Creating novel quantum phases by artificial magnetic fields

Gunnar Möller Cavendish Laboratory, University of Cambridge

Theory of Condensed Matter Group

ICM

Okinawa Institute of Science & Technology, September 24, 2013

Cavendish Laboratory

Topics for Conversation

artificial frustrated compounds

Gunnar Möller

many-body physics in artificial gauge fields

• A brief introduction to the quantum Hall effect

 Topological aspects of Landau levels and how to simulate magnetic fields

 Adiabatic connection of fractionalized phases in topologically non-trivial Chern bands and FQH states

- Novel types of quantum liquids bands Chern-# C > 1
 - composite fermion approach for bosons in flux lattices
 - Ifat band projection in the Hofstadter butterfly

Quantum Hall Effect: Phenomenology

a macroscopic quantum phenomenon observed in magnetoresistance measurements

Where? • in semiconductor heterostructures with clean twodimensional electron gases

▶ at low temperatures (~0.1K) and in strong magnetic fields

 $k_B T \ll \hbar \omega_c = \hbar e B / m_e$

What?

plateaus in Hall conductance

$$\sigma_{xy} = \nu \frac{e^2}{h}$$

 simultaneously: (near) zero longitudinal resistance

Quantum number V, observed to take integer or simple fractional values

 \bullet single-particle eigenstates (=bands) in a homogeneous magnetic field: degenerate Landau levels with spacing $\hbar\omega_c$

 $\omega_c = eB/m_e~~{
m cyclotron~frequency}$

- degeneracy per surface area: $d_{LL} = eB/h$
- + fill a number of bands = integer filling factor $~
 u=n/d_{LL}$

 \Rightarrow large gap Δ for single particle excitations: naively, we should have a band insulator

• There must be something special about Landau-levels!

$$\mathcal{H} = \frac{(\vec{p} + e\vec{A})^2}{2m}$$

$$\vec{A} = Bx\vec{e}_y$$

Semiclassical picture: skipping orbits

at edge of sample, 'skipping orbits' contribute a uni-directional current

cyclotron motion produces no net current in bulk of sample

picture for quantum transport: absence of backscattering ⇒ dissipationless current

 \Rightarrow no voltage drop along lead!

low-energy or 'gapless' excitations present near boundary

Edge States & Topological Order

Quantum Hall plateaus have a property called *topological order*

Edge states must occur where the topological order changes in space (gap must close)

Can formulate topological invariants to characterise topological order: will see example, later

Fractional Quantum Hall Effect (FQHE)

- \blacktriangleright plateaus seen also for non-integer ν
- not filled bands but similar phenomenology as integer filling:

nature of interactions determines how the system behaves:

⇒ FQHE is an inherently many-body phenomenon
▶ each Hall plateau represents a kind of topological order

Why is the fractional quantum Hall effect important?

source of very unusual physics, for example:quasi-particles with fractional electronic charge

$$e.g., q = e/3$$

• manipulations of quasiparticles could provide the basis for a quantum computer that is protected from errors!

quantum operations by braiding quasiparticles

Fractional statistics - Anyons and Non-Abelions

Abelian Anyons

Fractional statistics - Anyons and Non-Abelions

Quantum Hall effect without magnetic fields

The fractional quantum Hall effect is observed under extreme conditions

- strong magnetic fields of several Tesla
- very low temperatures
- clean / high mobility semiconductor samples

Opportunities for creating novel types of quantum Hall systems

I. Cold Atomic Gases

- both bosons and fermions
- highly tuneable: density, interactions, tunnelling strengths, (effective) mass, ...
- different types of experimental probes: local density, velocity distribution, correlations
- 2. Novel classes of materials
 - strained graphene
 - materials with strong spin orbit coupling, such as topological insulators

Strategies for simulating magnetic fields

Signature		Simulated by
Lorentz Force	$F_L = q \vec{v} \times \vec{B}$	Coriolis Force in Rotating System $\vec{\Omega}$
Aharonov-Bohm Effect	$\Psi\propto\exp\left\{irac{q}{\hbar}\intec{A}\cdot dec{\ell} ight\}$	Complex Hopping Amplitudes A in Optical Lattices $4 - 3 = 2\pi m$

$$\begin{array}{c|c} 4 & \hline & 3 \\ \hline & \Phi \\ \hline & & \hline \\ 1 & \hline & 2 \end{array} \qquad \Box \qquad A_{\alpha\beta} = 2\pi n_{\phi}$$

Motivation: Physical realizations in Cold Atoms I

experimental realisation: cold atoms with optical lattice + Raman lasers

 ⇒ possibility to simulate Aharonov-Bohm effect of magnetic field
 by imprinting phases for
 hopping via Raman transitions

 \Rightarrow Bose-Hubbard with a magnetic field (\rightarrow Lorentz force)

$$\begin{split} \mathcal{H} &= -J\sum_{\langle\alpha,\beta\rangle} \left[\hat{b}^{\dagger}_{\alpha} \hat{b}_{\beta} e^{iA_{\alpha\beta}} + h.c. \right] + \frac{1}{2}U\sum_{\alpha} \hat{n}_{\alpha} (\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha} \\ \text{particle density} \quad n \quad \text{vortex/flux density} \quad n_{\mathrm{V}} \quad \text{interaction} \quad U/J \end{split}$$

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

Realization I: Optical Lattices with Complex Hopping

Gerbier & Dalibard, NJP 2010

OIST, September 24, 2013

CAMBRIDGE

Realization II: Berry phases of optically dressed states

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Δ

ω

spacially varying optical coupling of N internal states (consider N=2)

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m}\hat{1} + \frac{\hbar}{2} \begin{pmatrix} -\Delta & \Omega_R(\mathbf{r}) \\ \Omega_R(\mathbf{r}) & \Delta \end{pmatrix}$$

local spectrum $E_n({\it r})$ and dressed states: $|\Psi_{f r}
angle$

adiabatic motion of atoms in space in the optical potential generates a Berry phase for N=2, consider Bloch sphere of unit vector $ec{n}=\langle\Psi_{f r}|\hat{ec{\sigma}}|\Psi_{f r}
angle$ $n_{\phi} = rac{1}{8\pi} \epsilon_{ijk} \epsilon_{\mu\nu} n_i \partial_{\mu} n_j \partial_{\nu} n_k$ Solid Angle Ω Berry flux generated: Total flux quanta = # times Bloch vector wraps sphere **Region**A $n_{\phi} \, d^2 r$ Gunnar Möller OIST, September 24, 2013

Realization II: Optical Flux Lattices

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

periodic optical Raman potentials are conveniently located by standing wave Lasers yielding an optical flux lattice of high flux density, here $n_{\phi}=1/2a^2$ (fixed)

Gunnar Möller

Strategies for simulating magnetic fields

• Simulate a physical effect that a magnetic field B exerts particle of charge qSignature Simulated by Lorentz Force $F_L = q \, \vec{v} \times \vec{B}$ Coriolis Force in Rotating System $\vec{\Omega}$ Aharonov-Bohm
Effect $\Psi \propto \exp\left\{i\frac{q}{\hbar}\int \vec{A}\cdot d\vec{\ell}\right\}$ Complex Hopping Amplitudes A in Optical Lattices $\sum_{\substack{\Phi \\ 1 \rightarrow 2}} \sum_{\Box} A_{\alpha\beta} = 2\pi n_{\phi}$ **Berry Curvature**

of Landau levels

Landau-levels as a topological band-structure

• Can we see in which way Landau-levels are special, just by looking at the wavefunctions?

Start with an analogy:

Recipe for calculating the twist in this Möbius band:

choose a closed path around the surface

 construct normal vector to the surface at points along the curve

 add up the twist angle while moving along this contour

Calculating the 'twist' in wave functions I

I. How to think of the surface / manifold on which Landau level wavefunctions φ live?

choose to make wavefunctions periodic (by superposition):

 $\varphi(\vec{r}+\vec{a})\propto\varphi(\vec{r})$

periodic repetitions of a unit cell (UC)

'crystal momentum' k parametrizes states in Brillouin zone (BZ)

 $\varphi_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r})e^{i\vec{k}\vec{r}}$ (Bloch's theorem)

notation for strictly periodic part

$$u_{\vec{k}}(\vec{r}+\vec{a}) = u_{\vec{k}}(\vec{r})$$

Calculating the 'twist' in wave functions II

2. What is the equivalent of the normal vector?

The wavefunction itself is a vector!

lives in a function space with a norm = Hilbert space

$$\varphi_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r})e^{i\vec{k}\vec{r}}$$

having chosen a point k, only u provides non-trivial information and use the ket representation

 $|u_{\vec{k}}\rangle$

u's are eigenstates of a transformed Hamiltonian:

$$\tilde{\mathcal{H}} = e^{-i\vec{k}\vec{r}}\mathcal{H}e^{i\vec{k}\vec{r}} \quad \Rightarrow \quad \tilde{\mathcal{H}}|u_{\vec{k}}\rangle = \epsilon_k|u_{\vec{k}}\rangle$$

Calculating the 'twist' in wave functions III

3. What is the equivalent of the twist angle?

direction of vector fixed at any point ...

 $|u_{\vec{k}}\rangle$

... up to an overall phase

 $e^{i\gamma}|u_{\vec{k}}\rangle$

 \Rightarrow need to keep track of the phase!

• use scalar product to compare vectors

Calculating the Berry phase

Michael Berry (1984)

Calculate how wavefunction evolves while moving adiabatically through curve $C : \mathbf{k}(t), t=0...T$

Local basis $\tilde{\mathcal{H}}|u_{\vec{k}}\rangle = \epsilon_{\vec{k}}|u_{\vec{k}}\rangle$

Phase evolution has two components:

Calculating the Berry phase

Michael Berry (1984)

Calculate how wavefunction evolves while moving adiabatically through curve $C : \mathbf{k}(t), t=0...T$

Local basis $\tilde{\mathcal{H}}|u_{\vec{k}}\rangle = \epsilon_{\vec{k}}|u_{\vec{k}}\rangle$

Phase evolution has two components:

 $|U(t)\rangle = \exp\left\{-\frac{i}{\hbar}\int_0^t \epsilon_{\vec{k}(t')}dt'\right\}\exp\left\{i\gamma(t)\right\}|u_{\vec{k}(t)}\rangle$

Substitute into Schrödinger equation:

UNIVER

$$\begin{split} \tilde{\mathcal{H}}|U(t)\rangle &= i\hbar\frac{d}{dt}|U(t)\rangle\\ \int_{0}^{take} \int_{0}^{T} dt \langle U(t)| \left| \begin{array}{c} \epsilon_{\vec{k}(t)}|U(t)\rangle &= i\hbar\left(-\frac{i}{\hbar}\epsilon_{\vec{k}(t)}+i\frac{d}{dt}\gamma(t)+\frac{d\vec{k}}{dt}\frac{d}{d\vec{k}}\right)|U(t)\rangle\\ \end{split} \\ \end{split} \\ \end{split} \\ \begin{split} \mathbf{F} &= i\int_{\mathcal{C}} \langle u_{\vec{k}}|\frac{d}{d\vec{k}}|u_{\vec{k}}\rangle d\vec{k} & \text{purely geometrical!} \end{split}$$

J

Geometrical phase analogous to Aharonov-Bohm effect

$$\gamma(\mathcal{C}) = i \int_{\mathcal{C}} \langle u_{\vec{k}} | \frac{d}{d\vec{k}} | u_{\vec{k}} \rangle d\vec{k} \equiv \int_{\mathcal{C}} \vec{\mathcal{A}}(\vec{k}) d\vec{k}$$

Effective 'vector potential' called Berry connection

$$\vec{\mathcal{A}}(\vec{k}) = i \int_{\mathrm{UC}} u_{\vec{k}}(\vec{r})^* \vec{\nabla}_k u_{\vec{k}}(\vec{r}) \, d^2r$$

 $\vec{\mathcal{B}} = \vec{
abla}_k imes \vec{\mathcal{A}}(\vec{k})$

Using Stokes' theorem:

$$\gamma(\mathcal{C}) = \int_{\mathcal{C}} \vec{\mathcal{A}}(\vec{k}) d\vec{k} = \int_{\mathcal{S}} \vec{\nabla}_k \times \vec{\mathcal{A}}(\vec{k}) d\vec{\sigma}$$

Berry curvature:

is a property of the band eigenfunctions, only!

Chern number:
$$C = \frac{1}{2\pi} \int_{BZ} d^2 {f k} \, {\cal B}({f k})$$
 takes only integer values!

Evaluating: Berry curvature for Landau-Levels

 $\vec{A} = Bx\vec{e}_y$ Choosing the Landau-gauge, i.e. vector potential

$$2\pi\ell_0^2 = \frac{h}{eB} \quad \text{spatial extent of one LL state}$$

Berry connection $\vec{\mathcal{A}}(\vec{k}) = -k_y \ell_0^2 \vec{e}_x \quad \text{(this is gauge dependent)}$
Berry curvature: $\vec{\mathcal{B}} = \ell_0^2 \vec{e}_z \quad \text{constant curvature - reflects constant magnetic field}$
Chern number: $C = 1$

Chern number:

Like twist in Möbius strip: Chern number does not vary under small perturbations: 'Topological invariant'

Emulating the effect of magnetic fields

Non-zero Berry curvature is not related specifically to magnetic fields only:

spatial dependency = physical implementation integrated out!

• Other systems with Chern number C=1 can give rise to a quantized Hall effect

F. D. M. Haldane (1988)

Haldane's Model F. D. M. Haldane (1988) Energy: $\phi = \frac{\pi}{2}, t_2 = 0.1t_1$ minimal dispersion . <mark>a</mark> 3' B Et₂e^{i¢} Ф>0 $\Phi \leq 0$ Α k_l k_2 C=1 $\mathcal{H} = -t_1 \sum \left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} + h.c. \right) - t_2 \sum \left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} e^{i\phi_{\mathbf{rr}'}} + h.c. \right)$

 $\langle \langle \mathbf{rr'} \rangle \rangle$

Realization of such models might be possible thanks to spin-orbit coupling

 $\langle \mathbf{rr'} \rangle$

Kane (2005)

▶ Proposal: for *flat* bands with $|C| \ge 0$, there may even be a fractional quantum Hall effect!

Tang et al. + Neupert et al. + Sun et al. in Phys. Rev. Lett. (2011)

Haldane's Model for strong correlations

F. D. M. Haldane (1988)

- tight binding model on hexagonal lattice
- no average magnetic flux (but time-reversal symmetry is broken)
- with fine-tuned hopping parameters: obtain flat lower band

$$t_1 = 1, t_2 = 0.60, t_3 = -0.58$$
 and $\phi = 0.4\pi$

Q: Particles in a nearly flat band with Chern #1 are similar to electrons in a Landau-level, but do repulsive interactions really induce the equivalent of fractional quantum Hall states?

+ Interactions = FQHE ?

- some evidence for such states, which we call "Fractional Chern Insulators" (FCI):
 - existence of a gap & groundstate degeneracy [D. Sheng (2011)]
 - Finite size scaling of gap [Regnault & Bernevig (2011)]
 - count of quasiparticle excitations matches FQHE states (e.g. Laughlin state)

• Want to find a new technique that can be used to make robust conclusions about the nature of phases realised in Chern bands

Strategy

Just like the topology of a geometrical object:

Topological order is invariant under continuous / adiabatic deformations!

• My approach: Devise a method to deform the wavefunction of a fractional quantum Hall state into a fractional Chern insulator without closing the gap.

Mapping from FQHE to FCI: Single Particle Orbitals

- Proposal by X.-L. Qi [PRL '11]: Get FCI Wavefunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the x-direction
- keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

$$|W(x,k_y)\rangle = \sum_{k_x} f_{k_x}^{(x,k_y)} |k_x,k_y\rangle$$

• Qi's Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

Wannier states in Chern bands

• construction of a Wannier state at fixed k_y in gauge with $\mathcal{A}_y=0$

$$|W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x} e^{-i\int_0^{k_x} \mathcal{A}_x(p_x,k_y)dp_x} \times e^{ik_x \frac{\theta(k_y)}{2\pi}} \times e^{-ik_x x} |k_x,k_y\rangle$$

'Parallel transport' of phase Berry connection indicates change of phase due to displacement in BZ

ensures periodicity of WF in $x \rightarrow x + L_x$

'Polarization'

Fourier transform

• or, more simply we can think of the Wannier states as the eigenstates of the position operator

$$\hat{X}^{cg} = \lim_{q_x \to 0} \frac{1}{i} \frac{\partial}{\partial q_x} \bar{\rho}_{q_x} \qquad \hat{X}^{cg} |W(x, k_y)\rangle = [x - \theta(k_y)/2\pi] |W(x, k_y)\rangle$$

• role of polarization: displacement of centre of mass of the Wannier state

$$\theta(k_y) = \int_0^{2\pi} \mathcal{A}_x(p_x, k_y) dp_x$$

CAMBRIDGE

- The Wannier basis for the Chern band produces a sequence of single-particle states with monotonously increasing position
- Similar to the linearly increasing position of the Landau-level basis

• Formulate degenerate perturbation theory in this basis for a fractionally filled Chern band

$$\hat{\mathcal{H}} = K.E. + \sum_{i < j} \hat{V}(\vec{r_i} - \vec{r_j}) \qquad \mathcal{H} = \begin{pmatrix} V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & V_{22} & V_{23} & \dots \\ V_{31} & V_{32} & \ddots & \\ \vdots & \vdots & \ddots \end{pmatrix} \qquad \text{with} \quad V_{ij} = \langle \alpha_j | \hat{V} | \alpha_i \rangle$$

Visualising contact interactions for bosons

FQHE

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

 $V(\vec{r_i} - \vec{r_j}) \propto \delta(\vec{r_i} - \vec{r_j})$

• Magnitude of two-body matrix elements for delta interactions in the Haldane model $\mathcal{H} = \begin{pmatrix} V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & V_{22} & V_{23} & \dots \\ V_{31} & V_{32} & \ddots \\ \vdots & \vdots & \ddots \end{pmatrix}$

FCI

- System shown: two-body interactions for $\ \ L_x imes L_y = 3 imes 4$

- Matrix elements differ in magnitude, but overall similarities are present
- Different block-structure due to non-conservation of linearised momentum K_y

Reduced translational invariance in K_y

• A closer look at some short range hopping processes

• for FCI: hopping amplitudes depend on position of centre of mass / K_y

Interpolating in the Wannier basis

• Can write both states in single Hilbert space with the same overall structure (indexed by K_y) and study the low-lying spectrum numerically (exact diagonalization)

• Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

$$\mathcal{H}(x) = \frac{\Delta_{\rm FCI}}{\Delta_{\rm FQHE}} (1-x) \mathcal{H}^{\rm FQHE} + x \mathcal{H}^{\rm FCI}$$

• Here: look at half-filled band for bosons

Adiabatic continuation in the Wannier basis

• Spectrum for N=10 (Hilbert space of dimension d=5x10⁶):

• Gap for different system sizes & aspect ratios:

- The gap remains open for all x!
- We confirm the Laughlin state is adiabatically connected to the groundstate of the half-filled topological flat band of the Haldane model

• General strategy with possibility to test & predict topological order in the thermodynamic limit

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

Entanglement spectra and quasiparticle excitations

Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B
 => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

FCI: Adiabatic continuation of the entanglement spectrum

Total #eigenvalues below entanglement gap Total #eigenvalues below entanglement gap = 4x(201 + 200 + 200 + 200 + 200)= 804 + 800 + 800 + 800 + 800 N = 101515 $N_A = 5$ 10105 5 $\frac{2}{V_{\nu}^{\text{tot}}}$ $10 \,\, 15$ 3 $\mathbf{5}$ 4 O $k_T^{\overline{\mathrm{tot}}}$ 'Infinite' J. entanglement 17.5gap for pure Same number of Laughlin state 12.5states for all x7.50.20.6 0.40.8 N Dictionary: \mathcal{X} FQHE FCI $|\Psi\rangle = \sum \sum e^{-\xi_{\varpi,i}/2} |\Psi_{\varpi,i}^A\rangle \otimes |\Psi_{\varpi,i}^B\rangle$ ϖ

Finite size behaviour of entanglement gap

- ullet The entanglement gap remains open for all values of the interpolation parameter k
- Finite size scaling behaviour encouraging, but analytic dependency on system size unknown

Analytic continuation between FQHE and FCI:

- provides a formal proof of identical topological order between two phases
- may allows robust conclusions about the thermodynamic limit from finite size data
- Successfully applied to a range of systems:
 - Haldane model: Laughlin state (Scaffidi & Möller, PRL 2012)
 - Kagomé lattice model: Laughlin & Moore-Read states (Liu & Bergholtz, PRB 2013)
- Possibility to simulate quantum Hall physics using spin-orbit coupling in solid state materials confirmed.

A side note: Flux Lattices vs Chern Bands

Interrelations between interacting flat-band problems

Gunnar Möller

Is there new physics in Chern Insulators?

- YES: e.g., higher Chern-numbers
- characteristic system featuring bands of any Chern number: the square lattice with constant magnetic flux

color-coding of gaps by Chern numbers - blue: positive, red: negative integers

• use Aharonov-Bohm effect to emulate flux

$$\mathcal{H}_{c} = -J \sum_{\langle lpha, eta
angle} \left[\hat{b}^{\dagger}_{lpha} \hat{b}_{eta} e^{iA_{lphaeta}} + h.c.
ight]$$

E

Many-body phases of the Hofstadter spectrum (for bosons)

Gunnar Möller

Strongly correlated phases in the Hofstadter hierarchy

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Gunnar Möller

$$\mathcal{H} = -J \sum_{\langle \alpha, \beta \rangle} \left[\hat{b}^{\dagger}_{\alpha} \hat{b}_{\beta} e^{iA_{\alpha\beta}} + h.c. \right] + \frac{1}{2} U \sum_{\alpha} \hat{n}_{\alpha} (\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha}$$

Account for repulsive interactions $U \ge 0$ by "flux-attachment" (Fradkin 1988, Jain 1989)

drawings: K. Park

Continuum Landau-level for fermions at filling 1/3: three flux per particle

Composite fermions = electron + 2 flux quanta

$$\Psi \propto \prod_{i < j} (z_i - z_j)^2 \Psi_{\rm CF}$$

I flux per composite particle

Composite Fermions in the Hofstadter Spectrum

I. Flux attachment for bosonic atoms: $n_{\phi}^{*}=n_{\phi}\mp n$

 $\Psi_B \propto \prod_{i < j} (z_i - z_j) \Psi_{\rm CF} \quad \Rightarrow \text{transformation of statistics!}$

2. Effective spectrum at flux n_{ϕ}^* is again a Hofstadter problem \Rightarrow weakly interacting CF will fill bands, so obtain density n

by counting bands using fractal structure

 \Rightarrow linear relation of flux and density for bands under a gap

$$n = \alpha n_{\phi}^* + \delta$$

3. Construct Composite Fermion wavefunction

continuum: $\Psi_{\rm B}({\mathbf{r}_i}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \psi_{\rm CF}({\mathbf{r}_i})$

Vandermonde / Slater determinant of LLL states

lattice:
$$\Psi_{\rm B}({\mathbf{r}_i}) \propto \psi_{\rm J}^{(\phi_x,\phi_y)}({\mathbf{r}_i}) \psi_{\rm CF}^{(-\phi_x,-\phi_y)}({\mathbf{r}_i})$$

Slater determinant of Hofstadter orbitals at flux density $n_{\phi}^0 = n$

<u>Composite Fermion Theory: Predictions & Verification</u>

Symmetries of lattices in magnetic flux

- finite simulation cell: $L_x \times L_y$ copies of the magnetic unit cell $l_x \times l_y$
- Hofstadter bands at $n_{\varphi}=p/q$ is a Chern insulator with q sublattices

- overall translation group reduced to magnetic translations
- but: can still trivially translate magnetic unit cell enclosing an integer number of flux quanta
- \rightarrow treat sites in magnetic unit cell as sublattices and project to resulting bands in k-space

Example single particle properties

an example: Hofstadter spectrum in magnetic unit cell of 7x1, $n_{\phi}=3/7$

Energy spectrum

Berry curvature (lowest band)

Magnatic unit call	Φ	Φ	Φ	Φ	Φ	Φ	6Φ
Magnetic unit cell	$\overline{7}$						

Composite Fermion States in the band projected model

take projection to the Chern-# C=2 subband dominating the $\,n=1-2n_{\phi}$ CF states

Gunnar Möller

New physics in Chern bands

Gunnar Möller

• Many new systems in which FQHE-like physics of Chern-Insulators can be induced:

- spin-orbit coupled materials
- optical flux lattices or artifical gauge fields in cold atomic gases

 For C=I bands, can identify quantum liquids in FCI models by analytic continuation to usual FQHE in the continuum lowest Landau level - useful tool for identifying phases
 T. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012).

New physics can be found in Chern bands with higher C >1
can use picture of LL + subband / color index to describe C >1 bands, but color index is not conserved!
many-body phases in C >1 bands first analyzed for the Hofstadter spectrum: GM & N. R. Cooper, "Composite Fermion Theory for Bosonic Quantum Hall States on Lattices", Phys. Rev. Lett. 103, 105303 (2009).

Composite Fermions or Chern Insulators

Matching the language: an example
$$\,n=1/7,\;n_{\phi}=3/7\,$$

1) composite fermion theory

$$n_{\phi}^{*} = n_{\phi} - n$$
 with filled CF bands
e.g. $n_{\phi} = \frac{1}{2}(1 - n)$
2) language of Chern insulators
e.g. $C = 2, \ \nu = 1$
3) subband projection:
 $\nu_{\text{eff}} = n/\epsilon$ e.g. $\nu_{\text{eff}} = 2$
Data for N=5 particles on a lattice with 7x5 sites
Magnetic unit cell: 3 flux per 7 sites = 7x1 sites
Repetitions of magnetic unit cell: 1x5 unit cells

overlaps with CF state (no projection)

Gunnar Möller

- \

Groundstate properties: Single particle density matrix

Single particle density matrix (= PES with $N_A=I$) reveals state at small U as a condensate!

PES with N_A=3 confirms state at small U as a condensate: state dominated by single Schmidt EV!

3 E

CAMBRIDGE

 $n_{\phi} = 3/7$ N=5

PES counting at low entanglement energies: groundstate in band projected matches unprojected model

Suggests: Hard-Core limit = Flat Band Limit! (n=1/7 small)

UNIVERSIT

CAMBRIDGE

PES for larger system sizes: v=1/3 - C=2 band

		_‡	ŧ	‡	ŧ	‡	ŧ	‡	ŧ	ŧ	+	+	╉	+	N=	=8,1	n _e =	4/9	, 4x0	6 m	agne	etic	unit	cel	ls_
	20	ŧ	ŧ	‡	ŧ	+	ŧ	‡	ŧ	+	+	+	+	ŧ	ŧ	+	ŧ	+	+	+	+	+	ŧ	‡	+
m	15																								
	10	_ 46, ±	45, ±	45, ±	46, ±	45, +	45, +	 ±	+	+	+	+	+	±	±	±	±	÷	+	+	÷	+	±	±	_
	5	0					5					10					15					20			
]	K _x	+	L	k y	T									

3 x degenerate ground state at v=1/3: its PES shows a clear entanglement gap

PES for larger system sizes: v=1 - filled C=2 band

 $n_{\phi}=3/7$ N=8, band projected, d_{GS}=1, CF state at neg flux: $n_{\phi}=rac{1}{2}(1-n)$

