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Introduction

Outset: we study the dynamics
of wavepackets



Introduction

is the free propagation energy

Diagonal in k-space:



Introduction

is any potential that gets in the way

 Diagonal in real space:

Typical, convenient choice:



Introduction

is the coherent excitation of the system: 

pump + probe



Introduction

is the decay:

Stabilizes the pumping.

Smoothes the spectra: 



Introduction

is a nonlinear term in     due to interactions

In the context that interests us (see later),
this term has been analyzed extensively, notably by Ciuti,
Carusotto and Wouters. See also its original use to a polariton 
spin-wave (by Kavokin, Shelykh, Rubo, Malpuech et al.)



What we are aiming for:
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Introduction

Propagation of the free spinless particle
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The linear dispersion
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The linear dispersion
Schrödinger equation

has solution



The linear dispersion

(from previous slide)

No "diffusion" of the wavepacket.



The linear dispersion



The linear dispersion
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The linear dispersion
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The linear dispersion

The wavepacket is looking for
somewhere to scatter-off the potential
(but doesn't find any final state)



The conic dispersion
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The conic dispersion
Schrödinger equation is not "local" anymore:

so we go "numerical"

We used both a split-operator method and a more standard ADI
integration method.

The analysis of the numerical-methods for the driven-dissipative
nonlinear Schrödinger equation ("Gross-Pitaevskii")
seems an unadressed issue.

We didn't prove our algorithm to be the most efficient.
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The conic dispersion
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The conic dispersion
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The conic dispersion

please see 2--conic.avi at this point
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The conic dispersion
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A preliminary note on
shape preserving motion...

Am. J. Phys. 62, 147 (1994)

Is it a soliton?



The flat dispersion
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The flat dispersion

The wavepacket doesn't move

But its phase has a dynamics...



Galilean boost

It is "known" that Schrödinger equation
         [for the free (spinless) particle]
                        is not Galilean invariant.

It is covariant, but in a "clumsy" way:

        The "boost" is mass dependent.



Galilean boost

For the "free wave" wavepacket, the
boost is k-dependent:



PumpingPumping

The coherent pumping
drives a states that has
the shape of a cross +



Polaritons

time

x space

Their free-space
propagation is already interesting

Polaritons wavepackets leave
long oscillating tails behind them
when they are delocalized in k-space



Polaritons
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Polaritons
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Our procedure:

1 - We reach the "steady state" with the pump only (from vacuum).
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Polaritons
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Our procedure:
In this particular case,
we don't go above OPO threshold, that is numerically unstable



Polaritons
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Our procedure:

2 - We kick the "steady state" with a probe.
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Polaritons

Our procedure:

3 - We analyze the spectra.
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(we have subtracted the
"dull" & strong
 steady state spectrum)

Linearization of phase-matched
pair-scattered final states



Polaritons

Our procedure:

4 - We filter out the signal.
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Polaritons

Our procedure:
5 - We go back in real-space
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Collisions
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Collisions
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Conclusions
Microcavity polaritons open new possibilities
for investigating quantum wavepacket propagation.

Ultra-fast propagation of a quantum light-matter
wavepacket reported by the Madrid group.

Propagation of an interacting polariton BEC
suggests Superfluidity, but of a non-conventional
type. The same applies for its solitonic properties.

Still require extensive experimental & theoretical
investigations.

Striking behaviours of fundamental physics
with palpable technological applications.


