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Introduction

Outset: we study the dynamics
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Introduction

ihd, [0y = (D+V +T+TD) Q)+ F
D is the free propagation energy

Diagonal in k-space:
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Introduction

ihd, [0y = (D+V +Z+T1)|¢) + F

V' is any potential that gets in the way

Diagonal in real space:

(Y| V' ]z) =V(r)o(x —y)

Typical, convenient choice:
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Introduction

ihd, ) = (D+V +Z+T)[¢) + F

F'is the coherent excitation of the system:

pump + probe
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Introduction

ihd, [0y = (D+V +Z+1)[¢) + F

' is the decay: 1" = —ZTL’V/Q
Stabilizes the pumping.
Smoothes the spectra:
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Introduction

ihd, [0y = (D+V +Z+T1)[¢) + F

'/ is a nonlinear term in @b due to interactions

T|$) = Ul[2 |4)
(1)) = exp (= Ul(r, 1)[?) |[¢(r,0))

In the context that interests us (see later),

this term has been analyzed extensively, notably by Ciut;,
Carusotto and Wouters. See also its original use to a polariton
spin-wave (by Kavokin, Shelykh, Rubo, Malpuech et al.)




What we are aiming for:

ihd, [0y = (D+V +Z+T1)|¢)+ F
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Introduction
Propagation of the free spinless particle

Dy,

Analysis of the spreading Gaussian
wavepacket

| Abstract. The v (x, t) wavefunction of a Gaussian

‘ ] wavepacket spreading in free space (V(x) = 0) is expressed
0 in a didactic form. The expression found is a product of pure
real factors and pure phase factors. This makes it very easy
to derive the expression for the probability density from the
wavefunction. The physical meaning of each of the factors is
analysed.

G. I. Mark. Analysis of the spreading
gaussian wavepacket.

Eur. Phys. J. B, 18:247,1997.




The linear dispersion
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The linear dispersion

Schrodinger equation

thOy(x) = (—ishdy + V(r) — i)Y (x)

has solution
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The linear dispersion
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(from previous slide)
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No "diffusion” of the wavepacket.



The linear dispersion
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The linear dispersion
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The wavepacket envelope tunnels through unaffected



The linear dispersion

b(at) = 1 exp (_ (z — st — x0)?
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what happens underneath

please see 1--tunnel.avi at this point
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The linear dispersion
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The wavepacket is looking for

somewhere to scatter-off the potential
(but doesn’t find any final state)



The conic dispersion (free wave equation)
D L — shik
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The conic dispersion

Schrodinger equation is not "local” anymore:

ihdy (k) = shlkly(k) + = [ e ™V (2)y(z) dz

so we go "numerical”

( We used both a split-operator method and a more standard ADI
integration method.

The analysis of the numerical-methods for the driven-dissipative
nonlinear Schrodinger equation ("Gross-Pitaevskii”)
seems an unadressed issue.

We didn't prove our algorithm to be the most efficient. )



The conic dispersion




The conic dispersion
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The conic dispersion

Large V
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please see 2--conic.avi at this point



The conic dispersion ) MA"V

large potential
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A preliminary note on
shape preserving motion...

Is it a soliton?

Soliton like solutions of the Schrédinger equation for simple harmonic
oscillator

C. C. Yan
Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ, Brazil

(Received 30 November 1992; accepted 4 October 1993)

By solving exactly with a simple method the time dependent Schrédinger equation for simple
harmonic oscillator, we demonstrate that the probability density associated with any displaced
eigenstate has the following properties: (a) Its centroid oscillates according to the classical law.
(b) Its wave packet form remains rigid. The same method is also applied to solve exactly the
problem of simple harmonic oscillator with the force constant depending on time. In this case,
probability densities with the same wave packet structures as'that of the usual simple harmonic
oscillator can be found to move in such a way that their centroids follow the classical law but
their wave packets deform in time. Depending on how the force constant varies with time, the
wave packets can spread, contract or pulsate.

Am.]J. Phys. 62, 147 (1994)



The tlat dispersion
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The tlat dispersion
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The wavepacket doesn’t move

But its phase has a dynamics...



Galilean boost

It is "known” that Schrodinger equation
[for the free (spinless) particle]
isnot Galilean invariant.
It 1s covariant, but in a "clumsy” way:

The "boost” is mass dependent.



E (meV)

Galilean boost

For the ’f;free wave” wavepacket, the
boost is k-dependent:




Pumping
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The coherent pumping
! drives a states that has
the shape of a cross +




Polaritons

<k> = —10

Their free-space
propagation is already interesting

Polaritons wavepacket s leave
long oscillating tails behind them
when they are delocalized in k-space
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Polaritons
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Polaritons
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Our procedure:
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Polaritons

E (meV)

Our procedure:

In this particular case,
we don’t go above OPO threshold, that is numerically unstable




In(|¢(x,t)|?) (arb. units)

Polaritons

Our procedure:

2 - We kick the "steady state” with a probe.
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log scales

1

wx,t 2 arb. units
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g x,t 2 arb. units

k space
0 -
t=5ps

8,

6,

4+

2,
- 300 - 200 - 100 0 100 200 300

X pm
k space
10 .
t=6ps

8,

6,

4+

2,
- 300 - 200 - 100 0 100 200 300

X pm
k space
10 ; : . ! !
t=9ps

8,

6,

4,

2,

- 300 - 200 - 100 0 100 200 300

k space

20
15+
i)
S
>
)
c 10t
<
>
57 /\ |
. /\ | /\ A
-2 -1 0 1 2 3 4
ky
k space
20 .
15+
i)
5
]
s 10
<
>
5,
-2 -1 0 1 2 3 4
ky pm’
k space
20 ; : . ! :
15¢
2
5
]
© 10
o~
)
=
5,




k space
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please see
3--dyn-xk.avi
at this point



Polaritons
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Our procedure:

3 - We analyze the spectra.

(we have subtracted the
"dull” & strong
steady state spectrum)

Linearization of phase-matched
pair-scattered final states




Polaritons .
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Our procedure:

4 - We filter out the signal.




Polaritons

Our procedure:
5 - We go back in real-space

|¢xt\2

15

m

100ps

’"}”

E 06
: L N\ A
0

O

Jm

A polariton bullet
propagates!




(please see
5--fragmentation.avi

Collisions at this point
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(please see
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Conclusions

® Microcavity polaritons open new possibilities
for investigating quantum wavepacket propagation.

e Ultra-fast propagation of a quantum light-matter
wavepacket reported by the Madrid group.

® Propagation of an interacting polariton BEC
suggests Supertluidity, but of a non-conventional
type. The same applies for its solitonic properties.

e Striking behaviours of fundamental physics
with palpable technological applications.

e Still require extensive experimental & theoretical
investigations.



