is discussed in detail in Chapter 4.

These multiple layer termination approaches can solve the electronic termination

problem, but there will still be a mechanical incompatibility across the boundary. If

we used forces from the finite buffer scheme to do molecular dynamics, the resulting

trajectories could be unstable, exactly as in the force mixing approach discussed

above.
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Figure 3.8: The finite buffer termination strategy. Forces on the atoms in the
buffer region (yellow) are discarded to give accurate hybrid forces on all atoms
(right hand side).

3.6 Summary

This chapter has introduced hybrid modelling techniques and reviewed a number of

approaches which allow simultaneous simulation of coupled quantum and classical

systems. We have seen that the fundamental difficulty of constructing such a hybrid

modelling scheme lies in finding an effective treatment of the boundary. This is a

particular problem in solid state systems, where many covalent bonds have to be

cut to form the QM cluster and this has restricted the application of the QM/MM

method. The problem can be divided into the electronic termination problem, which

can be solved by discarding the inaccurate forces in a buffer zone at the edge of the

QM region, and the mechanical matching problem. A solution to this mechanical

mismatch forms the basis of the ‘Learn on The Fly’ method, discussed in Chapter 4.





Chapter 4

The ‘Learn on the Fly’ Method

4.1 Introduction

This chapter begins with an overview of the ‘Learn on the Fly’ (LOTF) method after

which various aspects of the scheme will be discussed in more detail. In particular,

I will concentrate on developments that have been made during the course of my

PhD. I shall primarily consider the method in the context of the application that

forms the remainder of this thesis: the brittle fracture of silicon.

4.2 Overview of the LOTF Method

As discussed in detail in Chapter 3, the simulation of hybrid quantum and classical

systems has two main difficulties, both related to the boundary between the quan-

tum and classical regions. Firstly the non-locality of quantum mechanics makes it

difficult to evaluate accurate forces for atoms at the edge of the QM zone. This is

the electronic termination problem, and we have seen that it is possible to solve this

using a finite buffer provided we are willing to forgo conservation of the total en-

ergy. Secondly, if forces from two different models are combined then a mechanical

incompatibility arises at the interface as illustrated in Fig. 4.1.

The ‘Learn on the Fly’ (LOTF) method, proposed by De Vita and Car [41] in

1998, is essentially a way to deal with this mismatch to allow the QM/MM frame-

work to be extended to solid state systems where many covalent bonds are cut by

the insertion of a boundary between the quantum and classical subsystems [40, 42].

In contrast to QM/MM approaches such as ONIOM, there is no attempt to build

a combined Hamiltonian from the separate classical and quantum Hamiltonians:
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{ {
Mechanical incompatibility
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Figure 4.1: Schematic illustration of the mechanical matching problem at the
boundary between classical and quantum regions (a) Definition of QM and clas-
sical regions (b) Evaluation of classical forces. The grey atoms are required to
compute the forces on atoms at the edge of the classical region (c) QM force com-
putation using a finite buffer. Forces on the grey atoms are thrown away to give
accurate forces on the red atoms (d) Combination of classical and quantum forces
to give the hybrid forces. Note the mechanical incompatibility at the boundary.

rather we focus on the forces on each atom since these are purely local quantities.

Essentially, we introduce a simple adjustable model — this is a set of springs be-

tween pairs of atoms, with different spring constants for each spring — in addition

to the classical model. We then tune the spring constants to reproduce the correct

forces on all the atoms, i.e. we seek to minimise the functional

F =
∑

all atoms

|(FQM − Fclassical) − Fadj|2 (4.1)

where FQM is the quantum mechanical force on an atom, Fclassical the classical force

and Fadj the force from the simple adjustable model. If a good fit can be obtained,

the result of the optimisation is that

F{QM,classical} ≃ Fclassical + Fadj (4.2)
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F{QM,classical} is defined by

F
(i)
{QM,classical} =

{
F

(i)
QM Atom i ∈ QM region,

F
(i)
classical Atom i ∈ Classical region.

(4.3)

We then use the sum of classical and adjustable forces to propagate the molecular

dynamics, so the total potential and force are given by

VLOTF(R,α) = Vclassical(R) + Vadj(R,α), (4.4)

FLOTF = −∇VLOTF = Fclassical + Fadj. (4.5)

Vclassical is the classical interatomic potential and Vadj the adjustable potential. R

represents the coordinates of all atoms and α the parameters of the adjustable

potential. Since the forces are the derivative of a single total energy function, the

action-reaction principle is restored and there are no mechanical inconsistencies at

the boundary. The mechanical mismatch has been traded for small force errors,

smeared out over the correcting region. Thus we have found a single Hamiltonian

which instantaneously yields forces that are closest to the desired forces.

After moving the atoms according to these forces, we recompute the quantum

forces and retune the adjustable potential parameters to reproduce these new forces.

Combining this fitting strategy with the use of a buffer region around the QM zone

allows us to throw away the unphysical surface region of each QM calculation. The

LOTF scheme is illustrated in Fig. 4.2.

In practice, a number of simplifications to the procedure are possible. The

target quantum mechanical forces do not have to be recomputed at every step,

since the adjustable potential parameters can be used unchanged for a few time steps

without causing a significant deviation from the true hybrid trajectory. Secondly,

far away from the quantum region, the classical potential describes the dynamics

of the system adequately, and so we can restrict the range of application of the

corrective potential to a fit region centred on the quantum region and extending

typically over a few nanometres away from this region.

The following sequence of steps make up the LOTF scheme. I describe various

parts of the algorithm in more detail in the following sections.

1. Initialisation. Define QM zone, then grow this by bond hopping (described

in Section 4.6) to form the fit region. Create springs between pairs of atoms

in fit zone. The adjustable potential is then initialised by performing classical
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Figure 4.2: Schematic overview of the LOTF scheme, showing QM force compu-
tation using a buffer and optimisation of the corrective potential to minimise the
force difference between classical and quantum forces. The final forces used for
MD are the sum of the classical and corrective contributions.

and QM calculations and optimising its parameters to reproduce the initial

force differences.

2. Extrapolation. Use the sum of classical and adjustable potentials with fixed

parameters to propagate the dynamics forwards for Ninterp steps using the

velocity Verlet algorithm.

3. Selection. Identify atoms to be described to QM accuracy. This cannot be

done in a fully general way because it depends on details of the particular

application, although specific examples will be described in Section 4.6. The

fit region is determined from the QM region by bond hopping, also described

in Section 4.6.

4. Force Computation. Compute accurate forces on all flagged atoms, either

with individual atom centred clusters or in one large calculation using the

methods described in Section 4.7.
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5. Optimisation. Minimise Eq. 4.1 by varying the adjustable potential param-

eters. The optimisation is performed using either conjugate gradients or SVD,

depending on the form of adjustable potential used. The adjustable potential

is described in Section 4.8.

6. Interpolation. Return the state of the system to that before the extrapo-

lation and rerun the dynamics, interpolating the adjustable potential param-

eters between the old and new values, to achieve a smooth evaluation of the

parameters in time. Interpolation is described in detail in Section 4.5.

7. Return to 2.

4.3 Validation and Applications

The LOTF method has been validated on a number of solid state systems which

are small enough to allow direct comparison with fully quantum calculations. I will

mention some of these briefly here; see the references given for full details.

The LOTF scheme has been used to measure the diffusion constant of vacancies

[42] and hydrogen atoms [43] in crystalline silicon. In both cases, the method cor-

rectly reproduces the diffusion constant measured in a fully quantum calculation.

LOTF has also been used to measure the stress vs. strain behaviour of a silicon

nanobar subjected to uniaxial tension [40]. In this case the LOTF simulation gives

the same critical loading as the fully quantum mechanical model, in contrast to a

classical simulation which overestimates this loading by around 50%.

In an example of an application which is too large for a fully quantum calculation,

LOTF has been used to study the glide of partial dislocations, again in silicon [42].

Two partial dislocations are observed to move together and eventually annhilate.

Moving from semi-empirical tight binding to DFTB allows the interaction of the

dislocations with dopants to be modelled [44].

4.4 Development of the lotf95 code

The LOTF scheme was originally proposed by Alessandro de Vita in 1998 [41]. It was

first implemented in Fortran 77, and hereafter this version is referred to as lotf77.

This version of the code was fairly basic, partly due to the limitations imposed by
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the choice of programming language. Consequently, Gábor Csányi developed a new

implementation, this time using the C++ programming language. This version is

referred to as c-lotf. It was this version of the code that was used for most of the

validation work published in Csányi et al. [42] and Csányi et al. [40].

During the course of my PhD, the LOTF method has once again been com-

pletely reimplemented, this time in Fortran 95. This implementation uses the new

features of modern Fortran to combine excellent numerical efficiency with aspects

of Object Oriented (OO) programming inspired by languages such as C++. The

resulting code is referred to as lotf95, and is based on the expressive programming

philosophy, in which the structure and language of the top level code is as close as

possible to the abstract algorithm we are trying to implement. In the context of

a molecular dynamics simulation, achieving this goal while maintaining reasonable

code speed means having objects of type Atoms and variables like Atoms%positions

and Atoms%velocities so that the code which implements a time step integrator

can resemble the corresponding mathematical formula.

During the implementation of the lotf95 code, it was decided to split the

project into a general purpose, reusable, molecular dynamics library and a part

specific to the LOTF method. The former has developed into the libAtoms project

[109]. libAtoms is designed to scale well up to hundreds of thousands of atoms.

More details of the expressive programming approach and the implementation of

libAtoms have been published in Csányi et al. [110].

I have been heavily involved in all stages of the development of this new code,

from design and specification through to implementation, testing, profiling, debug-

ging and writing of documentation [109]. Almost all of the results that appear in

this thesis have been produced using lotf95, and in the discussion below this is

the version to which I refer, unless otherwise stated.

4.5 Parameter Interpolation

Within the LOTF framework, the evolution of the atomic trajectories can be written

as a function of the current atomic positions and the adjustable potential parameters

Ṙ = f(R,α) (4.6)
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Figure 4.3: Predictor-corrector parameter evolution as used in the LOTF scheme.

The parameters α = {α} can be computed at any point in the phase space R of

the hybrid system by evaluating the quantum forces and optimising the adjustable

potential. This is an expensive process, but formally α is simply a function of

the current atomic positions, so can be written as α(R). The trick then lies in

choosing the functional form of the adjustable potential to make α(R) a slowly

varying function so that we don’t have to evaluate it at every time step. For this to

be true, α should change slowly with respect to the atomic positions. This will be

the case providing

∣∣∣∣
α̇

α

∣∣∣∣ ≪
∣∣∣∣∣
Ṙ

R

∣∣∣∣∣ . (4.7)

If this equation holds, then we can use the same values of the adjustable potential

parameters for a number of time steps, the number depending on how much more

slowly the components of α evolve compared to the evolution of the atomic positions.

The procedures for determining the trajectory and updating α are formalised

using a predictor-corrector scheme, as shown in Fig. 4.3. We start at a point R0

in phase space with parameters α0 = α(R0). We shall denote this point (R0,α0).

We then take Ninterp steps of size ∆t with fixed parameters to arrive at the point

(R′
1,α0). Here we compute new quantum forces and obtain a new set of parameters

α1 = α(R′
1). This completes the predictor part of the cycle. Rather than continuing

the simulation from this point with the new Hamiltonian parameters, which would

give an abrupt discontinuity in the second derivative of the atomic trajectories, we

return to the point (R0,α0) and redo the dynamics, interpolating the parameters

between α0 and α1. At the end of the interpolation we arrive at a slightly different

point in phase space, (R1,α1). This is the end of the corrector stage.



58 The ‘Learn on the Fly’ Method

The cycle could be repeated by computing new quantum mechanical forces at R1,

getting new parameters and going back to (R0,α0) to re-interpolate. In practice,

for sensible choices of Ninterp and ∆t, R′
1 and R1 are very close and the region of

validity of the parameters is large enough that a single cycle is sufficient. The choice

of the optimal interpolation scheme is a matter for further investigation. Initially,

a cubic function with the derivatives fixed to be zero at the beginning and end of

the interpolation was used:

α(λ) = α0 + 6 (α0 − α1)

(
λ3

3
− λ2

2

)
(4.8)

where λ varies from zero at the beginning of the interpolation to one at the end.

However, this choice results in unnecessary acceleration and deceleration of the

parameters. Recently, we have in preference adopted a linear interpolation scheme,

where the parameters evolve according to

α(λ) = (1 − λ) α0 + λα1 (4.9)

This is actually the optimal choice if we have no information about the time deriva-

tives of the parameters. In practice, as will be shown in Section 4.8 the choice

of interpolation order makes little difference. The parameter derivatives could be

evaluated by taking a small step in parameter space and using the method of finite

differences. The increase in the computational cost of interpolation that this would

cause would have only a minimal impact in the time for one complete step, since

LOTF is generally used in a regime where the overall cost is dominated by the QM

force evaluation.

4.6 QM Selection

In common with all hybrid schemes, the largest approximation in the LOTF ap-

proach is the classical treatment of the majority of the atoms in the simulation.

This is a controllable approximation, since we are free to choose exactly which

atoms to include in the higher accuracy calculation.

In traditional QM/MM, it is not possible to move the QM region during a

calculation, or for atoms to move in or out of the QM region. Adding a new atom

to a cluster causes a discontinuous change in the electronic structure, so that the
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resulting forces and thus trajectories of atoms near the edge of the QM region also

change discontinuously. The buffer region allows this fundamental limitation to be

overcome. If we move the quantum region in space together with its buffer then

the Hamiltonian in the QM region changes smoothly. The use of a buffer region

rather than force mixing also means that the QM region can be kept small, greatly

increasing the speed of force evaluation. This is particular important in view of

the typical O(N3) scaling of the computational cost of tight binding and ab initio

calculations with the total number of atoms in the QM calculation.

Using a small and mobile QM region allows us to continually select which atoms

to treat more accurately during the simulation. We therefore require robust algo-

rithms to determine where the QM region should be. It is impossible to design a

completely general algorithm to do this, since the selection criteria clearly depend

on the nature of the scientific question we are asking. In general, it is not possible

to correct classical trajectories everywhere that they go wrong: even at modest tem-

peratures, some atoms are displaced sufficiently far from equilibrium that classical

models predict forces that disagree with quantum mechanical forces by more than

1 eV/Å.

Rapid oscillations of the set of atoms which make up the QM region cause a

number of problems. Atoms that move in and out of the QM region can generate

heat as they do so, since the two energy models are each trying to drive the system

towards a different configuration. From a practical point of view, such changes in

the number of QM atoms are inefficient since ab initio calculations can be sped up

immensely by reusing the electronic density and wavefunctions from the previous

timestep (see Section 4.7 below). Thus unnecessary fluctuations in the QM region

hugely decrease the computational efficiency of the method.

Active and Embedding Regions

The selection of the QM region therefore needs to be based on geometrical and

topological criteria. It is useful to calculate time-averaged atomic positions, to filter

out the effect of fast optical phonons. These are defined by:

〈r〉 (t) =
1

1/2 + τ/∆t

∞∑

n=0

e−n∆t/τr(t− n∆t) (4.10)
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Figure 4.4: QM selection algorithms. (a) active (red) and embedding (cyan)
regions (b) the hysteretic selection algorithm, showing the active region and the
pair of embedding regions, labelled as QM+ and QM-.

where ∆t is the MD time step and τ the averaging time constant, typically equal to

a few times the period of the highest frequency phonon mode. These coordinates

are very useful for determining topological properties, such as the nearest-neighbour

count of each atom, which can be used to locate point defects and breaking bonds.

These atoms can be flagged as active, and surrounded by a shell of embedding

atoms to make up the entire QM region, as shown in Fig. 4.4a. The thickness of

the embedding shell should be of the order of the strong locality length scale of the

system under consideration. This approach to determining the QM region was used

in the lotf77 and c-lotf codes but in lotf95 this has been replaced by bond

hopping, as described in the following section.

Bond Hopping

The early LOTF implementations constructed the embedding region as the union

of a set of spheres of fixed radius centred on each of the active atoms. This can lead

to undesirable fluctuations in the QM region for atoms near to the edge of one of

these spheres.

In lotf95, this has been replaced by a bond hopping approach. Each hop is

a breadth-first step on the graph of atomic connectivity, as illustrated in Fig. 4.5.

Once the connectivity of the system has been computed in the manner described

in Section 2.3, this approach is straight-forward to implement. We have to define

what we mean when we say two atoms are nearest neighbours. This is done using a

tolerance factor fnn: atoms i and j are considered to be nearest neighbours if they
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(a) (b) (c)

Figure 4.5: Illustration of bond hopping in bulk silicon. The central atom is used
to form the QM selection region (red) by bond hopping. The panels show the
resulting QM region after (a) 1 hop (b) 2 hops (c) 3 hops.

satisfy

rij < fnn [rcov (Zi) + rcov (Zj)] (4.11)

where Zi and Zj are the atomic numbers and rcov (Zi) and rcov (Zj) are the associated

covalent radii. Typically a tolerance of around 1.3 gives good results. Bond hopping

is only useful when combined with the time-averaged atomic coordinates of Eq. 4.10:

otherwise pairs of atoms separated by close to the threshold distance would appear

to bond and debond as they oscillate in and out of the range of nearest neighbour

bonding according to Eq. 4.11.

Hysteretic Selection Algorithm

In many circumstances it is not possible to completely avoid undesirable fluctua-

tions in the QM region using the techniques described above. Difficulties occur in

situations where it is impossible to choose the averaging time τ to be large enough to

exclude atomic oscillations, but not so large as to miss rapid bond breaking events.

This is particularly true for the case of a fast-moving crack: it has been found that

τ needs to be below about 100 fs to correctly follow a moving crack in silicon, but

this is of the same order as the thermal oscillation period of a single Si—Si bond.

Therefore atoms at the edge of the QM region tend to pop in and out as they vibrate

backwards and forwards.

To solve this problem, I have developed a selection algorithm with hysteresis. We

flag atoms as active using topological criteria based on the time-averaged coordinates
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as before, for example this could be the atoms which have changed coordination since

the start of the simulation. The embedding region is replaced with a pair of shells,

as depicted in Fig. 4.4b. Atoms must come within the inner shell to be added to

the QM region, but they will continue to be treated quantum mechanically while

they are inside the outer shell. The composition of the two shells QM− and QM+

can be written

QM− =
⋃

i∈A

S(i, R−) (4.12)

QM+ =
⋃

i∈A

S(i, R+) (4.13)

where A is the set of active atoms and S(i, R) is the set of atoms contained within

a sphere of radius R centred on atom i. R− and R+ are the radii of the two

embedding shells, with R− < R+. The width of the hysteresis zone R+ − R− can

be tuned to remove rapid fluctuations of atoms between the quantum and classical

regions. Further stability can be obtained by constructing the embedding shells

from the active zone by bond hopping rather than placing them at fixed distances

from the active atoms. In systems where there are several areas of interest the active

region can be formed simply by taking the union of the individual active regions.

4.7 Force Evaluation

Force evaluation can be neatly separated into classical and quantum mechanical

force evaluation. lotf95 has been designed to allow both of these to be obtained

from ‘black boxes’ that take atomic coordinates and lattice parameters and produce

forces. This allows new force models to be added quickly and easily, in contrast

to multi-Hamiltonian schemes such as QM/MM which are generally built around a

single quantum package.

Classical Force Models

The classical interatomic potentials used in this work have been outlined in Section

2.3: in this thesis I use the Stillinger-Weber potential for silicon and the Brenner

potential for carbon. These simple potentials have been implemented within the

libAtoms framework. To ensure that a potential has been correctly implemented,

it is important to test that the forces that result from the analytical derivative of the
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potential with respect to atomic coordinates agree accurately with the gradient of

the potential evaluated numerically by finite differences. This simple test, commonly

referred to as the gradient test, catches many programming errors.

To prevent the classical force evaluation from becoming a bottleneck for very

large systems, it has been necessary to parallelise this part of the code. Since the

potentials are local this can be done in a very straight-forward fashion using the

Message Passing Interface (MPI) library. The atoms are shared evenly among all

available processors. Each processor then computes the forces on the atoms it has

been assigned. The resulting partial force arrays are then combined to give the

overall force.

Interfaces to the popular classical molecular dynamics codes DL Poly [111] and

Amber [112] have been developed within the lotf95 code. These programs provide

ready access to features such as the Ewald algorithm, essential for applications

involving long range Coulomb interactions. The systems studied in this work do not

contain any significant long range interactions, so these features were not required

for the application described in Chapters 6 and 7.

Elastic Matching

It is important that there is no discontinuity in elastic behaviour at the quan-

tum/classical boundary or phonon waves would be unphysically reflected from the

artificial interface. Provided that the elastic constants of the two models are in good

agreement, we have demonstrated that LOTF gives no reflection of sound waves at

the boundary between models.

Ideally to avoid the boundary reflection problem, one would refit the classical

potential to exactly reproduce all the elastic constants of the quantum mechanical

model; unfortunately this is not always possible to implement in practice. Of all

the relevant properties, the lattice constant and bulk modulus are the most impor-

tant quantities to match between the QM and classical models. The unmodified

Stillinger-Weber potential does a surprisingly good job of describing the elastic be-

haviour of silicon in the diamond phase, for the theoretical reasons discussed in

Section 2.3. By rescaling the distance scale σ and refitting the two body parame-

ters A and B, we can exactly reproduce the lattice constant and bulk modulus of

a given quantum model. This must be done separately for each QM package that

we wish to interface into lotf95. For the case of castep, this procedure gives a

Stillinger-Weber potential that provides a reasonably good description of the other
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elastic constants. The largest error is in C44 and is around 30%. It is possible

to improve the fit to the cubic elastic constants by varying the λ parameter that

controls the stiffness of the three body interaction. However, doing this drastically

alters other physical properties of the Stillinger-Weber potential such as the melting

point. In fact, as we shall see in Section 5.5, doubling the value of λ changes the

phenomenology of fracture predicted by the SW model from ductile to brittle [113].

In order to avoid unexpected side effects like this, I have chosen not to attempt to

further improve the elastic constant fit. Since I shall be carrying out crack simu-

lations under uniaxial tension, an accurate C11 constant is the most important to

describe accurately and the shear moduli C12 and C44 are of secondary concern.

Quantum Mechanical Force Evaluation

Quantum mechanical force evaluation within the LOTF scheme is a more elaborate

process than obtaining the classical forces. Since the evaluation of the QM forces is

so expensive, we are willing to take on extra complexity in order to gain speed. For

example, passivating the QM region with hydrogen atoms adds to the complexity,

but allows the buffer thickness to be decreased for the same force accuracy. Typi-

cally, QM calculations scale as O(N3) in the number of atoms in the cluster so this

makes a very significant difference to the computational efficiency of the method.

Two different QM force evaluation methods are employed in LOTF: we can either

use multiple small clusters or a single cluster containing all the quantum mechanical

atoms.

Multiple Small Clusters In this approach we carve a cluster around each of the atoms

that we wish to treat with QM accuracy as illustrated in Fig. 4.6a. In c-lotf this

was done with a spherical cutoff, but in lotf95 we have moved over to carving

clusters entirely using bond hopping to reduce fluctuations in the clusters from one

time step to the next. The cluster is then terminated chemically by replacing atoms

outside the cluster with hydrogen atoms, positioned along the cut bond at a distance

rterm = rij ·
rcov(Zi) + rcov(H)

rcov(Zi) + rcov(Zj)
. (4.14)

The force on the central atom in the cluster has to be converged with the radius of

the cluster and, for ab initio methods, with the amount of vacuum surrounding the

cluster. This approach is trivially parallelisable: the QM force evaluation for each
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Figure 4.6: Quantum mechanical force evaluation in LOTF, using: (a) small
clusters centred on each QM atom (b) one large cluster containing all QM atoms.
Atoms are coloured according to their original region: red for QM and yellow for
classical. Cross hatching indicates the buffer atoms in each cluster calculation.
The small white circles represent hydrogen termination atoms.

small cluster is an independent calculation that can be delegated to a processor. In

this way, excellent scaling up to very large numbers of processors is possible since

very little communication between nodes is required. These small clusters typically

contain between fifty and a hundred atoms.

Single Large Cluster In this alternative method, a single large cluster is carved,

including all the QM atoms plus a buffer region as illustrated in Fig. 4.6b. This

cluster is terminated in the same way as the individual clusters described above.

Only the forces on the original QM atoms are kept. In this case, the calculation

has to be converged with respect to the thickness of the buffer zone, rather than

with respect to the cluster radius as is done in the multiple small clusters approach

described above. In this case we rely on the parallelisation of the QM black box to

share the work of force evaluation between multiple processors. For the simulations

reported in this thesis, the typical cluster size in this approach is around 200 atoms.

Which approach is better depends on the scaling performance of the QM package

used as well as the geometry of the system. An example in which the second

approach can be more efficient is the case of a slab geometry, where the system

is very thin in one direction. We can then carve clusters that are periodic in this

direction, to take advantage of the excellent parallelisation over k-points in modern

DFT codes. As a result of their relatively high startup overheads and excellent

scaling behaviour, linear scaling DFT techniques such as onetep [114] would be
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also be better suited to the single large cluster scheme.

Tight Binding

In the initial validation and application of LOTF, a variety of empirical tight bind-

ing methods [87, 88] were used. For many systems, these methods strike a good

balance between computational efficiency and accuracy. The matrix diagonalisation

algorithms used to solve the tight binding Hamiltonian do not parallelise well, so

the small cluster method is generally preferred when using LOTF with tight binding

force models. The Hellman-Feynman force is computed after a direct diagonalisa-

tion of the cluster system. Forces on the central atom of small clusters converge

quickly with cluster radius (see Fig. 3.4), and are found to be relatively insensitive to

the details of the termination strategy. Since only these forces are kept, the atomic

trajectories are not affected by the representation of the boundary.

lotf95 also has an interface to the dftb quantum mechanical package, which

implements the density functional tight binding method described in Section 2.5.

This gives a more accurate description of the underlying physics, especially when

used with charge self consistency, although at a greatly increased computational

cost.

Density Functional Theory: An Interface to castep

In many cases, tight binding does not provide a sufficiently accurate description of

the physics we wish to study and we are forced to use a more expensive method

such as DFT. However given the high computational cost of ab initio calculations,

a sensible methodology is to broadly explore the system of interest using a series

of fully classical calculations, since these are very cheap in comparison with the

hybrid method. This allows us to converge the qualitative behaviour with respect

to system size and time scale parameters that do not depend on the precise atomistic

details. We can then move to tight binding dynamical simulations to assess the effect

of treating the region of interest quantum mechanically and modify the simulation

parameters accordingly. The final accurate calculations can then be performed using

a very accurate ab initio method, hopefully using a single simulation.

Earlier versions of LOTF have been interfaced to the siesta package [115], which

uses a local orbital basis set, but in this work I have used the castep plane-wave

code for all DFT calculations. As a result of the ‘black box’ design principle, the

interface between lotf95 and castep is fairly straightforward. The combination
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Figure 4.7: Upper plot: Mean force component errors as a function of the buffer
thickness, compared to a fully periodic calculation, using castep with clusters
carved from a 72 atom slab of bulk silicon containing a vacancy. The force error
converges rapidly: three hops are sufficient to set the target accuracy for the
castep calculation to 0.05 eV/Å. Below: for a fixed cluster of 36 atoms, we
consider convergence of the force error on the central atom with: the cutoff energy,
with electronic energy tolerance fixed at 10−4 (lower left) and the electronic energy
tolerance, with cutoff fixed at 240 eV (lower right).

of the relatively high overhead for each castep calculation and its good paral-

lel performance — especially for systems with multiple k-points — mean that we

invariably use the single cluster strategy of Fig. 4.6b.

Hellman-Feynman forces are obtained from a single point calculation on the

cluster in which the electronic degrees of freedom are fully relaxed. The resulting

ground state electronic density n(r) is saved and used as an initial guess for the

following time step, hugely reducing the time taken for each calculation.

castep is a plane wave code, so it uses periodic boundary conditions. To simu-

late an isolated cluster, we must add sufficient vacuum to simulate eliminate inter-

actions with periodic images. The forces on the interior atoms must be converged

with respect to the buffer thickness and the amount of vacuum added. The error

caused by using a finite buffer zone sets the target accuracy for the castep calcula-

tion: it is a waste of time converging forces more accurately than this. We therefore
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choose the planewave cutoff energy and electronic minimisation tolerance accord-

ingly. This convergence process is illustrated in Fig. 4.7 for the example case of a

slab of bulk silicon containing a vacancy. These calculations indicate a planewave

cutoff of 150 eV and electronic energy tolerance of 10−2 eV give sufficient accuracy

for the forces. These tolerances are much weaker than those typically required for

ab initio molecular dynamics. The additional accuracy is not needed because the

adjustable potential (and to a lesser extent the thermostat) maintain the dynamical

and numerical stability of the atomic trajectories.

Hydrogen passivation when using castep is almost identical to the general case

described at the beginning of this section, with one small change. To avoid the factor

of two overhead of performing a spin polarised calculation, we require the number

of up- and down-spin electrons in the system to be equal. It may be necessary to

omit a termination atom to enforce this constraint: if so we choose a buffer atom

that has a maximal number of passivation hydrogens attached to it and remove one

of these. Providing we have converged with respect to the buffer thickness this will

not affect the final QM forces. To remove any systematic error associated with the

precise details of the buffer and termination, we slightly randomise the positions of

the outermost layer of buffer atoms.

4.8 The Adjustable Potential

The choice of the form of the adjustable potential Vadj(R) is crucial to the success

of the LOTF scheme. This has been the focus of considerable recent development.

In this section I chart the evolution of the adjustable potential from the initially

proposed modification of the parameters of an existing classical potential to the

current, simpler form which is based upon a set of linear springs.

Modified Stillinger-Weber Potential

The lotf77 and c-lotf implementations of LOTF used the classical potential

itself as the adjustable potential, rather than adding a corrective potential in the

way outlined in Section 4.2. This is an appealing viewpoint when the corrections to

be made are small: we regard the classical Hamiltonian as universal, and improve

its accuracy in certain places in space and time by computing new information in

those places using the quantum model. We can incorporate this information into
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the classical trajectories by slightly adjusting the parameters of the potential in the

relevant region.

This was accomplished for silicon systems using a version of the Stillinger-Weber

potential with variable parameters. Equations 2.32 and 2.33 for the two- and three-

body parts of the potential were replaced by

f(rij) =

(
Aij

r4
ij

− Bij

)
fcut(rij) (4.15)

h(θjik) = λ
(
cos θ − cos θ0

jik

)2
(4.16)

where Aij , Bij and θ0
jik are no longer constant parameters, but instead can take dif-

ferent values for each bond and angle in the system. With this form of the corrective

potential, the objective functional used to optimise the parameters is simply given

by the sum of the squared differences between the classical and quantum forces, so

Eq. 4.1 is replaced by

F =
∑

all atoms

|FQM − Fclassical|2 . (4.17)

The optimisation was limited to a fit region extending 12 Å from the QM region

containing Nfit atoms. The functional F is minimised using the conjugate gradients

algorithm; for a typical silicon system about 30 steps in parameter space are suffi-

cient to achieve a converged fit with a maximum deviation from the target forces of

around 0.01 eV/Å [42].

A special reformulation of the classical potential is needed to make it computa-

tionally viable to evaluate the potential and its derivatives for fixed atomic positions

R thousands of times during each optimisation. This is done by recasting it into

the form

Vclassical(R,α) = W0 · 1 + W1 · α + W2 · α2 (4.18)

where only the vectors Wn depend on the atomic coordinates and can be computed

once at the start of the optimisation. The force and the derivatives of the potential

with respect to the parameters can be rewritten in a similar way.

Spline Potential

Modifying the parameters of a universal potential does indeed work; this approach

was used for all the validation tests described above. However, this viewpoint can

be misleading if the changes required to the potential are not small, as is often
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Figure 4.8: Example of a two body adjustable spline potential for silicon. The
large dots are the spline knot points, the centre two of which can move during
optimisation. They are constrained to lie below zero so that the function is
guaranteed to have a minimum. The derivative and value are set to zero at 3.5 Å,
and fixed to match the quantum model at 1.75 Å.

the case in practice. Furthermore, the work associated with converting each new

classical potential into the form of Eq. 4.18 makes it very time consuming to apply

this method to new systems. A more flexible approach is to choose a functional form

for the adjustable potential that offers a good compromise between expressive power

and robustness. This method has been adopted in the lotf95 implementation.

We have now returned to the ‘new’ way of looking at the LOTF method outlined

in Section 4.2 above: we want to add a simple adjustable potential to an existing

classical model, and tune the parameters of this simple potential to reproduce the

correct quantum mechanical forces. The question is: what form should this simple

potential take? Since we will be changing the potential parameters on the fly,

it is desirable for it to vary smoothly with these parameters. In contrast to the

modified SW potential, we choose to construct our new adjustable potential so

that its gradient with respect to the parameters is easy to evaluate, since this will

have to be done many times when optimising the parameter values. A cubic spline

functional form fulfils these requirements. Keeping the bond lengths and bond

angles as the fundamental coordinates, we can create cubic splines for the two- and

three-body parts of the potential: For example, for silicon, the two body term could

be represented by a spline with four knots at r = {1.75, 2.0, 2.5, 3.5} Å, as shown

in Fig. 4.8. For other elements, the knot points would be rescaled appropriately by

the atomic radius. A three body potential could also be constructed in a similar

way, using a cubic spline of cos θ to allow for an asymmetric angular dependence.
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The spline adjustable potential would then have this form:

Vspline(R,α) =
∑

bonds
i,j
i<j

s1(rij ,α) +
∑

angles
i,j,k

i<j<k

s2(cos θjik,α) (4.19)

The spline functions s1 and s2 are linear functions of the values at the knot points

— our free parameters — so evaluating the splines and their derivatives for fixed

atomic positions in the fitting process is straightforward and efficient [116]. We can

do this by reshaping the components of the adjustable force into a 3Nfit dimensional

vector Fspline. This can be written

Fspline = a +Bα (4.20)

where the 3Nfit dimensional vector a and Nparam × 3Nfit dimensional matrix B de-

pend only on atomic coordinates and so need to be computed only once before the

optimisation. The objective function for the optimisation and its derivative with

respect to α are then given by

ǫ = |Ftarget − Fspline|2 (4.21)

∇ǫ = −2 (Ftarget − Fspline)B (4.22)

where Ftarget is a 3Nfit dimensional vector of the force differences between classical

and quantum force models. For atoms in the fit region but not in the QM region

the target force difference is zero.

In practice we find that it is possible to get very good parameter fits using only

two-body spline potentials, providing that the splines are long enough to connect

second neighbours. This observation begs the question: is a physically motivated

pair potential a useful starting point from which to construct the adjustable poten-

tial? I shall address this question in the following section.

Linear Spring Potential

Our experience suggests that in regions where the classical potential provides a

poor description of the forces on the QM atoms, there is no correlation between the

classical and accurate quantum forces, and that that the correction forces required

can be as large or larger than the classical forces themselves. The requirements for
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a good adjustable potential are twofold: firstly we want to be able to apply these

large corrective forces in all directions, and secondly we want the parameters of our

potential to vary slowly in comparison with the atomic trajectories, in the sense of

Eq. 4.7, so that we can use the predictor-corrector algorithm.

A sensible methodology is to deal with the first of these requirements by con-

structing a very simple potential to correct the force errors, and then assess its in-

terpolation performance in comparison with the spline and Stillinger-Weber based

adjustable potentials. A suitable potential for doing this is a set of linear springs

that presupposes nothing about the functional form required:

Vspring(R,α) =
∑

bonds
i,j
i<j

αijrij +
∑

angles
i,j,k

i<j<k

βjik cos θjik (4.23)

The first term describes a set of two body springs, linear in the interatomic distance

rij and the second a set of three body springs linear in cos θjik.

What motivates this choice of functional form? Firstly, we haven’t quite aban-

doned all physical intuition: we are assuming that bond lengths and angles will give

rise to coordinates that move more slowly than the atomic coordinates themselves.

Secondly, the linearity of the potential has important practical consequences. We

can write the force from this potential as a single linear operation on the parameters:

Fspring = C α (4.24)

where C is a matrix of size Nparam×3Nfit that once again only depends on the atomic

positions. Each two body spring contributes six elements to C and each three body

term contributes nine elements.

We seek the parameters α = {αij, βij} that make Fspring as close as possible to

the target force differences Ftarget. The singular value decomposition (SVD) of the

matrix C can be used to find the least squares solution for the parameters α. This

solution is defined by

min |Ftarget − C α|2 (4.25)

Compared to the conjugate gradient approach to minimisation that we were forced

to adopt for the modified Stillinger-Weber and spline potentials, SVD has two ad-

vantages. Firstly, we are guaranteed to find the least squares minimum, with no

chance that the optimisation process will get stuck in local minima. Secondly, we
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(a) (b)

Figure 4.9: Systems used to test the various adjustable potentials: (a) 64 atom
silicon bulk cube with 5 QM atoms (b) 240 atom graphene sheet with 4 QM
atoms. The atoms to be treated with quantum mechanical accuracy are shown in
red in both cases.

can take advantage of extremely fast linear algebra routines to perform the SVD

calculation, such as those available in the lapack libraries.

Tests using the simple systems shown in Fig. 4.9 show that the linear spring

potential produces fits which are at least as good as previous versions of the ad-

justable potentials, with the maximum force error after fitting being typically less

than 0.01 eV/Å.

Choosing the Springs

Initially, splines or springs were added between all pairs of atoms separated by less

than a critical distance, in exactly the same way as a cutoff distance is used to

limit the range of classical potential. Unlike traditional classical potentials, neither

the value nor the derivative of the spring potential are zero at this cutoff, therefore

as atoms oscillate in and out of range, springs get turned on and off, affecting the

stability of potential energy and forces. Two changes have been made to avoid this.

Firstly, we replace the cutoff sphere with a bond hopping approach. The fit

region can be produced by growing the QM region by some number of bond hops

in all directions. We then choose our spring set by considering each atom in the fit

region in turn and adding springs by hopping along bonds. The length of the springs

produced can be controlled with a parameter indicating the number of bonds to hop

along. Fig. 4.10 shows the effect of varying the size of the fit region and the maximum

spring length on the transferability of the spring potential. For a spherical fit region,

the total number of springs increases approximately as the cube of the maximum
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Figure 4.10: Maximum error in hybrid force (in eV/Å) at the end of 10 fs
extrapolation with fixed spring parameters for the graphene system of Fig. 4.9b,
averaged over many independent trajectories, as a function of fit region size and
maximum spring length.

spring length. Since the SVD algorithm is effective at identifying degenerate degrees

of freedom which might otherwise introduce numerical instabilities in the fitting

procedure, introducing large numbers of springs does not pose too great a problem.

However, it is obviously inefficient to use vastly more springs than are necessary to

achieve a good fit. For the system shown in Fig. 4.10, we can conclude a fit region

of four hops and springs of maximum length two hops gives a good compromise

between optimisation speed and fit accuracy.

Secondly, there is no reason to allow the set of springs to change every time we

want to re-optimise the potential. We only need to determine which springs to use

whenever the QM region moves.

Spring Directionality Criteria

Sometimes pathological atomic configurations lead to large force errors after the

adjustable potential optimisation. An example is when the neighbours of an atom

are almost coplanar, as shown in Fig. 4.11a. If springs are attached only to these

atoms, then there is no way to apply a corrective force perpendicular to this common

plane. This obviously applies particularity strongly for planar systems such as the

graphene sheet illustrated in Fig. 4.9b, but it still causes problems in far less extreme

cases.
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(a) (b)

Figure 4.11: (a) The set of springs (shown as bonds) connected to the central
(red) atom are almost coplanar. (b) A new spring is added to the blue atom, in
the direction of the smallest eigenvector of the directionality ellipsoid (red arrow).
This is sufficient to give a good spanning of 3D space.

We can solve this problem by adding extra springs in the missing directions for

these difficult atoms. This is done by first adding default springs as described above,

then using these springs to compute a directionality ellipsoid for each atom in the

fit region, represented by a 3 × 3 matrix:

Ei =
∑

springs ij

r̂ij r̂T
ij (4.26)

where r̂ij = rij/rij. Ei is the average over all springs that connect atom i to other

atoms of the outer products of the normalised spring vectors with themselves. The

eigenvectors and eigenvalues of this matrix define the axes of the directionality

ellipsoid. If the springs are isotropically distributed then the three eigenvalues will

be of similar magnitude. One large eigenvalue suggests roughly linearly clusters,

while two of similar value and one smaller eigenvalue suggests a planar distribution.

Once the difficult atoms have been identified, we can add more springs by looking

for atoms which lie close to the line defined by the eigenvector corresponding to the

smallest eigenvalue of Ei, as shown in Fig. 4.11b. We can repeat this procedure until

the distribution of springs is sufficiently close to spherical, choosing the shortest

possible new spring to add at each step.

For the planar graphene system, we note that periodic boundary conditions

imply we are really simulating an array of stacked graphene sheets, well-separated

to prevent interactions between separate sheets. The directionality condition can

be met by allowing springs to span the periodic boundary and connect to images
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of other atoms. Springs are forbidden from joining an atom to its own periodic

image since this would violate conservation of momentum. With these directionality

modifications, the linear spring potential allows a good fit to arbitrary forces to be

achieved.

Measuring Transferability

The three functional forms discussed above give broadly equivalent fit accuracy in

the QM forces across a wide range of test systems. However, it is possible that

they could give rise to different interpolation behaviour: we might expect that

more physically based potentials would result in slower varying parameters and

consequently better interpolation performance. This can be tested by evaluating

the full hybrid force at each small time step and calculating the force error:

Ferror = F{QM,classical} − FLOTF. (4.27)

This has been done for the two systems shown in Fig.4.9 which were chosen to

be representative structures for the multiscale systems of interest. The graphene

system is not relevant to the simulations reported in this thesis, but is included

here as an illustration of the different interpolation behaviour exhibited by different

physical systems.

For each of these systems, 1000 independent trajectories were generated by ran-

domising the initial atomic positions and velocities. The force errors during one

predictor-corrector cycle were recorded and then averaged over the trajectories to

produce distributions of RMS and maximum force errors as a function of time dur-

ing the extrapolation and interpolation. Figs. 4.12 and 4.13 show examples of these

distributions.

The force errors rise approximately linearly during the extrapolation part of

the cycle, as we move away from the point in phase space where the potential

parameters were fitted. Providing the range of validity of the new parameters fitted

at the end of the extrapolation is large enough, the force errors should remain small

throughout the interpolation. We must choose the number of interpolation steps

Ninterp appropriately to ensure this is the case The appropriate scale is set by the

accuracy to which the forces have been computed using the finite buffer method;

for castep this is around 0.05 eV/Å. For the silicon test system, we can see from

Fig. 4.12 that Ninterp = 10 gives acceptable accuracy: the RMS deviation typically
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Figure 4.12: Force errors during one predictor corrector cycle, averaged over
many independent trajectories. Test system is the silicon bulk cube of Fig. 4.9a
at a temperature of 2000 K, with MD timestep ∆t = 1 fs and Ninterp = 10. The
gray-scale colouring shows the density of force errors as a function of time, with
black corresponding to high and white to low densities. The mean and standard
deviation of the distribution are indicated by the red lines, and the extreme values
by the black dashed lines. The linear spring adjustable potential with two body
springs only was used. QM force model is tight binding, from Kwon et al. [87].

remains smaller than 0.01 eV/Å, and the maximum force error is typically below

0.1 eV/Å.

Interpolation is not always possible: for the graphene system force errors of

0.5 eV/Å are typical with Ninterp = 10 (see Fig. 4.13). The MD timestep has

been decreased from 1 fs to 0.64 fs to take account of carbon’s lower atomic mass.

Reducing the number of steps reduces these errors, but not enough to make the

interpolation accurate, even for Ninterp as low as two. Even when the directionality

criteria described above are used to add extra springs, the initial fit accuracy is

lower for the graphene system than for silicon. The poorer fits are caused partly by

limitations on where springs can be placed imposed by the geometry of the system,

and partly by the artificial stiffness of the classical potential. The fit of the clas-

sical potential elastic constants to the ab initio values ensures a good description

of the equilibrium properties, but even at modest temperatures the displacements
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Figure 4.13: As in Fig. 4.12, but the test system is that shown in Fig. 4.9b, again
at a temperature of 2000 K, with MD timestep ∆t = 0.64 fs and Ninterp = 10.
The linear spring adjustable potential with two body springs only was used. The
QM force model was the DFTB method of Frauenheim et al. [91].

from equilibrium are large enough to give rise to large force errors. Furthermore,

this stiffness causes large changes in the classical force for very small atom move-

ments. Therefore the adjustable potential parameters need to vary rapidly in order

to correct for these erroneous forces, making interpolation difficult.

Three Body Springs and Interpolation Order

The transferability tests were repeated with each of the three adjustable potentials.

There was no significant difference in the distribution of force errors produced by the

different potentials for either the silicon or carbon system. Moreover, the force error

distribution is essentially unchanged when three body springs are included. Since

we expect the speed with which the adjustable potential parameters change to limit

the possible interpolation time, this suggests that parameters based on bond lengths

do not change any faster than those based on angles. The choice of linear or cubic

parameter interpolation makes only a very small difference to the measured force

errors, as does repeating the predictor corrector cycle two or more times. These

conclusions are illustrated in Fig. 4.14.
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Figure 4.14: RMS force error distributions during interpolation obtained from
averaging 1000 independent trajectories of the graphene test system of Fig. 4.9b.
The solid lines are the mean µ, and the dashed lines are µ ± 1σ. There is no
statistically significant difference in the distributions obtained with two and three
body springs and linear interpolation (green), two body springs only and cubic
interpolation (blue), two and three body springs and cubic interpolation (pink)
or two and three body springs and two iterations of the predictor corrector cycle.

Summary of Adjustable Potential Results

At first sight it appears that we must lose something by throwing away all the

physical intuition that lies behind the functional form of traditional pair poten-

tials. However, such intuition becomes meaningless when the potentials have to be

stretched to second neighbour distance to achieve a good fit, as is the case for both

the modified SW and spline adjustable potentials.

Given the equivalent fit accuracy and interpolation performance, the linear po-

tential is preferred on the grounds of simplicity and computational efficiency. The

results presented in this thesis have been obtained using a combination of the spring

and spline methods described above. Two body springs have been used for all the

simulations reported in Chapter 7.

4.9 Energy Conservation

If the Hamiltonian for a system is time dependant, as is the case with LOTF, then

energy will not be conserved. This is inevitable if the QM region moves, since then

the set of springs will change and the new Hamiltonian will be incompatible with the
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Figure 4.15: Temperature evolution during a LOTF hybrid simulation of silicon
fracture containing approximately 100 000 atoms. A weak Langevin thermostat
with a time constant τ = 0.5 ps is adequate to adsorb the energy drift caused by
the time-dependent Hamiltonian.

old one. If we consider a fixed QM region, then the condition for energy conservation

is that the overall potential is conservative, i.e. motion in small loops does no work.

The time dependent Hamiltonian gives rise to a series of different potential en-

ergy surfaces. For energy to be conserved, small loops in phase space must return

to the same starting point, with no discontinuous jumps. This requires the sur-

face normals of the consecutive potential energy surfaces to match at the boundary.

However, this means that the forces produced by the potentials will also match at

the boundary. It is therefore not possible both to reproduce the new QM force

and to conserve energy, so if the force matching is good we should expect to see a

temperature drift.

In practice, small energy drifts can be absorbed using a thermostat to maintain

constant temperature, as described in Section 2.2. The Langevin thermostat is

ideal for this purpose since it couples to each mode of the system independently.

As shown in Fig. 4.15, we typically require only a weak thermostat to maintain

a constant temperature, so the dynamics of the system should not be adversely

affected. The NV T ensemble that we obtain using a thermostat will approach the

microcanonical ensemble for very large systems; in fact such large systems are self

thermostating.

Conservation of the Extended Energy

If the QM region does not move, there is a conserved quantity in a LOTF simula-

tion, although it is not the total energy: we can modify Eq. 2.1 to create a time
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independent Hamiltonian:

H̃ = T ({pi}) + V ({ri}, t) + ǫ (4.28)

where ǫ is a new dynamical variable conjugate to the time t. Applying Hamilton’s

equations of motion for t and ǫ yields

ṫ = 1 (4.29)

ǫ̇ = −∂V
∂t

(4.30)

Eq. 4.30 can be numerically integrated to keep track of ǫ during the dynamics. The

sum of kinetic energy, potential energy and ǫ is a constant of the motion, referred

to as the extended energy.

4.10 Summary

In this chapter, I have introduced the ‘Learn on the Fly’ method for coupling quan-

tum and classical molecular dynamics simulations and described in detail how the

scheme works. Compared to previous QM/MM approaches, the most important

feature of LOTF is that we do not attempt to form a single Hamiltonian for the

hybrid system, but instead concentrate on local forces. Lifting this restriction al-

lows accurate quantum forces to be combined with classical forces using a simple

adjustable potential to give stable dynamics. I have described recent changes to the

method, in particular a series of simplifications to the adjustable potential and an

interface to the planewave DFT code castep.

The aim of this thesis is to use the LOTF method to study a problem which

cannot be attacked in any other way: the prototypical multiscale system, brittle

fracture. To this end, in the following chapter we shall consider fracture in more

detail, before going on to describe how the LOTF method can be applied to the

brittle fracture of silicon systems in Chapter 6.





Chapter 5

Fracture of Brittle Materials

5.1 Introduction

In this chapter, I first give an overview of the continuum mechanics techniques that

have been used to analyse brittle fracture since the beginning of the 20th century. I

then consider the limitations of this approach when considering real materials which

contain a discrete lattice of atoms. Taking silicon as a case study, I review existing

experimental, theoretical and computational studies of brittle fracture, considering

in particular the failure of classical interatomic potentials to accurately describe the

process. This failure motivates the use of multiscale hybrid techniques to model brit-

tle fracture. The chapter concludes with an overview of previous hybrid simulations

of fracture.

5.2 Continuum Fracture Mechanics

Until relatively recently, brittle fracture has been analysed exclusively by continuum

mechanics techniques. In this section I outline these techniques and review some

relevant results from the field. For more details, see Lawn [34], Broberg [30] and

Freund [31].

Continuum fracture mechanics was pioneered by Inglis and Griffith at the be-

ginning of the 20th century. Inglis [32] noted in 1913 that the local stress at the

end of an elliptical cavity can be several times larger than the applied stress. Stress

concentration is greatest where the radius of curvature is a minimum (indicated by

an arrow in Fig. 5.1). Griffith [33] took the limiting case of an infinitely narrow

elliptical cavity, and modelled this as a reversible thermodynamic system. He noted
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σAApplied stress

2c

2b

Figure 5.1: Plate containing an elliptical cavity as analysed by Inglis. The semi-
axes of the ellipse are b and c. Uniform tension σA is applied, resulting in stress
concentration at the notch tips, one of which is indicated with the red arrow.

that a crack is in equilibrium when the elastic energy UE of the strained slab is

balanced by the surface energy US of the crack. For unit width of crack front, these

energies are

UE =
πc2σ2

A

E ′
(5.1)

US = 4cγ (5.2)

where σA is the applied stress, and γ the surface energy density. E ′ is the effective

Young’s modulus, and is different depending on whether we have plane stress (thin

plate) or plane strain (thick plate) conditions:

E ′ =

{
E Plane stress

E/ (1 − ν2) Plane strain
(5.3)

where E is the Young’s modulus and ν is Poisson’s ratio for the material. Equating

UE and US and rearranging gives the critical loading:

σc =

√
2E ′γ

πc
(5.4)

Since UE ∼ c2 and UE ∼ c this critical loading is length dependent. For σA < σc the

crack closes up, while for σA > σc it grows spontaneously. Conversely, for a given

loading σA there is a critical size of crack c0 below which no propagation will occur.
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Mode I Mode II Mode III

Figure 5.2: The three modes of fracture: Mode I, the opening mode, Mode II,
the sliding mode and Mode III, the tearing mode.

This length is given by

c0 =
2E ′γ

πσ2
A

(5.5)

This has very important engineering consequences: for example when inspecting an

aeroplane for defects, cracks smaller than c0 can safely be ignored since they will

not grow.

Stress Intensity Factor K

There are three basic modes of crack surface displacement, as shown in Fig. 5.2. In

this thesis I shall focus entirely on the tensile opening mode, Mode I, which is by

far the most relevant mode when considering the fracture of a highly brittle solid.

Irwin [36] used the constitutive equations of linear elasticity to derive solutions for

the stress and displacement fields near to the tip of an infinitesimally narrow slit

crack. The resulting stress field is of the form

σij =
KI√
2πr

f I
ij(θ) +

KII√
2πr

f II
ij (θ) +

KIII√
2πr

f III
ij (θ) (5.6)

where the universal functions fij(θ) contain all the angular dependence of the fields.

The coordinate system is as shown in Fig. 5.3. KI , KII and KIII are the stress in-

tensity factors for each mode: all the details of the applied loading and the specimen

geometry depend only these factors.

Hereafter we shall consider only pure Mode I loading, i.e. KII = KIII = 0, and

we shall refer to KI simply as K, the formal definition of which is

K = lim
r→0+

[√
2πr σyy(r, θ = 0)

]
(5.7)
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Figure 5.3: Geometry and coordinate system for Irwin infinitesimal slit crack.
The Cartesian components of the stress on an element at a position (r, θ) relative
to the crack tip are shown.

The Irwin solutions result in a parabolic crack profile, but due to the divergence

of the stress and the non-linearity of real materials near to the crack tip, this is not

physically realistic. The treatment of the crack as an infinitesimal slit gives rise to

a singularity at r = 0, and higher order terms need to be added to these solutions

to match the outer boundary conditions. Therefore, the Irwin results cannot be

applied either very close to or very far from the crack tip: they are consequently

referred to as the near-field solution. Fig. 5.4 illustrates these solutions for an infinite

system. In addition to the K-field, there is also a constant contribution to σ which

is unrelated to K. Depending on the geometry this can be as large or larger than

the asymptotic K-field. We can therefore write the total Mode I stress field as

σij =
K√
2πr

fij(θ) + σ
(1)
ij (5.8)

where σ
(1)
ij is the stress term of O(1).

The stress intensity field provides an adequate characterisation of fracture despite

the breakdown of linear elasticity near to the crack tip providing that the principle

of small scale yielding applies. This arises when the potentially very large stresses

near the tip are relieved by some inelastic process throughout a region that is small

compared to the crack length and specimen dimensions.

The fracture toughness of a material, commonly denoted by Kc, is the stress

intensity factor at which a crack is observed to propagate in a laboratory sample.

Providing the sample is representative of the behaviour of the material outside the

laboratory, Kc provides an excellent single parameter characterisation of the fracture
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Figure 5.4: Mode I near-field stress solutions for an infinitely narrow crack. The
crack slit runs from the middle of the left hand edge to the centre of each plot. The
absolute values of σxx, σyy and σxy are shown to the same scale in the top row;
σzz is zero for plane stress and equal to ν(σxx +σyy) for plane strain. The bottom
row shows the minimum and maximum principal stresses and the principal shear
stress.

process. If the applied load results in a stress intensity factor K > Kc then a crack

will propagate: this is the Irwin fracture criterion. The universality of the Irwin

solution within the small scale yielding approximation reduces the analysis required

when considering a new fracture system to calculating K as a function of geometry

dependent parameters.

Energy release rate G

The energy release rate G is the release of elastic energy per unit crack advancement,

and is defined by

G = −∂UE

∂c
(5.9)

per unit width of crack front, where c is the crack length. This definition is inde-

pendent of the way in which the loading is applied. Often G is easier to calculate
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Figure 5.5: Thin strip loading geometry. The edges of the strip are clamped and
displaced vertically by an amount δ. The energy density far ahead of the crack
tip is W∞.

than K since energy balance arguments can be made. K and G can be shown to be

related by integrating the strain energy density over the interfacial crack area for

an infinitesimal extension of the crack. For a Mode I crack the result is

G =
K2

E ′
(5.10)

where E ′ is the effective Young’s modulus defined in Eq. 5.3. See Lawn [34, p. 29]

for a derivation of this result. Balancing the energy flow to the crack tip with the

cost of creating two new fracture surfaces, we can generalise the Griffith criterion of

Eq. 5.4 into the form:

Gc = 2γ (5.11)

where γ is the surface energy density of the newly opened surfaces, and Gc is the

critical energy release rate. For G > Gc the crack advances, for G < Gc it retracts.

Strip Geometry

Situations for which the stress intensity factor can be computed exactly are rare.

A notable exception is the case of steady crack growth in the thin strip geometry

illustrated in Fig. 5.5, where the edges of the crack are clamped and displaced

vertically. This configuration has been widely used since it is both practical for

experiment (see, for example, Ref. 117) and amenable to analysis.

In this geometry, the stress intensity factor does not depend on the crack length,

and can be derived entirely by considering the energetics of an advancing crack using

an approach first suggested by Rivlin and Thomas [118] in 1952. The horizontal

edges of the strip are given a uniform normal displacement δ, so the applied strain

is ǫ0 = δ/h. Far ahead of the crack, the strip is in uniaxial tension: ǫyy → ǫ0 as
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x → ∞. The stress far ahead of the crack is given by σ0 = E ′ǫ0, and therefore the

elastic energy per unit length and per unit thickness far ahead of the crack tip is

W∞ =
1

2
E ′ǫ20 · 2h =

δ2E ′

h
(5.12)

where E ′ is the effective Young’s modulus and ν Poisson’s ratio. Far behind the

tip, the energy density is zero. Since no energy disappears through the clamped

edges, if the crack is to advance by unit distance, a vertical strip of material with

energy density W∞ is effectively replaced by a strip with energy density zero. The

energy supplied to the crack tip is therefore equal to W∞, so the energy release rate

is simply

G = W∞ =
δ2E ′

h
(5.13)

While this calculation is exact and independent of the crack length, the stress fields

that result from substituting this stress intensity factor into the Irwin solutions are

only valid in the vicinity of the crack tip. Further away, the constant order stress

terms σ
(1)
ij cannot be neglected in comparison with the asymptotic 1/

√
r term. The

Irwin K-field stress components all tend to zero far ahead of the crack tip, rather

than converging to the externally applied stress as they do in the strip geometry.

It is possible to solve this linear elastic problem fully for the case of a semi-infinite

crack in an infinite strip, to obtain the stress and strain fields at any point in

the strip. Knauss [119] did this in 1966 using the Wiener-Hopf technique to solve

the linear elastic equations subject to the appropriate boundary conditions. The

resulting expressions have to be integrated numerically to give the full stress field

solution: details can be found in Appendix A and will be compared with the results

of atomistic calculations in Section 6.5.

5.3 Fracture of Real Materials

Real materials differ markedly from the linear elastic continuum model: they are

made of atoms. There are two major problems involved in applying continuum

mechanics to atomic crystals. Firstly, the Irwin solutions neglect the effects of

the anisotropy of elastic constants and secondly, they ignore the discreteness of

the atomic lattice. Neglecting the discreteness of the atomic lattice gives rise to a

phenomena known as lattice trapping which is discussed in Section 5.4 below.
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(a) (b) (c)

Figure 5.6: Transmission electron micrographs of fracture in silicon (a) Crack
formed at 25◦C, width of field is 1 µm. (b) The same crack, tilted slightly to
reveal the crack front line C—C. The crack is atomically sharp, with no evidence
of dislocation activity in the region of the crack tip. (c) A similar crack, formed
at ∼ 500◦C, above the brittle-ductile transition. Reproduced from Lawn [34].

Crystal anisotropy

The orientation of a crack in a crystalline material is defined by a plane and a line,

written in the form (ijk)[lmn]. The plane with Miller indices (ijk) is the surface

opened as the crack propagates and the line [lmn] defines the crack front.

The effects of crystal anisotropy on elastic constants can be incorporated in one

of two ways. If the orientation of the slab is unknown, then we should determine

the Young’s modulus and Poisson ratio by averaging the elastic constants over all

possible orientations of the crystal axes. This is called the Voigt average, and details

can be found in Hirth and Lothe [120, p. 430]. If we do know the crystallographic

orientation, then the appropriate values for E and ν can be calculated from the

cubic elastics constants C11, C12 and C44 using the formulæ given by Brantley [56];

this will be the case for the crack systems considered in this work.

Brittle Fracture of Silicon

In this work, I focus entirely on the brittle fracture of silicon. The Griffith energy-

balance approach has been shown to provide a good description of the fracture

process for straight cracks in silicon in both static and dynamic regimes [31]. In

1986, Lin and Thomson [35] extended the approach to describe dislocation emission

and cleavage in crystalline materials and found that the cleavage process is still well

described by the Griffith criteria.

An essential requirement for a real material to be described by the Griffith

theory is that it undergoes brittle rather than ductile fracture. Brittle cracks are
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Figure 5.7: Three seed cracks in silicon with different crystallographic orienta-
tions (a) (111)[11̄0], easy cleavage plane (b) (110)[001̄], hard cleavage plane, easy
direction (c) (110)[11̄0], hard cleavage plane, hard direction

atomically sharp and propagate by breaking bonds one at a time at each point along

the moving crack front. Figs. 5.6a and 5.6b show transmission electron microscope

(TEM) images of a crack in silicon at room temperature: it can be directly seen

that the failure is brittle. Silicon undergoes a brittle-ductile transition (BDT) at

around 800 K [121], above which fracture progresses by the emission of dislocations

as shown in Fig. 5.6c. In this work I consider only brittle behaviour, so I restrict all

studies to temperatures well below the transition temperature.

Experiments with straight cracks on carefully prepared single crystal silicon have

shown good agreement with the predictions of the continuum approach. For a review

of the experimental techniques used to study brittle fracture, see Ref. 122. TEM

results indicate that the fracture surfaces remain atomically smooth for loadings

several times larger than Gc [117].

The three most studied crack systems in silicon crystals are (111)[11̄0], (110)[11̄0]

and (110)[001̄]; these orientations are illustrated in Fig. 5.7. The (111) plane is the

easy cleavage plane since it has the lowest surface energy density, making (111)[11̄0]

the most commonly occurring crack system in practical applications [123]. In this

work I shall exclusively consider fracture in this orientation, hereafter denoted simply

as Si(111).

Surface energy and Griffith critical load

The Griffith critical loading Gc is equal to twice the surface energy density. Com-

puting Gc therefore requires knowledge of the details of the surface reconstruction
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111

110

112

Figure 5.8: Pandey 2 × 1 reconstruction of the Si(111) surface. Atomic coor-
dinates are those obtained from a geometry optimisation using castep. Three
unit cells are shown along the [112̄] direction, separated by the dashed lines. The
reconstruction is also periodic in the [11̄0] direction (into the paper).

as this will determine the surface energy. For open Si(111) surfaces, this is generally

accepted to be the 2 × 1 Pandey π-bonded chain [124], which consists of alternate

5– and 7– membered rings along the [112̄] direction as shown in Fig. 5.8. This re-

construction is consistent with a variety of experimental surface science techniques,

but ab initio calculations show that the 7 × 7 surface is 60 meV per atom lower in

energy [125, 126]. However the annealing process by which the extremely complex

7 × 7 surface forms takes thousands of seconds at room temperature [127]. The

barrier to the formation of the Pandey surface from the unreconstructed surface is

less than 0.03 eV/atom, so it is expected to be the equilibrium surface configuration

except at very low temperatures [128] and certainly after crack propagation.

The energy density of this surface within a particular computational model can

be computed in a straightforward fashion: a silicon slab, periodic in x and z with

open surfaces at the top and bottom is initialised with the approximate atomic

coordinates for the reconstruction, then geometry optimised to find the local energy

minimum. The surface energy can then be obtained by comparing this energy with

that of a similar fully periodic system.

Surface energies computed using a variety of methods are compared with exper-

imental measurements in Table 5.1. Ab initio calculations show good agreement

with experiment, in contrast to the tight binding results. In particular, it is to be

noted that different TB models give very different values for the surface energy; this

is a consequence of the semi-empirical nature of the method. The SW potential

agrees fairly well with both ab initio and experiment. Experimental surface ener-

gies formed part of the dataset to which its parameters were fit, so this should not



5.3. Fracture of Real Materials 93

Description Reference γ / J/m2 Gc / J/m2

Literature results
Direct experiment [129] 1.24 2.48
Estimated from sublimation energy [130] 1.46 2.92
Ab initio (LDA) [37] 1.34 2.68
Tight binding (NRL) [108] 1.0 2.0
This work
Stillinger-Weber 1.35 2.70
Tight binding (Kwon) 1.89 3.78
Ab initio (GGA, castep) 1.44 2.88

Table 5.1: Surface energy density and corresponding Griffith critical energy re-
lease rates for Si(111). Gc has been obtained using Gc = 2γ in all cases. The
values for the SW potential and both tight binding models are for the unrecon-
structed surface since those models do not predict spontaneous reconstruction
after fracture, while the ab initio result of Spence et al. and the castep calcula-
tion performed for this work are for the Pandey 2 × 1 reconstruction.

be taken as an indication that the potential has superior predictive power to tight

binding in general.

Velocity Gap and High Speed Instabilities

Above the critical load Gc, dynamic linear elasticity theory predicts that the velocity

v of a running crack should increase with increasing energy flow to the crack tip,

according to
v

cR
= 1 − Gc

G
(5.14)

For a derivation of this result see Freund [31]. cR is the theoretical maximum crack

propagation speed, the Rayleigh wave speed, equal to the velocity of acoustic surface

waves. For Si(111) the Rayleigh speed is cR = 4.68 km/s [131]. Thus all speeds

0 < v < cR are predicted to be accessible by the continuum model. However, in

recent years doubts have been raised about both limits of this inequality.

Holland and Marder [113] observed a velocity band gap at the onset of fracture,

with the velocity of the crack tip rising almost instantaneously from zero to about

2 km s−1, half of its terminal velocity. This effect arises in a lattice model proposed

by Marder and Gross [132] in 1995, in which they argue that below a certain speed

the crack does not have sufficient kinetic energy to jump over the energy barrier

separating one lattice site from the next. The observation of a velocity gap is
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disputed by Be’ery et al. [133] who have used three-point bending experiments to

produce cracks moving at less than 1% of the Rayleigh speed, with no evidence of

a velocity gap. Empirical potential studies by Gumbsch et al. [134] in 1997 and

Hauch et al. [117] in 1999 provide evidence in favour of the velocity gap, but the

applicability of such methods has been called into question by their poor description

of the onset of fracture: see Section 5.4 below.

Recent experiments indicate that speeds as high as cR are unachievable. The

first observation of a high speed instability was in the amorphous material PMMA,

where Fineberg et al. [135] discovered an instability at around 0.6cR, above which

the crack breaks up into a large number of ‘microbranches’. More recently, a similar

instability has been observed in crystalline silicon, at speeds of between 0.7cR and

0.9cR [136]. At intermediate fracture energies a faceted crack front arises to dissipate

the additional energy that flows to the crack tip. At these loads, sub-micron surface

features can be seen using AFM (atomic force microscope) imaging techniques [117].

5.4 Lattice Trapping

Experimentally, the onset of fracture on the (111) plane in silicon is found to be

of the order of 10–20% above Gc [117, 136]. This discrepancy is explained by the

phenomena of lattice trapping : the atomic nature of real materials gives rise to a

periodic potential at the crack tip that manifests itself in a higher resistance to

fracture than that predicted by Griffith’s criteria. According to the continuum

description, there is a unique critical stress intensity Kc for which the crack is

in stationary equilibrium. For loads above this the crack advances, and below it

retracts. When the discrete nature of the lattice is taken into account, the crack

becomes trapped for a range of stress intensity factors K− < Kc < K+, as illustrated

in Fig. 5.9. Lattice trapping of cracks is analogous to the trapping of dislocations

by the Peierls barrier [120]. It can lead to slow crack growth [137], and anisotropy

with respect to propagation along different crystallographic orientations [138]. The

range of lattice trapping can be quantified using the ratio

R =
K+

Kc

=

√
G+

Gc

(5.15)

R can be measured quasi-statically by initialising a test system close to Kc and

increasing the load in small steps, fully relaxing the system after each increase. The
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K = K c

K = K -
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Figure 5.9: Schematic illustration of lattice trapping, showing total elastic energy
as a function of crack tip displacement for various stress levels. There are minima
at the uncracked and cracked states. For K < K− the uncracked state is globally
stable, so the crack closes. For K > K+ the cracked state is globally stable and
the crack opens. At Kc the energies are equal, but separated by a finite barrier.

barrier to fracture goes to zero at K+. In an atomistic simulation, this is typically

defined as the load at which bond rearrangements at the crack tip first occur.

Even very simple atomistic models give rise to lattice trapping. The first use of

the term lattice trapping dates back to 1971, when Thomson et al. [139] formulated

two analytically solvable lattice models of fracture, both of which predict large lattice

trapping, of the same order as the Griffith load. This result called into question the

whole idea of a single critical stress. In an extensive study Sinclair [140] investigated

the effects of lattice trapping in silicon for a large range of interatomic potentials.

Flexible boundary conditions designed to match the continuum elasticity solutions

were used. It was found that short-ranged force laws led to much greater lattice

trapping than those with long attractive tails. Later, Curtin [141] developed an

analytical connection between the range of lattice trapping and the range of the

interatomic potential. With simple classical potentials, he found the effect of lattice

trapping to be small, but noted that it decreased non-monotonically with the range

of the force law. In the first example of a hybrid ab initio and classical simulation of

fracture, Spence et al. [37] found significant lattice trapping. The approach used for

this simulation has been described in Section 3.5. They concluded that the barrier

to crack advance was sufficiently large to prevent thermal activation of fracture in

silicon.

An ab initio quasi-static simulation carried out by Perez and Gumbsch [123] in

2000 explained the directional anisotropy in silicon fracture on the (110) plane by a

difference in the extent of lattice trapping in the two different cleavage directions.
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Description Reference R = K+/Kc

Experimental
(111) cleavage [117] ∼1.1
(110) cleavage [136] ∼1.2
Ab initio
(111) cleavage [123] 1.25
(110) cleavage [123] 1.25–1.35
(111) cleavage [37] 1.31
Empirical potentials
Various short ranged potentials [140] 1.13–7
EDIP [108] 1.65–1.73
Brittle SW [113] 1.53
MEAM [142] 1.20
Stillinger-Weber (extrapolated) [143] 1.51
Stillinger-Weber (this work) 1.50
Hybrid Simulation
DCET [108] 1.09–1.16
ReaxFF [131] 1.48

Table 5.2: The extent of lattice trapping measured in a variety of experimental
and theoretical studies. The ab initio and empirical potential results are obtained
quasi-statically.

They found that the [11̄0] direction was preferred, with the [001̄] direction being

associated with larger lattice trapping. On the (111) plane, they found significant

lattice trapping, in good agreement with Spence et al. Table 5.2 summaries various

measurements of the lattice trapping range.

5.5 Empirical Potential Molecular Dynamics

Classical interatomic potentials tend to dramatically overestimate the extent of lat-

tice trapping in silicon, resulting in crack arrest until the load is well above Gc.

When fracture finally occurs, the excess elastic energy is typically dissipated by the

creation of rough fracture surfaces, bluntening of the crack tip and even repeated

crack arrest, requiring the load to be further increased: these are all characteristics

of ductile fracture. The Stillinger-Weber, EDIP and Tersoff potentials all predict

ductile fracture [108, 113, 144]; Fig. 5.10 shows a snapshot from a classical MD

simulation carried out with the SW potential. The failure of empirical potentials

to describe the fracture of silicon is in contrast to metallic systems, where embed-
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Figure 5.10: Snapshot from an MD simulation of fracture using the Stillinger-

Weber potential. Size of system is 200×100×7.68 Å3. The description of fracture
is ductile: note the rough surfaces and blunt tip.

ded atom potentials often provide a good description of fracture and deformation

processes [145].

It is possible to create empirical potentials for silicon which do exhibit brittle

fracture. Holland and Marder [113] used a modified version of the SW potential, with

the λ angle parameter doubled. This change has a marked effect on the properties

of the model, increasing the melting point from 1683 K to 3500 K, so the modified

potential cannot be regarded as a satisfactory model of silicon [146]. The resulting

lattice trapping is as large as that of the unmodified potential (see Table 5.2). A

measurement of the lattice trapping range of the SW potential by extrapolation

of the barrier heights at lower loads gives 1.51 [143], in good agreement with the

value computed quasi-statically in this work. Swadener et al. [142] have conducted a

simulation using the Modified Embedded Atom Method (MEAM) potential, which

does exhibit brittle fracture. Their simulation also gave fracture above the Griffith

criteria, suggesting significant lattice trapping.

At this point it is appropriate to consider why empirical interatomic potentials

which accurately describe many of the physical properties of silicon do such a bad job

of modelling fracture: in many cases far worse even than the simple Griffith energy-

balance argument. We have seen that near to the crack tip, the continuum stress

field diverges. Bonds in this region will therefore be subject to large, anharmonic

displacements, and eventually bond rupture will take place. Classical potentials

cannot hope to model such complex chemical processes accurately; such processes

can only be reliably described by quantum mechanics.
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Figure 5.11: Snapshot 2 ps into fracture simulations using: (a) the DCET hy-
brid method, and (b) the Stillinger-Weber empirical potential. Reproduced from
Bernstein and Hess [108].

5.6 Hybrid Simulation of Fracture

A fully quantum mechanical simulation of fracture is unfortunately not feasible: as

has been discussed extensively in Chapter 3, fracture is an example of a strongly

coupled multiscale system, since it is the long range stress field caused by the opening

crack which breaks the bonds that advance it. Tens of thousands of atoms contribute

significantly to the elastic relaxation of this stress field, and it is currently impossible

to perform a fully QM simulation for such a large system. Ab initio simulations such

as those of Perez and Gumbsch [123] make significant approximations of the near

crack tip displacement field, since the outer boundaries, set by the Irwin continuum

field, are not sufficiently far away from the process zone where rebonding is taking

place to reach the asymptotic limit. The best we can do is to construct a hybrid

model of the fracture process, with a quantum mechanical model centred on the

crack tip to accurately describe the bond stretching and breaking processes coupled

to a much larger classical region which captures the long range stress field.

Reactive potentials such as ReaxFF go some way to addressing the failings of

empirical potentials. In 2006, Buehler et al. [147] reported a force-mixing hybrid

simulation using thousands of ReaxFF atoms near the crack tip and the Tersoff

potential elsewhere which gives brittle fracture, but they do not attempt to mea-

sure the critical load, concentrating instead on high speed phenomena such as crack
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branching. In a very recent paper, Buehler et al. [131] report large lattice trapping

(R = 1.48) using the same approach, which they attribute to a crack tip reconstruc-

tion. I shall postpone a detailed discussion of the rôle of crack tip reconstructions

to Chapter 7, remarking here only that there are some problems with the approach

taken by Buehler et al.

The best hybrid fracture results to date were obtained by Bernstein and Hess

[108], who used a force-mixing approach to combine a classical empirical potential

with a semi-empirical tight binding model. This approach, known as DCET, yields

brittle fracture of silicon on the (111) plane (see Fig. 5.11). They report R in the

range 1.09–1.16, and suggest that two length scales are important in determining

the lattice trapping barrier: one is set by bond breaking and the other by elastic

relaxation. In the DCET hybrid simulation, the bond breaking length scale is larger

and the elastic relaxation distance smaller than empirical potential simulations,

resulting in reduced lattice trapping.

5.7 Summary

In this chapter I have reviewed a range of approaches to understanding the fracture

of brittle materials, from the continuum theories of Griffith and Irwin to modern

computational simulations using a variety of techniques. I have considered the

crucial rôle of lattice trapping in determining the critical load for a particular system.

In recent years it has become clear that the extent of lattice trapping is very sen-

sitive to the detailed nature of atomic interaction, and that it may be very different

for different cleavage planes. The latest experimental and theoretical results seem to

indicate a preference for a small but significant amount of lattice trapping. However,

given the sensitive dependence on the choice and range of interatomic interaction

and the limited precision and large variance in the experimental measurements, it

is impossible to be sure of this.

The essential multiscale nature of brittle fracture has been elucidated: only by

modelling a large enough system to include the effects of the long stress range field

can we hope to accurately describe the fracture process. I have also explained why a

quantum mechanical description of the bond breaking processes taking place at the

tip is necessary. In the next chapter, I will describe how the LOTF hybrid method

introduced in Chapter 4 can be applied to model the brittle fracture of silicon.





Chapter 6

Simulation Approach and Methodology

6.1 Introduction

We are now in a position to draw together the tools and methodologies described

in the preceding chapters and apply them to a real problem. The scientific problem

of interest is the brittle fracture of Si(111) outlined in Chapter 5, and the central

method is the ‘Learn on the Fly’ scheme described in Chapter 4. In this chapter I

describe the application of LOTF to this problem, and include details of preliminary

tests and validation work; the central results of this thesis will be presented in the

following chapter.

We have seen that a hybrid approach is needed to model brittle fracture accu-

rately. LOTF is particularly well suited to this task since the adjustable potential

and buffer region allow the quantum region to be small and mobile, so we can follow

the crack tip as it moves. This makes it feasible to use full ab initio calculations in

the QM region for the first time, in contrast to force-mixing schemes such as DCET

[108] where a large QM region is required for stability and thus fully first principles

calculations are too costly to incorporate in the scheme. It is necessary to describe

the processes taking place at the crack tip at an accurate QM level of detail: for

example the semi-empirical tight binding potential used in DCET does not give the

experimentally observed Pandey surface reconstruction.

6.2 The crack code

During the course of this work, I have developed a general purpose code for conduct-

ing fracture simulations with the LOTF scheme, appropriately named crack. This
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program was originally written in C with the c-lotf code, but has been converted

to Fortran 95 in parallel with the development of the lotf95 code. As lotf95 and

crack matured together, the fracture application provided the first large-scale test

of the new implementation of LOTF.

The essential simulation methodology is straightforward. A crack system is

prepared in the thin strip geometry described in Section 5.2, periodic in the crack-

front direction and with vacuum surrounding the in-plane edges. Since the cell

thickness in the periodic direction is fixed, plane strain conditions apply. We begin

by relaxing the system, then the load is increased in a number of small steps until

the crack starts to propagate.

The CPU time required for a hybrid fracture simulation with ab initio QM calcu-

lations is extremely large: for around 100 QM atoms the castep force computation

takes around ten minutes on 32 nodes of the Cambridge supercomputer,1 and this

must be done at least every 10 fs during the molecular dynamics. This means that

simulations take of the order of 48 hours per picosecond of MD, so it is essential that

the code be fully restartable. This is achieved by writing a checkpoint file containing

all the dynamical and state dependent variables every few time steps.

The following sections provide further details regarding important aspects of the

implementation of the crack code.

Hybrid Structural Relaxation

Classical geometry optimisation can be performed rapidly using the conjugate gra-

dients algorithm, and this provides a good first approximation to the hybrid relaxed

geometry, which in turn approximates the atomic configuration that would be found

by a fully quantum mechanical optimisation of the entire system. Relaxation us-

ing the hybrid forces is slightly more involved. Whenever forces are needed, a QM

calculation is performed and the adjustable potential parameters are optimised to

reproduce the QM forces. The forces used for the geometry optimisation are the sum

of the classical and adjustable potential forces: as for MD, this ensures that there

is no mechanical incompatibility at the boundary between classical and quantum

regions.

1The Cambridge high performance computer Darwin comprises 2340 × 3.0 GHz Intel Wood-
crest cores with 8 GB of memory per node. The cluster has a peak Linpack Performance of
27 Tflop/s and a sustained value of 18.27 Tflop/s. The Infiniband interconnect provides 900 MB/s
bandwidth with a 1.9 µs latency.
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The standard formulation of the conjugate gradients algorithm requires both an

objective function and its derivative. For geometry optimisation, the former is the

total energy. In the LOTF hybrid scheme, there is no well defined total energy,

so this approach is not possible. There are several alternative ways to proceed.

Damped molecular dynamics methods only require forces but are generally slower

than direct minimisation approaches unless sophisticated coupling schemes are used

as discussed in Section 2.2. The FIRE method, which is based on damped MD,

also does not require a total energy function and so is a viable approach to hybrid

structural relaxation. It is also possible to modify the line minimisation step of the

conjugate gradient algorithm to work with derivative information only. This is done

by extrapolating the projection of the derivative along the search direction to zero.

To avoid errors associated with large extrapolation lengths, a maximum step size is

specified and then the procedure is iterated until the projected derivative is zero.

All three of these methods have been implemented within the lotf95 frame-

work. Conjugate gradients with derivative extrapolation gives the best combination

of speed and robustness, usually converging faster than FIRE for the fracture sys-

tems considered in this work, where there are initially very large forces near the tip

as well as a very long range stress field to be relaxed.

Displacement Loading Scheme

The external load on the model crack must be applied in a way that is equivalent

to the ‘fixed grips’ displacement boundary conditions described in Section 5.2. To

exactly mimic experiment, the loading would be applied simply by displacing the top

and bottom rows of atoms, then fixing these atoms and allowing the system to relax.

However the time between loadings in experiments is of the order of several minutes

which is completely inaccessible to simulation. We therefore need to perform the

loading more smoothly to reduce the time required for equilibration. We also need

to insert a seed crack into the system, so that the crack tip is far from the edges of

the simulated system and the thin strip approximation of Eq. 5.13 applies.

Both of these requirements can be met by considering the equilibrium stress

distribution in a slab containing a stationary crack, then choosing simple initial

conditions that approximate this configuration: far behind the tip the strain is zero,

and far ahead it approaches the applied loading. Fig. 6.1 illustrates these conditions,

and shows the changes that take place in a classical geometry optimisation as a result

of this stress distribution. The optimisation is quick since the initial conditions are
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Figure 6.1: Displacement loading scheme. (a) An initial load is applied to an
unstrained slab. The atoms in Region I are vertically shifted by δ since there is
zero strain behind the tip of a relaxed crack. In Region III the strain is constant
and equal to the far field value of δ/h. The seed crack length is c. Across Region
II the strain increases linearly. The lower panels show the atomistic configuration
of a 1200× 400× 3.68 Å3 slab containing 90720 atoms with a seed crack of length
600 Å (b) before and (c) after classical relaxation, with the insets showing Region
II in more detail.

a reasonable approximation to the relaxed strain field. Prior to straining the slab,

care has to be taken to align the vertical coordinate origin with the centre of an

Si—Si bond to ensure that the crack opens cleanly. In a slight variation of the fixed

grip boundary conditions, the top and bottom rows of atoms are not rigidly fixed

but are constrained to move in planes of constant y using the rattle algorithm

[148]. This prevents the free vertical surfaces at each end of the slab from bowing

in at their centres due to effects associated with the non-zero Poisson ratio. An

alternative approach not pursued in this work is to use the Irwin displacement field

to apply the slab boundary conditions. In contrast to the simplicity of the thin strip

geometry, in this case the energy release rate is no longer constant for a steadily
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propagating crack since it depends on the length of the crack.

Once the initial configuration of the model system has been generated, the load

is incremented in one of two ways. The first approach, used in my early simulations,

is to simply rescale the entire slab vertically by a small amount:

r′i =




1 0 0

0 1 + α 0

0 0 1


 ri (6.1)

Providing the strain rate α is small this will not deform the system too far from its

relaxed configuration. The amount of equilibration required after each loading can

be reduced by instead performing classical relaxations at strains ǫ and ǫ + α then

computing the displacement field as

ui = r
(ǫ+α)
i − r

(ǫ)
i (6.2)

where r
(ǫ)
i denotes the relaxed position of atom i under an external strain of ǫ.

Eq. 6.1 is then replaced by

r′i = ri +
β

α
ui (6.3)

where β is the desired load increment. The {ui} only need to be evaluated once for

a given crack configuration.

To prevent accumulation of numerical error when combining small strains, the

energy release rate G is directly calculated using Eq. 5.13 by measuring the total

displacement δ relative to the unstrained slab height. It should be stressed that

these two loading methods are equivalent after elastic relaxation has taken place;

the second scheme merely decreases the amount of time required to perform this

relaxation.

Molecular Dynamics Methodology

In this section I describe details of the fracture molecular dynamics simulations

carried out in this work. We start with a relaxed configuration at a load G below

the critical Griffith load Gc. Depending on the range of lattice trapping, it should

be possible to find a load that satisfies G− < G < Gc so the relaxed crack is lattice

trapped and will not move until the load is increased above G+.

Molecular dynamics is then carried out at a temperature of 300 K, with a weak
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structure
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Molecular Dynamics
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(weak thermostat)
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Thermalise

No

temperature
fluctuations?

Figure 6.2: Flow chart illustrating molecular dynamics methodology used for the
fracture simulations. See text for a description of each state and the conditions
that have to met for transitions to take place.

Langevin thermostat to correct for the energy drift caused by the time dependence of

the LOTF Hamiltonian. The dynamics are accelerated using the predictor-corrector

scheme outlined in Section 4.5. Extrapolation for 10 steps of ∆t = 1 fs is possible

for pure silicon systems. In some simulations the Si—Si bonds cut by the insertion

of the seed crack were terminated with hydrogen atoms to prevent the crack closing

up at low loads: the lower atomic mass of hydrogen requires the MD timestep

to be decreased to ∆t = 0.1 fs; however, tests show the number of extrapolation

steps can be increased to 20 in this case without the maximum force errors during

interpolation becoming larger than 0.1 eV/Å.

Unfortunately it is not possible to run dynamics for long enough to fully explore

the environment at each load and to cross barriers which the real system would

have sufficient thermal energy to pass over at 300 K. Instead we allow the dynamics

to proceed for some fixed amount of time TMD, and then periodically check for

rebonding near the crack tip using the time-averaged coordinates (calculated using

Eq. 4.10 with an averaging time of τ = 50 fs). We approach realistic timescales

from below, with hybrid ab initio simulations carried out with TMD = 0.2 ps, 1 ps

and 5 ps — the results observed in each case are discussed in the following chapter.

Fig. 6.2 schematically illustrates the details of the molecular dynamics method-

ology used for the fracture simulations. If no rebonding occurs for some time then

we increase the load using either Eq. 6.1 or Eq. 6.3 as described above. After each

loading increment there is a thermalisation period in which a stronger thermostat is

used to dissipate the energy produced by the rescaling. The thermalisation continues
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until the fluctuations in temperature are small, defined by the inequality

T − 〈T 〉
T

<
1√
N

(6.4)

where T and 〈T 〉 are the instantaneous and average temperatures and N is the total

number of atoms in the simulation. Once this condition is satisfied the thermostat

is turned down and we return to almost microcanonical molecular dynamics. After

the crack has started to move, the rebonding is automatically detected and the load

is not increased further.

QM Selection Algorithm

A major advantage of LOTF is that it allows us to keep the QM region small. This

requires a robust selection algorithm to follow the crack tip as it moves and identify

the atoms that need to be treated with quantum mechanical accuracy. As discussed

in Section 4.6, this is a difficult problem since the timescales of thermal vibration and

crack motion are not well separated. The hysteretic selection algorithm described

in that section provides an effective solution to this problem; indeed this is the very

purpose for which the algorithm was developed.

We identify atoms as active when they change their bonding topology, and then

construct embedding ellipses around each active atom. The set of active atoms is

seeded with a few atoms near to the crack tip at the start of the simulation. Ellipses

are used rather than the spheres of Section 4.6 to allow the embedding region to

be biased forwards so that the QM region always extends ahead of the crack tip.

Fig. 6.3 illustrates how the algorithm works in a simple case with only two active

atoms — in reality there could be several hundred. Ellipses with different radii are

used to define inner and outer selection regions, and then the hysteretic algorithm

ensures that atoms near the edges of the QM region do not oscillate in and out of

the active region.

As the crack moves on, we can stop treating atoms behind the crack tip quantum

mechanically. We cap the size of the QM region at some limit Nquantum based on our

computational capability — this can be several hundred atoms for a tight binding

simulation, or of the order of a hundred for an ab initio simulation. By keeping

track of the order in which atoms became active, we can remove them from the QM

region in a consistent fashion. An additional condition prevents atoms further than



108 Simulation Approach and Methodology

Figure 6.3: Hysteretic QM selection algorithm applied to crack tip region. The
red and blue atoms are considered ‘active’, and are used to define inner (left
panel) and outer (right panel) selection regions. The atom indicated with the
black arrow remains selected despite oscillating in and out of the inner region
providing that it stays inside the outer region.

a threshold distance away from the centre of mass of the current QM region from

becoming active.

6.3 Classical Fracture Calculations

Comparing molecular dynamics simulations with experiment is very difficult since

the time and distance scales accessible to the two techniques are separated by many

orders of magnitude. Ideally we would converge the observables that are the outcome

of the simulation with system size and with simulation time. For example, the

critical load for fracture measured in a simulation should approach that found in

experiment. Unfortunately, finite computational resources mean this is not always

practical.

In this section I present some preliminary studies used to test the crack code

and determine reasonable simulation parameters. The large-scale elastic and ther-

modynamic properties that affect the overall scaling of the outcome of a fracture

simulation with system size should be adequately characterised by the classical in-

teratomic potential. Hybrid simulations are too computationally expensive to carry

out this convergence testing.

Crack Tip Curvature

First, I shall describe tests to verify that the energy release rate G provides a size

invariant measurement of the applied loading suitable for direct comparison between
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Figure 6.4: Classically optimised crack profile as a function of slab height when
(a) the displacement δ is kept constant, and (b) the energy release rate G is fixed
at Gc. Each colour is a different slab height, measured in Å.

experiment and simulation. The force required to break the critical crack tip bond

must be constant, independent of the specimen size, and therefore so is the stress

concentration as quantified by the stress intensity factor K. Since G is directly

related to K by Eq. 5.10 the stress concentration is the same for different size

systems with the same energy release rate.

Figure 6.4 shows crack profiles extracted from classically optimised slabs of vary-

ing heights containing stationary cracks, using either a constant displacement δ or

constant energy release rate equal to the Griffith critical value of Gc. Returning

to the elliptical crack analysed by Inglis and illustrated in Fig. 5.1, we recall that

stress concentration is directly related to the curvature of the crack profile near to

the tip. The figure clearly shows a good match in the curvature around the crack tip

over a wide range of slab heights providing that G is kept constant. If instead the

displacement δ is fixed as the slab height varies, then the resulting stress intensity

factors and curvatures are very different. The large range of heights means that for

the larger slabs the constant δ condition results in loads with G < G− so the crack

starts to close up on minimisation.

Classical Fracture Toughness

As well as MD, the crack code can perform quasi-static simulations where the

system is fully relaxed after each increment of load. This approach can be used to

estimate the fracture toughness G+, the load at which the lattice trapping barrier

first falls to zero. In the thin strip regime the energy balance argument given in
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Force tolerance / Fracture toughness /
eV/Å J/m2

0.001 15.6
0.01 15.7
0.1 18.0
0.5 23.1
1.0 31.1
2.0 54.5

Table 6.1: Classical fracture toughness G100 as a function of the force tolerance.

System geometry is 1200 × 400 × 3.68 Å3 with a seed crack extending half way
through the slab.

Section 5.2 indicates that G should be independent of the crack length and slab

height. We can use this criterion to determine a suitable simulation size that ade-

quately captures the effects of the long range stress field by verifying that G+ does

not depend on geometric parameters.

Since the Stillinger-Weber classical potential used here hugely overestimates the

lattice trapping range and does not predict a brittle mode of fracture, the value G+

will be much larger than the experimentally observed critical load. For the purpose

of measuring the lattice trapping range R of an interatomic potential, G+ is usually

defined as the load at which rebonding first occurs at the crack tip. Conducting

quasi-static classical simulations with the SW potential and this definition leads to

G+ ∼ 6 J/m2 and R ∼ 1.5 as reported in Table 5.2. However, since the descrip-

tion of fracture provided by the potential is ductile, the load has to be increased

considerably further before the crack tip advances significantly. Since the classical

potential does not provide an accurate description of the microscopic processes tak-

ing place at the crack tip, we shall make an alternative definition of the fracture

toughness purely for the purposes of testing size convergence: define G100 to be the

load required for the crack tip to advance by a distance of 100 Å from its initial

position. This definition is adequate for establishing suitable parameters for the

system size and simulation time.

A series of quasi-static simulations was performed with a fixed size slab to identify

the level of relaxation required to achieve a converged value of G100. The results

shown in Table 6.1 indicate that an RMS force tolerance of 0.01 eV/Å is sufficient.

Inspection of the atomic trajectories obtained confirms that G100 is a reasonable

definition, since the crack goes from being heavily lattice trapped to relatively free
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Seed crack Slab height
fraction 100 Å 200 Å 400 Å

0.2 14.6 15.0 17.9
0.3 14.6 15.0 15.6
0.4 13.5 15.0 15.7
0.5 13.5 15.0 15.7

Table 6.2: Classical fracture toughness G100 in units of J/m2 for various geome-
tries. In each case the slab width is three times its height and the quasi-static
force tolerance is 0.01 eV/Å.

(although still ductile) propagation at this loading.

Table 6.2 shows the values of G100 for a variety of slab geometries with different

slab heights and seed crack lengths. These results indicate that G100 is constant

providing there is of the order of 200 Å of material surrounding the crack tip on

all sides. This provides an independent estimate of the size of the region that

contributes significantly to the elastic relaxation of the stress field surrounding the

crack tip. A region of this size contains of the order of 20 000 atoms, confirming that

a direct fully quantum mechanical simulation is significantly beyond the capability

of even the latest linear scaling ab initio codes. Visualising the atomistic stress

fields directly provides an alternative technique to arrive at this figure and will be

discussed in Section 6.4 below.

Classical molecular dynamics simulations at a temperature of 300 K should give

a lower estimate for G100 since it is possible for the system to thermally excite

its way over the lattice trapping barrier, providing that we allow sufficient time

before increasing the load. Table 6.3 shows that the fracture toughness measured in

this way is highly sensitive to the minimum time TMD between successive loadings.

A time of TMD = 5 ps gives values of G100 consistent with those obtained quasi-

statically above. This time is equivalent to the sound travel time from crack tip to

the edge of the system which sets the approximate time scale for elastic relaxation.

6.4 Linear Elastic Stress Distribution

An excellent way to verify that the simulation cell is large enough to provide an

accurate description of fracture is to calculate the stress distribution of the relaxed

system and from this estimate the size of the region that makes a significant contri-

bution to this stress field. This procedure also allows comparison between the stress
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Seed crack TMD

fraction 1 ps 5 ps
0.2 28.9 13.4
0.3 32.1 13.4
0.4 32.1 13.4

Table 6.3: Critical loading G100 estimated using classical MD simulations for a

1200×400×3.68 Å3 slab with two different minimum times TMD between loading.

distributions predicted by continuum analysis, classical geometry optimisation and

hybrid simulation.

In order to compare the stress distributions obtained in different fracture simula-

tions with one another and with the analytical continuum elastic results discussed in

Chapter 5, we need to calculate the stress and strain on each atom. A truly atom-

istic definition of stress is hard to provide: the virial theorem is commonly used

to define local stresses but this can result in unphysical oscillations since it should

only be used to calculate macroscopic properties, averaging both temporally and

spatially over large numbers of atoms [149, 150]. An alternative method proposed

by Hardy [151], in which the stress fields are evaluated at a fixed spatial point uses

a localisation function to perform local spatial averaging of the density, momentum

and potential energy around each atom, has recently been shown to predict stresses

which are at least as accurate as those calculated with the virial theorem [150].

In this work we avoid the problems associated with defining a local stress by in-

stead considering the local strain of each atom. This can be measured by comparing

the atom’s position to that it would have in an unstrained crystal. We can then cal-

culate the stress from this strain using linear elasticity theory. We have developed a

method to do this for four-fold coordinated atoms in tetragonally bonded structures.

The neighbours of each atom are used to define a local set of cubic axes, and the

deformations along each of these axes are combined into a matrix E describing the

local deformation:

E =




| | |
e1 e2 e3

| | |


 (6.5)

where, for example e1 is the relative deformation along the first cubic axis. To

compute the local strain of the atom, we need to separate this deformation into a

contribution due to rotation and one due to strain. This can be done by finding
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the polar decomposition of E, by writing E in the form E = SR with R a pure

rotation and S a symmetric matrix. Diagonalising the product EET allows R and

S to be calculated. The strain components ǫxx, ǫyy, ǫzz, ǫxy, ǫxz and ǫyz can then be

calculated by rotating S to align the local cubic axes with the Cartesian axes:

RTSR = I + ǫ =




1 + ǫxx ǫxy ǫxz

ǫxy 1 + ǫyy ǫyz

ǫxz ǫyz 1 + ǫzz


 . (6.6)

Finally, the atomistic stress can be computed simply as σ = Cǫ where C is the

6 × 6 matrix of elastic constants defined in Eq. 2.17; for cubic crystals the only

independent elastic constants are C11, C12 and C44 so these make up the only non-

zero elements of C.

Comparison of Atomistic and Irwin Stress Fields

The method outlined above allows the stress distribution to be calculated for any

atomistic configuration. This might be a snapshot from an MD simulation or the

outcome of a classical or hybrid geometry optimisation. It is most useful to do this

with a very well relaxed geometry to remove fluctuations caused by kinetic effects:

this is essential in order to make comparisons with the continuum predictions of the

Irwin K-field.

The Irwin solutions are derived for the case of an infinitesimal slit crack, where

the crack tip is a mathematically exact point. To compare with an atomistic model,

we have to choose where to centre the stress field. This can be done by minimising

the RMS difference between the atomistic and continuum fields along the line ahead

of the crack tip, as shown in Fig. 6.7. All the stress components apart from σxx

give rise to clear minima in the error at around x = 107 Å which is within 0.2 Å of

the bond at the crack tip. This fitting procedure is not ideal since the Irwin field

only applies in the near-field: in the thin strip geometry the stress components far

ahead of the tip do not tend to zero, so there are large discrepancies between the

fields in this region. This may explain why the minimum in the stress field error

for σxx does not coincide with the other minima. The agreement between measured

atomistic and continuum stress fields is good in the near field, especially for the σyy

component, as can be seen from the stress maps shown in Fig 6.5.
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Figure 6.7: RMS difference between atomistic and K-field stress components as
a function of the position at which the K-field is centred. The curve labelled
‘Combined’ is the quadrature mean of the σxx, σyy and σzz curves. The curves
have been shifted vertically so their minima lie at y = 0 to allow comparison.

Planar projections of these fields are shown in Fig. 6.6, allowing direct comparison

between the atomistic and Irwin values. The K-field solution agrees well with the

atomistic calculation even close to the tip. This good agreement indicates the length

scale for small scale yielding predicted by the Stillinger-Weber potential is small.

The length scale over which the stress fields decay to zero behind the crack tip

and to the external load ahead of the tip enables us to estimate the size of the

simulation cell required for our simulations. Fig. 6.6 indicates that the region over

which the stress fields are significant extends approximately 200 Å either side of the

crack tip, in good agreement with the estimate from fracture toughness calculations

presented above.

As can be seen from the plot of σyy along the line y = 0 ahead of the crack tip

shown in Fig. 6.6, at large distances ahead of the crack, the atomistic field tends

to the external load whereas the near field analytical solution tends to zero. This

discrepancy arises because the K-field solutions are exact only for a crack in an in-

finite medium. In most cases this approximation is sufficient but here the boundary

conditions are prescribed close to the crack, so there is a significant difference in the

resulting stress fields.
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Figure 6.8: σyy along the line y = 0 ahead of a stationary crack tip located at
the origin. The energy release rate is G = 1.75 J/m2. The inset shows the region
x < 50 Å, indicated by the vertical dashed line on the main plot.

6.5 Stress Fields of a Semi-Infinite Crack in an Infinite Strip

The solution to the significant stress difference between models is to use Knauss’

continuum results for the stress field in an infinite strip containing a semi-infinite

crack. Appendix A presents an outline of Knauss’ approach and describes the com-

bination of analytical and numerical integration techniques employed to calculate

the stress on the line y = 0 ahead of a crack tip. The atomistic stress distribution

obtained from a classical geometry optimisation with the Stillinger-Weber poten-

tial is shown in Fig. 6.8, along with the results of the integration calculated using

Eq. A.23. To facilitate comparison between the two models, the elastic constants

used for the the numerical calculation were those predicted by the Stillinger-Weber

potential, rather than those of real silicon. The asymptotic K-field contribution to

σyy is also shown in the figure; it is the term in the stress proportional to 1/
√
x.

Agreement between the continuum and atomistic approaches is very good for

x > 10 Å, with the two curves lying exactly on top of one another. Knauss’ solution

is only exact for the case of a semi-infinite crack in an infinite strip but we can see

from this calculation that the system size used for the atomistic calculation is large

enough to approach this limit very closely. In contrast, the Irwin K-field solution

is approximately correct in an annular region extending from 10 Å out to of the

order of 100 Å from the crack tip; this explains the reasonable near-field agreement
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seen in the stress maps of Fig. 6.5 and the deviation at larger distances seen in

the plots in Fig. 6.6. The breakdown in the agreement between the continuum and

atomistic descriptions for very small x indicates that the length scale for small scale

yielding predicted by the Stillinger-Weber model is of the order of 10 Å— this is the

size of the region within which non-linear processes contribute significantly to the

stress distribution. This calculation provides reassurance that the classical atomistic

model chosen here does an excellent job of describing the elastic relaxation of the

crack system, even though it fails to describe the bond breaking processes near to

the tip accurately.

It should be noted that these results are obtained from purely classical geometry

optimisations. We will describe the effect of introducing quantum mechanics in the

vicinity of the crack tip on the stress distribution in Chapter 7. The fact that the

length scale for small scale yielding appears to be so small is encouraging: in hybrid

fracture simulations the region to be treated with quantum mechanical accuracy

will extend sufficiently far from the tip to include all of this region.

6.6 Summary

In this chapter I have discussed the development of a general purpose computer code

to model brittle fracture within the LOTF scheme and have highlighted important

aspects of the code such as the need for a robust algorithm to track the crack

tip as it moves. The thin strip loading geometry discussed in the previous chapter

suggests a straightforward loading scheme that facilitates direct comparison between

simulation and experiment. I have also reviewed a number of classical calculations

made using the code which justify the choice of various parameters such as the

overall size of the simulation cell.

An atomistic approach to the calculation of stress has been introduced: this is

a powerful tool which will be of utility in understanding the important differences

between the classical and quantum mechanical descriptions of fracture that will be

described in the following chapter. An exact linear elastic solution for an equivalent

geometry to that used in the simulations gives a stress distribution along the line

ahead of the crack tip that agrees very well with that obtained from geometry opti-

misation with the classical Stillinger-Weber potential, indicating that the potential

describes the long-range elastic behaviour of silicon to high accuracy.

We conclude that the crack slab needs to be around 1200 Å in length to ad-
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equately capture the effects of the long range stress field that drives the fracture

process; since a cell of this size contains of the order of 100 000 atoms a multi-

scale simulation is indeed the only feasible approach to carrying out an ab initio

simulation of the fracture process.





Chapter 7

Results

7.1 Introduction

This chapter presents the main results obtained for the brittle fracture of the Si(111)

system. We begin by describing hybrid simulations conducted using a variety of tight

binding potentials. These simulations indicate that a crack tip reconstruction plays

a central rôle in the fracture process. Further information about this reconstruction

is then obtained from calculations on crack tip clusters extracted from the tight

binding dynamical simulations. Finally, I report results obtained from fully ab

initio hybrid simulations of fracture. The results of these simulations confirm the

indications provided by the exploratory tight binding calculations.

7.2 Tight Binding Hybrid Results

Using a tight binding quantum mechanical method within the LOTF hybrid scheme

provides an improved description of the bond breaking processes in comparison to

purely classical simulations, while remaining computationally inexpensive relative

to ab initio calculations. Hybrid TB simulations are thus ideal for exploring the

behaviour of the silicon fracture system. The results presented in this thesis were

initially observed in TB simulations, and then confirmed with ab initio calculations.

Hybrid fracture simulations have been carried out using a variety of different

TB potentials. In each case brittle fracture is observed, with continuous propa-

gation above a critical load. The Kwon [87] and Bowler [88] semi-empirical TB

potentials and the more accurate DFTB [91] method give qualitatively similar re-

sults, both for room temperature simulations (T = 300 K) and at low temperature
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(a) t = 37.5 fs, G = 2.5 J/m2 (b) t = 50.0 fs, G = 2.5 J/m2

(c) t = 62.5 fs, G = 4.0 J/m2 (d) t = 75.0 fs, G = 5.8 J/m2

(e) t = 87.5 fs, G = 5.8 J/m2 (f) t = 100.0 fs, G = 7.9 J/m2

Figure 7.1: Snapshots from LOTF tight binding MD simulation at a temperature
of 300 K using the Kwon et al. [87] tight binding model. The red atoms are
treated quantum mechanically and the yellow atoms with the classical potential.
All atomistic visualisations were produced with AtomEye [152]. See text for a
detailed description.

(T = 10 K). In all cases the most striking feature of the fracture dynamics is the

formation of a crack-tip reconstruction, reminiscent of the Pandey reconstruction

of the Si(111) surface. The reconstruction forms spontaneously at loads less than

the Griffith critical load Gc via a bond rotation, resulting in 5– and 7–membered

rings. Formation of this reconstruction relieves the stress along the main load axis,

thus inducing additional lattice trapping. An example hybrid trajectory generated

in a simulation using the Kwon TB potential is illustrated in Fig. 7.1. Panel (a)

shows the initial configuration, with an unreconstructed crack tip as predicted by

the Irwin displacement field. After just 50 fs of dynamics, the reconstruction starts

to form. Above the critical load for fracture, the slowly moving crack occasionally

visits the reconstructed tip configuration as it propagates, for example as seen in
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111

110

112

Figure 7.2: Broken mirror symmetry of the (111)[11̄0] orientation of a bulk
silicon crystal. The highlighted 6–membered ring clearly indicates that there is
an asymmetry with respect to reflection about the black dashed line.

panels (d) and (f). In panel (d) it can be seen that the 5–membered ring has mi-

grated backwards via a further bond rotation to form a 5–6–7 reconstruction. For

sufficiently slow propagation, the [111] orientated bonds one atomic layer below the

initial crack plane and further along the propagation direction can break before the

bridging bonds associated with the 7–membered ring, since stress is mostly concen-

trated at these points after the reconstruction. Every reconstruction event causes

a downward [111] step in the crack path as seen in panel (e). All these steps are

in the same direction due to the broken mirror symmetry of the crystal depicted

in Fig. 7.2. The crack tip reconstruction always forms on the lower crack face for

the system as oriented in Fig. 7.1. The simulations therefore predict a systematic

deflection of the crack path from the (111) plane at sufficiently low velocities, with

fast cracks being dynamically steered away from the instability.

Truly three dimensional simulations are prohibitively computationally expen-

sive, but it has been verified that increasing the depth of the system in the periodic

direction to as many as eight layers (a depth of 29.44 Å) does not change the tip

reconstruction behaviour. Fig. 7.3 shows snapshots from an eight layer simulation

using DFTB quantum calculations; the 5–7 reconstruction forms across almost the

full width of the system before the onset of fracture. It is prevented from spanning

the system completely by the strongly alternating up-down Hanneman reconstruc-

tion predicted by the DFTB model. Enforcing charge self-consistency during the

DFTB calculation to prevent unphysical charge transfer would reduce the extent

of this Hanneman reconstruction, but unfortunately this makes the calculation an

order of magnitude slower and is thus not feasible. Since all the simulations are

conducted at relatively low temperature and the system is highly driven, thermal

activation and entropic effects, which could cause qualitatively different behaviour

in three-dimensional systems, are unlikely to play a significant rôle.
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(a) t = 1.05 ps (b) t = 1.10 ps

(c) t = 1.15 ps (d) t = 1.20 ps

Figure 7.3: Snapshots from DFTB hybrid simulation at a temperature of 300 K
and a load of G = 2.5 J/m2 for an 8-layer crack system. Geometry of slab is
1200× 400× 29.44 Å3, containing 725 760 atoms. The formation of the 5–7 crack
tip reconstruction across seven of the eight layers can be seen.

7.3 Crack Tip Reconstruction

The results outlined above are already encouraging since many different TB methods

predict the same basic behaviour. To be truly convincing, more detailed studies of

the crack tip reconstruction process must be made with accurate ab initio methods.

Let’s consider a simple spring model to describe the origin of the crack tip

reconstruction, illustrated in Fig. 7.4. For the unreconstructed tip, the critical bond

(indicated with an arrow in the figure) can be modelled as a single spring. If we

assume constant strain as the reconstruction forms, then the reconstructed system

can be modelled by three springs in series, each extended less than the single spring

that represents the unreconstructed tip. The extension of this spring is reduced since

the load is now shared out between three bonds. The overall stress concentration is

therefore reduced.

Ab Initio Crack Tip Cluster Calculations

The local chemical energy cost of the bond rotation associated with the formation of

the tip reconstruction can be evaluated by calculating the energies of crack tip clus-

ters extracted from dynamical simulations using an accurate first principles method.
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6 6

6

5

6

7

Figure 7.4: Simple spring model for crack tip reconstruction process. The left
hand side shows the unreconstructed tip, and the right the tip after the 5–7
reconstruction has taken place. See text for description.

This analysis was carried out for three variations of the tip reconstruction observed

in the hybrid simulations with the TB force models. For technical reasons, these

early simulations were carried out with a depth of two unit cells (7.68 Å) in the

periodic direction. This leads to two different forms of the 5–7 reconstruction: one

in which it forms in a single layer, and another where it forms across both layers. A

further variant of the basic reconstruction occurs when a subsequent bond rotation

causes the 5–membered ring to migrate backwards with respect to the propagation

direction, resulting in a 5–6–7 structure.

Configurations representative of each of these reconstructions and containing

the same set of atoms were extracted from hybrid TB simulations and rescaled to

the same sub-critical (G < Gc) load. These clusters are illustrated in Fig. 7.5.

Each cluster contains approximately 100 silicon atoms plus terminating hydrogen

atoms. The outer ring of silicon atoms and the termination atoms were fixed in place

and then the interior atoms were allowed to relax. The resulting energies of these

clusters using the Kwon TB potential and DFT methods are shown in Table 7.1.

All the structures are stable in both the TB and DFT descriptions, with geometry

optimisation carried out until the RMS force was below 0.01 eV/Å. However the

energy of the reconstructed structures is higher than that of the unreconstructed tip,

indicating as expected that locally the reconstructions cost energy to create. The

two 5–7 reconstructions are similar in energy, suggesting that structural variations

in the periodic direction are not very significant. Since the 5–6–7 structure results
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(a) Unreconstructed (b) 5–7 Reconstruction (Single layer)

(c) 5–7 Reconstruction (Both layers) (d) 5–6–7 Reconstruction

Figure 7.5: Crack tip clusters obtained by castep geometry optimisation of
structures extracted from TB hybrid simulations.

Structure RMS position Tight Binding DFT (castep)
difference /Å E / eV ∆E / eV E / eV ∆E / eV

Unreconstructed 0.000 -811.0 0.0 -11534.82 0.00
5–7 (Single layer) 0.038 -804.6 6.4 -11533.69 1.13
5–7 (Both layers) 0.041 -805.4 5.6 -11533.14 1.68
5–6–7 0.119 -803.9 7.1 -11532.26 2.56

Table 7.1: Energies of the relaxed crack tip cluster structures illustrated in
Fig. 7.5. The tight binding results give energies resulting from geometry optimi-
sation using the Kwon et al. [87] model, and the DFT results results were obtained
using castep. ∆E is the energy difference from the unreconstructed tip in each
case.
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Figure 7.6: Clusters made from crossing over the crack tip boundary conditions.
UU = unreconstructed outer, unreconstructed inner; RU = reconstructed inner,
unreconstructed outer; RR = reconstructed inner, reconstructed outer; UR =
unreconstructed inner, reconstructed outer.

in more under- and over-coordinated atoms, it is not surprising that it is higher in

energy. The RMS difference in the positions of the atoms in each cluster from those

of the unreconstructed tip can be used to quantify the degree of rearrangement.

Again the two 5–7 cases can be seen to be very similar. The energy cost ∆E

increases with increasing RMS position difference. From now on we shall consider

only the unreconstructed tip and the full 5–7 reconstruction, the latter being the

most commonly observed structure in the dynamical simulations.

The boundary conditions applied to the unreconstructed and reconstructed crack

tip clusters are not the same, since the atoms at the edges of the cluster were

fixed at the the positions extracted from hybrid simulations in much larger systems.

Interchanging the boundary conditions between the two systems in the manner

illustrated by the red and blue arrows in Fig. 7.6 and then re-relaxing the clusters

with castep confirms that it is the outer boundary conditions that determine the

energy ordering. This indicates that the näıve spring model discussed above is too

simple, since in reality there is no fixed boundary close to the crack tip — all atoms

are free to move. There is a tradeoff between the local energy cost associated with

the formation of the reconstruction and elastic energy relief over a large region.

In principle, we could increase the radius of the clusters used for these calcula-

tions until we include sufficient atoms that the elastic energy reduction balances the

chemical cost of the bond rotation and ∆E = 0; in practice this would require many

thousands of atoms to be included in the simulation which is beyond the capability
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of DFT. Atomistic stress calculation as described in Section 6.4 provides a direct

way to visualise this energy reduction; we shall shall return to this with hybrid ab

initio calculations in Section 7.4 below.

These results explain why previous ab initio studies of crack tips, for example the

work of Perez and Gumbsch [123], have not detected these reconstructions: in these

works the edges of the crack tip cell are constrained to match the Irwin continuum

displacement field. Firstly, the simulation cells used are not large enough to include

enough of the stress relieved region to make the reconstructed configuration lower in

energy, and secondly the fixed boundary conditions do not give sufficient scope for

internal rearrangement to allow tip reconstructions to form. It is only with a hybrid

technique that we can hope to observe and explain these kinds of phenomena.

Hybrid Force Integration

We have seen that cluster calculations are not suitable for determining the en-

ergetics of the crack tip system since the choice of boundary makes a difference,

therefore, we need to compare relaxed total energies of the entire system in the un-

reconstructed and reconstructed cases. Each structure contains over 90 000 atoms

so it is clearly not possible to evaluate the quantum mechanical energy from first

principles. Within the LOTF scheme, there is not a meaningful total energy for the

hybrid classical/quantum system; the method matches forces between the QM and

classical regions, rather than energies, so the solution is to use these accurate forces

to evaluate the energy difference between two configurations by force integration:

∆E =

∫

γ

F (R) · dR (7.1)

where R denotes all atomic positions and the integration contour γ can be any path

between the two configurations of interest. The start and end configurations are

obtained by hybrid minimisation as described in Section 6.2, resulting in F = 0 at

both integration limits.

For the crack tip reconstruction process, there is no obvious reaction coordinate,

since the bond rotation which forms the 5– and 7–membered rings involves the

correlated motion of many atoms. I have therefore chosen the simplest contour con-

necting the two minima: linear interpolation between the relaxed unreconstructed

state with atomic coordinates RU and the reconstructed state with coordinates RR.

The QM region is fixed during the integration process. The forces F(R) are cal-
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Figure 7.7: Energy difference ∆E = EU − ER obtained using hybrid force inte-
gration as a function of loading G. The blue dashed line shows the Griffith critical
loading Gc = 2γ. QM force model was that of Kwon et al. [87].

culated in the standard LOTF fashion: classical and quantum forces are evaluated

for the two regions, then the adjustable potential is optimised to reproduce the

quantum forces. The forces used for the integration are the sum of the classical and

corrective forces to ensure that there is no mechanical mismatch at the boundary.

The integration path is discretised into N + 1 samples according to

∆R =
1

N
(RR − RU) (7.2)

Fi = F(RU + i∆R), 0 ≤ i ≤ N (7.3)

and then Eq. 7.1 can be evaluated using Simpson’s Rule:

∆E ≈ ∆R

3
·



F0 + 2

N/2−1∑

j=1

F2j + 4

N/2∑

j=1

F2j−1 + FN



 (7.4)

The step-size ∆R required for accurate integration of the energy difference was

calibrated using force integration with the classical potential alone, where the energy

difference can be calculated exactly — typically N = 20 gives good results. The

method was validated by confirming that perturbing the integration path does not

affect the value of ∆E obtained.

This procedure for calculating the energy difference has been carried out with the

Kwon TB potential as the QM force model. The unreconstructed and reconstructed
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configurations were extracted from hybrid dynamical simulations, then rescaled to

the same load and relaxed within the hybrid scheme. Damped molecular dynamics

minimisation is sufficiently fast to carry out the relaxation efficiently. Repeating this

process at a number of different loads gives the data shown in Fig. 7.7. The range

of lattice trapping predicted by the TB model used here is relatively large, meaning

that there is a local minimum corresponding to a stationary crack tip in both the re-

constructed and unreconstructed states for loadings as low as 0.67 J/m2. At this low

load, the unreconstructed configuration is 0.74 eV lower in energy than the recon-

structed structure. As the loading is increased, the energy difference ∆E = EU −ER

increases, with the reconstruction becoming globally stable at G ≈ 1.2 J/m2, well

below the Griffith critical loading Gc. For larger loads the preference becomes

stronger still.

This force integration procedure is equivalent to the thermodynamic integration

method [153] commonly used to calculate free energy barriers, but carried out at zero

temperature. The absence of a good reaction coordinate means I have not been able

to calculate the energy barrier to formation of the reconstruction. Nevertheless, the

observation that the reconstruction forms spontaneously in dynamical simulations

at temperatures as low as 10 K means that this barrier must be small, at least

within the tight binding approximation.

Summary of Tight Binding Results

The conclusion from tight binding hybrid simulations is that the 5–7 reconstructed

crack tip becomes the equilibrium configuration well below the critical load, and

that this reconstruction causes significant stress relief, enhancing the lattice trapping

effect and delaying the onset of fracture. The next question is whether this remains

the case when a more accurate quantum mechanical method is used to describe the

crack tip region.

7.4 Ab Initio Hybrid Results

Whilst the tight binding results discussed above are very encouraging and consistent

across a range of different TB parametrisations, the semi-empirical nature of all

tight binding models mean that results obtained using these techniques are not

generally accepted as convincing evidence for the existence of particular effects.
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Other studies of Si(111) fracture using different tight binding models have reported

different outcomes depending on the choice of TB potential: for example the DCET

hybrid model predicts brittle fracture with smooth, unreconstructed surfaces [108],

whereas a linear-scaling tight binding study on systems containing around 10 000

atoms predicts both upward and downward steps in the fracture surface [154]. The

work described above reveals that an accurate description of the energetic ordering

of crack tip defects is essential.

The only solution is to carry out fully ab initio hybrid fracture simulations using

a DFT code to remove all empirical assumptions from the quantum calculation.

As has been mentioned, this is a very computationally expensive procedure; to

make progress it is essential to keep the quantum mechanical region as small as

possible. For this reason the simulation cell was reduced in depth from the double

cell used for TB simulations to a single unit cell with a periodic lattice parameter

of 3.68 Å. 1 In an attempt to prevent the crack from closing up at low loads,

the open seed crack surfaces were terminated with hydrogen atoms. This required

additional terms to be added to the Stillinger-Weber potential to describe the Si–H

interactions; the parametrisation of Kohen et al. [65] was used for this purpose. The

addition of hydrogen atoms also necessitated a reduction of the molecular dynamics

time-step to 0.1 fs, in order to correctly integrate the equations of motion for the

lightweight hydrogen atoms. Ultimately, this hydrogen termination was found to

be unnecessary, since the lattice trapping induced by the tip reconstruction is even

greater in ab initio hybrid simulations than it was with TB, so fracture is suppressed

until the loading is significantly above Gc.

Fig. 7.8 shows snapshots from a hybrid simulation using castep as the QM

force model which has a minimum time between loadings of TMD = 0.2 ps, the same

as that used for the TB simulations. This loading rate significantly overestimates

the critical loading, since the system does have sufficient time to get over the lattice

trapping barrier at loads that would cause fracture in reality. Unfortunately, realistic

time scales are inaccessible to simulation, so we are forced to strike a balance between

1Originally, a technical limitation prevented the cell from being smaller in any direction than
the neighbour cutoff distance used for the classical potential, typically 5 Å. Initially this was worked
around by considering the full system to consist of a real and an image plane of atoms, stacked
in the periodic lattice direction. QM forces are evaluated only for the the real atoms, and copied
to each of the images. Classical forces and atomic positions are symmetrised at each time step.
Recently the libAtoms code has been modified to remove this limitation, allowing arbitrarily
thin slabs to be modelled. This is done by allowing individual atoms to appear multiple times in
neighbour lists, providing each occurrence has a different periodic shift.
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(a) t = 8.0 ps (b) t = 8.4 ps

(c) t = 9.2 ps (d) t = 9.6 ps

(e) t = 10.0 ps (f) t = 11.2 ps

(g) t = 11.6 ps (h) t = 12.4 ps

Figure 7.8: Snapshots from LOTF/castep MD simulation at 300 K. Note the
formation of the reconstruction at t = 8.4 ps, the subsequent ‘microcracking’ and
stepping of the crack. The reconstruction forms again at t = 11.2 ps.
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TMD / ps Grecon / J/m2

Tight Binding Ab Initio
0.2 5.5 19.4
1.0 3.5 8.5
5.0 2.5 6.0
∞ 1.2 2.1

Table 7.2: Energy release rate Grecon at which 5–7 crack tip reconstruction
forms dynamically as observed in simulation as a function of the minimum time
TMD between loadings; TMD = ∞ corresponds to the lowest load at which the
reconstruction is found to be globally stable by hybrid minimisation. Below these
loads the TB crack is stable in the unrelaxed configuration, whereas the ab initio

crack closes up.

computational expense and simulation time. Static calculations at lower loads giving

further insight into the load at which the reconstruction becomes stable will be

discussed below. The fracture dynamics are qualitatively similar to those seen with

tight binding. The reconstruction forms before the onset of fracture (panel (b) in

the figure). The stress relief and consequent increase in lattice trapping induced

by the reconstruction require the load to be significantly further increased before

the crack can propagate. As in the TB simulations, the next bonds to break are

located ahead of the bridging bond associated with the 7–membered ring and one

atomic layer below the initial crack plane, as shown in panels (c) and (d). We see in

panel (e) that, eventually, the bridging bond breaks, whereupon the crack takes a

downward [111] step. The crack occasionally revisits the reconstructed configuration

as it moves; see panels (f) and (g). Every time it does so there is a downward step

in the crack path, exactly as seen in tight binding hybrid simulations such as the

one shown in Fig. 7.1.

Repeating the hybrid dynamics with lower loading rates (larger values of TMD)

gives qualitatively the same behaviour, with the tip reconstruction forming before

the onset of fracture, but the load at which the reconstruction forms and at which

fracture initiates is vastly reduced. The upper section of Table 7.2 shows the loads

at which formation of the tip reconstruction has been observed in dynamical simu-

lations. The ab initio hybrid fracture dynamics are similar to those seen with TB,

but the effect of the reconstruction is even greater: the lattice trapping induced

results in a large overestimate of the fracture toughness.
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Figure 7.9: Ground state structure obtained using hybrid geometry optimisation
with castep at an applied load of G = 2.1 J/m2, the lowest load which does not
close up on relaxation.

Ab Initio Hybrid Relaxation

To show that the reconstructed geometry is lower in energy than the crack struc-

ture predicted by the Irwin solutions, it is desirable to repeat the force integration

procedure conducted above with the crack tip region treated at an ab initio level of

accuracy. The procedure is as before: unreconstructed and reconstructed configura-

tions are extracted from the hybrid dynamical simulations and rescaled to the same

applied load. We then relax the entire structure using the hybrid forces. The force

calculations are now much more expensive than in the TB case, so the derivative

extrapolation adaptation of the conjugate gradient method described in Section 6.2

is essential to carry out these geometry optimisations efficiently.

Surprisingly the unreconstructed crack tip displacement field predicted by con-

tinuum mechanics is never stable with the ab initio force model. Below a load of

G = 2.1 J/m2, much lower than the ab initio Griffith critical load of 2.9 J/m2, the

crack closes up on minimisation. This indicates that this load is less than the lower

lattice trapping threshold G−. Above this load, the 5–7 crack tip reconstruction

forms spontaneously. It is therefore not possible to carry out the force integration,

since there is no local minimum at the unreconstructed state. Fig. 7.9 shows a detail

of the crack tip configuration obtained at the lowest load which prevents the crack

closing up, G = 2.1 J/m2.
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Stress Relief due to Reconstruction

Although it has not been possible to quantify the energy difference between the un-

reconstructed and reconstructed states at an ab initio level of detail, we can compare

the hybrid relaxed configuration illustrated in Fig. 7.9 with a classically optimised

geometry at the same load. Since we know the latter agrees very well with the

continuum predictions of linear elasticity (Section 6.5), this is equivalent to com-

paring the quantum mechanical predictions to those of continuum theory. Fig. 7.10

shows stress maps comparing the classical and quantum mechanical atomistic stress

distributions at a loading of G = 2.1 J/m2. The effect of the reconstruction on the

resulting stress distribution is considerable. In particular the planar projection of

σyy in panel (g) illustrates that, far in front of the crack, the σyy fields match, but

closer to the tip the reconstruction gives rise to significant stress relaxation.

To see this more clearly, I have averaged the classical and QM σyy distributions

onto a 20×20 Å2 grid. The contour maps in Fig. 7.11 illustrate these data. It can

be seen that the reconstruction causes a stress relief over a very large region: the

contour labelled zero at which the fields become equal is almost 400 Å in front of

the crack tip. At this loading the elastic energy density is 60 meV/atom. These

calculations indicate that the formation of the reconstruction results in an average

reduction in energy of 0.3 meV/atom for around 10 000 atoms, giving an energy

gain of 3 eV. This is sufficient to overcome the local energy cost of creating the

reconstruction, which the cluster calculations reported in Table 7.1 suggest to be

slightly over 1 eV.
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(a) Classical σxx (b) QM σxx

(c) Classical σyy (d) QM σyy

(e) Classical σxy (f) QM σxy

(g)

Figure 7.10: (a)–(f) Comparison of classical and quantum mechanical stress fields
for relaxed configurations at G = 2.1 J/m2. The 5–7 crack tip reconstruction is
present in the hybrid structure. (g) Planar projection of σyy with classical stress
shown in red and hybrid in blue. Stress units are GPa throughout.
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Figure 7.11: Contour maps of the distribution of σyy at G = 2.1 J/m2 for (a)
classically relaxed and (b) LOTF hybrid relaxation with 5–7 crack tip reconstruc-
tion. Panel (c) is a difference plot of the stress maps in (a) and (b), showing that
the reconstructions relieve stress as far as ∼ 400 Å from the crack tip. Stress
units are GPa. Vertical axis is inverted with respect to the atomistic views that
appear elsewhere in this chapter.
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added
New material

be removed
Material to

Constant loading G

Propagating crack

Linearly decreasing load

(a)

(b)

Figure 7.12: Possible approach to measure the fracture toughness by unloading
a moving crack. (a) The entire cell must be sufficiently long for the crack to
accelerate to its terminal velocity, and then the load can be slowly decreased until
the crack arrests. (b) Suggested implementation in which material is removed
from behind the crack and added in front as it propagates.

Measuring Fracture Toughness

The TMD = 5 ps simulation is at the upper limit of what is computationally feasible

to run,2 so it is not possible to increase this time far enough to converge the frac-

ture toughness observed in simulation with that measured in experiment. This is a

consequence of the large lattice trapping associated with the crack tip reconstruc-

tion. Obtaining the fracture toughness for a number of relaxation times up to about

20 ps and extrapolating to TMD = ∞ is possible but would be extremely compu-

tationally expensive and is likely to be inaccurate. An alternative approach would

be to gradually unload a running crack and see when it stops propagating. This

would require a simulation cell long enough for the crack to accelerate to its termi-

nal velocity and then equilibrate, before gradually decreasing the applied loading,

perhaps in the manner shown in Fig. 7.12a. This would require major changes to the

code to introduce data parallelisation, since the 90 000 atom simulations performed

in this work occupy almost all of the memory available on each node of a typical

high performance computer.3 A possible solution, developed for classical fracture

simulations by Holland and Marder [113], would be to periodically remove material

from behind the crack and add new material in front of it, as depicted in Fig. 7.12b.

This scheme is complicated slightly by the requirement to pre-equilibrate the new

material. Such a simulation would need to run for several hundreds of picoseconds,

2The 22 ps simulation conducted required just over 67 000 CPU hours
3This is 2 GB per CPU on the Cambridge high performance cluster Darwin
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far longer than the fracture simulations presented in this work which have all been

halted shortly after the initiation of fracture, with no attempt to allow the cracks

to accelerate to their final velocities.

7.5 Summary

The central results of this thesis have been presented in this chapter. Applying the

‘Learn on the Fly’ technique to the brittle fracture of Si(111) reveals a previously

unknown low speed instability caused by a crack tip reconstruction. The simula-

tions predict that low speed propagation should be unstable on the (111) plane,

conventionally regarded as the most stable cleavage plane. In the following chapter

I will discuss the low speed instability induced by this crack tip reconstruction in

more detail, in light of recent experimental results.





Chapter 8

Discussion of the Si(111) Low Speed

Fracture Instability

8.1 Introduction

The hybrid fracture simulations described in the previous chapter and summarised

in Fig. 8.1 predict systematic deflection of the crack path from the (111) plane at

low velocities, with fast cracks dynamically steered away from this instability. The

deflection process may start with a reconstruction event induced by the slowing down

of the crack front segment due to a local velocity fluctuation or an encounter with a

crystal defect. Irrespective of how the process starts, the initial reconstruction will

initiate a positive feedback ‘sinking’ mechanism, since each reconstruction event will

further trap and slow down the crack, leading to ever more reconstructions.

The reconstruction observed in hybrid simulations is associated with an atom-

istic length scale of around 1 Å, whereas AFM imaging cannot resolve fracture

surfaces at a resolution much above 0.1 µm. In order to connect simulations on the

nanoscale with experiment, a mesoscopic model is required to span the three orders

of magnitude that separates these length scales. In the following section, a model

is discussed which predicts observable surface features to arise from the microscopic

instability.

Recently this instability has been observed experimentally for the first time at a

range of low speeds, using a variety of novel techniques. I shall discuss these exper-

iments and compare the observations of the low speed instability with predictions

made with hybrid simulations and with the mesoscopic model.

Whilst the low speed instability predicted by my results has not been previously
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Figure 8.1: Overview of crack tip reconstruction results. (a) Thin strip geom-
etry of the simulation. (b) Map of the σyy stress component near the crack tip,
with red corresponding to highly stressed and black to unstressed. (c) Ground
state reconstruction geometry of the crack tip under load, created by a rotation
of the bond indicated by the arrow. The first few bonds that break after the
reconstruction are in 6–membered rings adjacent to the 7–member ring of the
reconstruction. The inset shows the crack tip structure after reconstruction and
subsequent bond breaking. Further increasing the load finally breaks the bridging
bond and advances the open crack surface yielding a downward step in the crack
plane.

reported, a very recent study by Buehler et al. [131] using the ReaxFF potential

to describe atoms near the crack tip and the Tersoff classical potential elsewhere

also exhibits a 5–7 crack tip reconstruction. They interpret the reconstruction as

a high speed instability that only arises at speeds above 1
3
cR, and attempt to use

it to explain the origin of the velocity gap. This is contrary to my results which

show the reconstruction to be the equilibrium crack tip configuration for any load for

which the crack does not close up. The paper by Buehler et al. gives me a number of

causes for concern. Firstly the choice of simulation cell is unconventional, consisting

of an infinite array of periodic surface cracks, making comparison with experiment

difficult. Secondly, all data are rescaled relative to the observed molecular dynamics

critical load G0,MD making it impossible to determine the extent of lattice trapping.
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Figure 8.2: Rate of crack tip reconstruction β(vx) in the mesoscopic model as
a function of velocity. Parameter values are vc = 10.0, A = 0.01, B = 0.9 and
C = 0.01. The rate of reconstruction rises smoothly for vx < vc.

Finally it is unclear whether the observed fracture is really brittle since there are

many unexplained surface features.

8.2 Mesoscopic Model of Crack Tip Reconstruction

A mesoscopic model of the crack tip reconstruction process in which the crack front is

represented by a line of particles connected by springs was developed in collaboration

with Noam Bernstein and Gábor Csányi. The springs provide line tension and the

crack front initially accelerates under a constant load until a terminal speed vm,

set by a velocity-dependant drag force, is reached. The instability is initiated by

a perturbation which slows a point on the crack front below a critical speed vc,

with vc < vm. In the macroscopic system, this instability could be initiated by

fluctuations in crack speed or by an encounter with a defect. Below this critical

speed, crack tip reconstruction occurs at a velocity-dependant rate β(vx), with vx

the horizontal velocity component, which rises smoothly as the speed of the crack

decreases further below vc. β(vx) is defined by

β(vx) = A

[
1 + exp

(
vx − Bvc

Cvc

)]−1

(8.1)

where A, B and C are parameters. Fig. 8.2 illustrates β(vx) with the chosen model

parameters.

The dynamics of the particles in the mesoscopic model are obtained by inte-
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Figure 8.3: Evolution of the crack front with the ridge shape as predicted by
a mesoscopic model based on the atomistic reconstruction mechanism. The red
lines represent snapshots of the propagating crack front yielding the interpolated
crack surface.

grating the equations of motion numerically using the Verlet algorithm. The model

incorporates the observation that the crack front sinks upon reconstruction by mod-

ifying the vertical positions at each time step according to the equation

z(t+ ∆t) = z(t) + β (vx(t))∆x (8.2)

Slowing of the crack upon sinking due to lattice trapping induced by the reconstruc-

tion is described by the equation

vx(t+ ∆t) = vx(t) [1 − β(vx(t))] (8.3)

Finally, stress enhancement is included in the model by increasing the line tension

on the parts of the crack front left behind by reconstruction. Fig. 8.3 shows the

evolution of the crack front predicted by this mesoscopic model. The crack tip

reconstruction and ensuing feedback process cause the atomistic perturbation to

evolve into a macroscopic ridge.
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8.3 Single Crystal Experiments

Following discussions with Peter Gumbsch concerning the results of the hybrid sim-

ulations, a collaboration with an experimental group lead by Dov Sherman was

initiated. In this section I report recent experiments they have carried out in the

low crack-speed regime using two different loading configurations, both of which

exhibit the low speed instability predicted by my hybrid simulations and the meso-

scopic model described in the previous section.

Three point bending

Sherman et al. [45] have very recently reported experimental studies using the three

bond bending loading configuration shown in Figs. 8.4a and 8.4b. Cleaving of

525 µm thick silicon specimens of 20×43 mm2 lateral dimensions was performed un-

der three point bending. The specimens were notched with a 150 µm thick diamond

saw to a length of 0.1–1.5 mm.

With reference to Fig. 8.4c, the crack initiates at the bottom left point of the

specimen. It starts to propagate as a quarter circular crack, becoming elliptical as

it reaches the steady state. A wide range of speeds are realised along the curved

crack front, from thousands of ms−1 at the bottom surface to several tens of ms−1 at

the top portion of the fracture surface [155]. The curved crack front (dashed black

line in the figure) propagates from left to right so that the normal crack speed Vn

becomes progressively smaller in higher regions of the sample. Below a critical speed

of about 1000 ms−1 instabilities develop, which are seen as ridges coming out of the

crack plane for y larger than a critical value. Fig. 8.4d shows an AFM micrograph

of one of these triangular ridges. The crystallographic direction of the deviation

is the same as the reconstruction-induced steps in the hybrid atomistic simulation

described in the previous chapter, and the shape of the ridges is qualitatively in

agreement with the results of the mesoscopic model depicted in Fig. 8.3.

In this loading geometry, varying the initial crack length changes the critical

loading and hence the crack speed. Fig. 8.5 shows that when this is done, the

instability onsets at a different vertical distance y up the specimen, and analysis

shows that this occurs in just such a way that the onset corresponds to a crack

speed of approximately 1000 ms−1.
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Figure 8.4: Three point bending experimental results, showing ridges formed by
low-speed instabilities on the (111) crack plane. Panels (a) and (b) show schematic
and photographic views of the apparatus respectively. P is the applied load. (c)
optical micrograph of the (111) crack system. (d) AFM micrograph close-up of a
(111) ridge. All images from Dov Sherman.

Figure 8.5: Optical micrographs showing onset of low speed instability for three
different initial crack lengths. In each case the instability onsets at a crack speed
of roughly 1000 ms−1. Image from Dov Sherman.
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Figure 8.6: Tensile loading experimental results, showing ridges formed by low-
speed instabilities on the (111) crack plane. (a) The fracture apparatus, showing
the silicon specimen glued to the aluminium frame (b) optical micrograph of
(111) crack system. The ridges initiate at a variety of crack speeds. (c) AFM
micrograph close up of one of the ridges. All images from Dov Sherman.

Tensile Loading

Even more recently, Sherman et. al. have carried out tensile studies which also show

the low speed instability. Cleavage of 525 µm thick silicon specimens of 42×26 mm2

lateral dimensions, cut from a [110] silicon wafer, was performed using a novel

technique to apply very small but steady and well controlled tensile loads. The

specimens were notched with a 150 µm thick diamond saw to a length of 1.5 mm,

heated to 200◦C and quenched in water to generate a pre-crack of the required

length. They were then glued to an aluminium loading frame using a 150 µm

thick film of epoxy resin. The load is applied by taking advantage of the thermal

expansivity mismatch between the sample and the aluminium loading frame (see

Fig. 8.6a). Micrographs of the resulting (111) fracture surface are shown in Figs 8.6b

and 8.6c. The crack advances from left to right as it accelerates up to a speed of

about 800 ms−1, as determined from the faintly visible Wallner lines [156].

Triangular ridges, all deviating in the same direction from the fracture surface,

form at a range of low crack speeds from about 400 to about 800 ms−1. At higher

speeds, about 2000 ms−1, the surface is mirror smooth and no ridges are present.

As in the three point bending experiments, the crystallographic direction of the

deviation matches that predicted by the instabilities produced by the atomistic

crack tip reconstruction, and the shape of the ridges is qualitatively in agreement

with the mesoscopic model.
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8.4 Summary

In this chapter I have discussed the macroscopic consequences of the reconstruction-

induced low speed instability on the (111) cleavage plane of silicon reported in the

preceeding chapter. The hybrid simulation results are used to construct a meso-

scopic model in which the crack tip reconstruction leads, via a positive feedback

mechanism, to observable surface features.

Ridges in exactly the same crystallographic direction and of qualitatively the

same shape as those predicted by the mesoscopic model have very recently been

observed in low crack-speed fracture experiments. The results of the tensile loading

experiments described above and the (111) cleavage results presented in this thesis

have been written up as in a joint experimental and theoretical paper and submitted

for publication [46].



Chapter 9

Conclusions

There are many avenues open to extend the work carried out in this thesis, both

within silicon and to other materials. In this section I give an overview of these

problems, for some of which work is already underway.

The crack tip reconstruction observed in hybrid simulations suggest significant

enhancement of the lattice trapping barrier to brittle fracture. Coupled with the fun-

damental limitations on the timescale accessible to molecular dynamics simulations,

this large barrier means that we cannot hope to measure the fracture toughness, and

hence the extent of this lattice trapping, directly. An indirect approach based on

unloading a running crack has been proposed in this work. Extending the inquiry

to look at other cleavage orientations in silicon would be straightforward. In par-

ticular, it will be interesting to see if the crack tip reconstruction arises for cracks

running on the (111) plane in the perpendicular [001̄] direction.

Silicon undergoes a brittle to ductile transition at around 800 K, above which

fracture proceeds by dislocation emission. It has been argued that the lattice trap-

ping barrier plays an important rôle in this transition, via an interplay between the

barriers to fracture and to dislocation nucleation and migration [108]. Further sim-

ulations to investigate the temperature dependence of the lattice trapping barrier

could provide insight on the origin of the brittle to ductile transition.

Using ab initio modelling at the crack tip removes all empirical assumptions

concerning the chemical processes taking place there. Extending the method to

model more complex chemical environments therefore requires only the addition of

a classical potential which provides a reasonable description of the new species. An

example application is stress corrosion cracking, where samples unexpectedly fail

when subjected to constant or cyclic tensile loadings below the nominal fracture
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toughness, due to the effect of a corrosive environment, typically consisting of water

and oxygen. Stress corrosion induced cracks at the Si/SiO2 interface in nanoscale

electronic devices are of particular technological importance. This could be modelled

using a combination of ab initio accuracy at the crack tip and a recently developed

classical potential which reproduces the structure of the natively oxidised silicon

surface and its interaction with water solutions [157].

The cleavage of diamond shows a strong anisotropy between different cleavage

planes, with (111) strongly preferred. Existing calculations have not been able to

explain this anisotropy, since there is a large barrier to the formation of the 2 × 1

Pandey reconstructed surface from the unreconstructed (111) surface. The existence

of a crack tip reconstruction similar to that reported in this thesis could explain how

this barrier is overcome. A lattice trapping model based on ab initio calculations has

been proposed by Ruben Perez and Pablo Pou Bell, but the boundary conditions

used preclude the formation of a crack tip reconstruction. In diamond, the possibility

for sp2 hybridisation and graphitisation hugely extends the space of possible crack

tip morphologies, making the necessity of multiscale modelling even stronger.

Finally, hybrid simulations are currently underway to study the fracture of

graphene, a truly two dimensional form of carbon. It behaves as a metal, with

a very complex electronic structure, in which electronic edge states are thought to

be very important [158]. These states are strongly dependent on the geometry at

the edge of the sheet, which can be either armchair, zigzag or a mixture of the two

[159]. Graphene is produced by tearing sections from the top layer of a graphite

sample; an open question is whether the fracture that forms the edges of these

sheets results in a preference for either armchair or zigzag edges. Surface energy

calculations indicate a preference for armchair edges, but STM experiments are as

yet inconclusive [159]. Embedding a quantum mechanical description of the crack

tip within a classical reparameterised to match the ab initio elastic constants al-

lows the fracture surface morphology to be investigated. The preliminary results

illustrated in Fig. 9.1 suggest a preference for the formation of zig-zag edges.

The outlook for hybrid simulation of materials systems is bright, with no shortage

of potential applications. In biology, where such methods are standard since they

provide a way to understand the underlying physical mechanisms behind processes

such as enzyme catalysis. In the years to come, the LOTF scheme has great promise

in this arena, where traditional QM/MM is currently dominant despite the boundary

problems associated with it, but there are many further difficulties to be overcome
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(a) (b)

Figure 9.1: Preliminary simulation of graphene fracture. (a) The starting point is
a sheet of graphene with a notch defect, oriented mid-way between zig-zag (blue)
and armchair (red) edges. (b) Snapshot from a hybrid fracture simulation, where
the red atoms are treated with castep and the black atoms with the Brenner
potential, refitted to match the ab initio elastic constants. The opened surface
corresponds to a zig-zag edge, at a steep angle.

in applying the technique once the comparative simplicity of covalently bonded

crystalline systems of the type studied in this thesis is left behind.

In conclusion, this thesis has described the application of hybrid quantum me-

chanical and classical molecular dynamics simulations to the brittle fracture of sili-

con on the (111) cleavage plane. The conditions for crack propagation are created

by the concentration of a long-range stress field at an atomically sharp crack tip,

creating a complex and strongly coupled multiscale system. The simulations are

made possible by combining a quantum mechanical description of the processes

taking place near to the crack tip with a classical atomistic model to capture the

long-range elastic relaxation. In this way, direct simulation of the fracture process

at the DFT level of accuracy is possible.

Hybrid simulations predict (111) fracture to be unstable at low speeds due to

a crack tip reconstruction which triggers a ‘sinking’ mechanism leading to macro-

scopic, experimentally observable, corrugations. Recent experiments have observed

surface features consistent with these predictions. For crystalline materials, this is

the first example of a fracture instability that sets in only below a critical velocity.

Subtle atomistic details at the crack tip control the qualitative macroscopic fracture

behaviour. It is suggested that this could be the case in general for brittle fracture

in crystalline materials, and that all covalent brittle crystals in all cleavage orienta-

tions should be investigated to determine whether similar crack tip reconstructions

are present. This thesis is only the start of this process.





Appendix A

Linear Elastic Thin Strip Solution

In this Appendix, I first present a brief sketch of Knauss’ approach to the linear

elastic problem of a semi-infinite crack in an infinite strip under fixed grip boundary

conditions; for full details consult Ref. 119. I then describe the approach I have

taken to numerically integrate Knauss’ solution.

The boundary conditions used by Knauss are the same as in the discussion of

Section 5.2: the top and bottom edges are clamped and displaced vertically by an

amount δ. We begin by subtracting the field of a uniformly stressed strip:

σ0
yy = E ′δ (A.1)

σ0
xx = νE ′δ (A.2)

σ0
xy = 0 (A.3)

where as usual E ′ is the effective Young’s modulus of the material (this differs de-

pending on whether plane stress or plane strain conditions apply) and ν is Poisson’s

ratio. Knauss chooses to express the problem in terms of the two-dimensional Airy

stress function φ(x, y), which is related to the stresses by

σyy =
∂2φ

∂x2
(A.4)

σxx =
∂2φ

∂y2
(A.5)

σxy = − ∂2φ

∂x∂y
(A.6)

The linear elastic stress-strain relations can be re-expressed in terms of φ providing
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the compatibility equation is satisfied:

∇4φ =
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
= 0 (A.7)

The problem reduces to integrating this equation subject to the appropriate bound-

ary conditions. We can do this by Fourier transforming the equation and boundary

conditions with respect to x, taking ω as the conjugate variable. This allows all the

fields to be expressed in terms of the transformed stress σ̂+(ω) along the line ahead

of the crack tip and the transformed displacement v̂−(ω) along the line behind the

crack tip. These functions are shown to be related by

σ̂+(ω) + E ′F (ω)v̂−(ω) =
1

iω
E ′δ (A.8)

where F (ω) is a known function. Knauss then uses the Wiener-Hopf technique to

write F (ω) as a product of the two functions F+(ω) and F−(ω), where F+ has neither

poles nor zeroes in a upper half plane and F− has neither poles nor zeroes in a lower

half plane. These requirements can be satisfied by choosing

F−(ω) = F+(−ω) =
1 − ω

ω0

1 − ω
z0

∞∏

n=1

(
1 − ω

ωn

)(
1 + ω

ω̄n

)

(
1 − ω

zn

)(
1 + ω

z̄n

) (A.9)

where the complex numbers ωn and zn are the roots of the equations

(3 − ν) sinh2 ωn + (1 + ν)ω2
n +

4

1 + ν
= 0 (A.10)

(3 − ν) sinh zn cosh zn − (1 + ν) zn = 0 (A.11)

Eq. A.8 can now be rewritten

iωσ̂+(ω) − E ′δ

F+(ω)
= −iωE ′F−(ω)v̂−(ω). (A.12)

By considering the asymptotic behaviour of v̂− and σ+ required to obey the bound-

ary conditions, the half-planes in which F+ and F− are analytic can be shown to

overlap. Appealing to Liouville’s theorem proves that the two sides of Eq. A.12

must be equal to a constant in the overlap strip. This argument yields

σ̂+(ω) =
iE ′δ (F+(ω) − 1)

ω
. (A.13)
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The stress distribution along the line y = 0 can be obtained by taking the inverse

Fourier transform of this equation and adding the contribution from the uniform

field:

σyy(x, 0) =
1

2π

∫

γ

σ̂+(ω)e−iωxdω + σ0
yy. (A.14)

The integration contour γ runs along the real axis from −∞ to ∞ with a semi-

circular deformation of radius ǫ around the origin to avoid the singularity in σ̂+.

Numerical Evaluation of σyy(x, 0)

In principle, Knauss’ method can be used to evaluate all stress components at any

position in the strip by the application of Eqs. A.4– A.6, but here I consider only

σyy(x, 0). This calculation is sufficient to enable useful comparisons with my atom-

istic calculations.

The roots of Eqs. A.10 and A.11 must be found numerically, and the infinite

product of Eq. A.9 has to be truncated after a finite number of terms, denoted

here by N . The integral can then be evaluated by breaking it down into a sum of

contributions:

σyy(x, 0) =
1

2π

{∫ −R

−∞

+

∫ ǫ

−R

+

∫

C

+

∫ R

ǫ

+

∫ ∞

R

}
+ σ0

yy (A.15)

where the contour C represents a semi-circle of radius ǫ around the origin in the

lower half-plane. We denote the five integrals by the symbols I1, I2, I3, I4 and

I5 respectively. Let’s consider I5 first. Knauss gives an asymptotic form for the

function F+(ω):

lim
ω →∞

F+(ω) =
θ

Γ2
(

5
4

)
(
iω

eπ

) 1
2

(A.16)

where θ is a constant that depends on the ωn and zn. In this limit F+ behaves like

A
√
ω. Substituting this asymptotic form into Eq. A.15 and transforming x→ x−iη

to ensure that the integrand tends to zero as ω tends to infinity allows us to write

I5(x,R) = lim
η → 0+

iE ′

2π

∫ ∞

R

(A
√
ω − 1)

ω
e−iωx−ωηdω (A.17)

This expression can be integrated analytically: the first term can be transformed into

a Gaussian integral by the substitution s =
√
ω, and the second can be expressed

in terms of the incomplete Gamma function. Taking the limit η → 0, we recover
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the value of the original integral:

I5(x,R) =
E ′δ

2π

{
θ (1 + i)

Γ2
(

5
4

)√
2eix

(
1 − erf

√
−iRx

)
− iΓ(0, iRx)

}
(A.18)

where the error function erf(z) and the incomplete Gamma function Γ(a, z) are

defined as follows and can be evaluated using series representations.

erf(z) =
2√
π

∫ z

0

e−s2

ds (A.19)

Γ(a, z) =

∫ ∞

z

sa−1e−sds (A.20)

Repeating this procedure for I1 with the substitution x → x+iη so that the integrand

vanishes as x→ −∞ yields the simple result

I1(x,R) = I5(x,R)∗ (A.21)

I2 and I4 have to be evaluated numerically, but again we can take advantage of

symmetry to show that

I2(x, ǫ, R) = I4(x, ǫ, R)∗ (A.22)

and so only one of the integrals needs to be evaluated. I3 can either be determined

numerically or by considering the contribution made by the residue of σ̂+ at the

origin. From a practical point of view this term is not significant to the overall

value of the integral. Putting all these results together, we have:

σyy(x, 0) = 2 Re [I1(x,R)] + 2 Re [I2(x, ǫ, R)] + I3(x, ǫ) + σ0
yy (A.23)

The symbol Re denotes taking the real part; we make use of Eqs. A.21 and A.22 to

reduce the numerical computation required. The result has to be converged with

respect to the number of terms N used to approximate the infinite product in F+,

and the parameters ǫ and R. Since the contribution made by I3 is negligible, the

final stress is relatively insensitive to the choice of ǫ. R can be chosen to reduce

the contribution of the asymptotic integrals I1 and I5 below some threshold. Good

results have been achieved with N = 100, ǫ = 0.1 and R = 104.
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